Problem 3.1. Let $f(x)=x^{n}+a_{1} x^{n-1}+\cdots+a_{n-1} x+a_{n}$ be a polynomial with roots $\alpha_{1}, \ldots, \alpha_{n}$. The discriminant of $f(x)$ is defined as

$$
\Delta=\prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right)^{2}
$$

(a) Prove that this is a symmetric function.
(b) If $f(x)=x^{3}+a_{2} x+a_{3}$, express the discriminant Δ in terms of coefficients a_{2}, a_{3}.

Problem 3.2.

(a) Show that $\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\}$ are linearly independent over \mathbb{Q}.
(b) Show that $\{1, \sqrt[3]{2}, \sqrt[3]{4}\}$ are linearly independent over $\mathbb{Q}(i)$.

Problem 3.3. Let $f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$ be an irreducible polynomial in $F[x]$, where F is a field. Let L be the extension field $F[x] /(f)$. Show that the dimension $\operatorname{dim}_{F} L$ of L as a vector space over F is equal to n.

Problem 3.4 (Eisenstein's criterion with a twist).
(a) Let a be any integer. Prove that a polynomial $f(x) \in \mathbb{Z}[x]$ is irreducible iff $f(x+a) \in \mathbb{Z}[x]$ is irreducible.
(b) Use this trick to prove that $x^{3}-3 x^{2}+9 x-5$ is irreducible.
(c) Use this trick to prove that, for any prime p, the polynomial $x^{p-1}+x^{p-2}+$ $\cdots+x+1$ is irreducible.
Problem 3.5. Consider the field extension $\mathbb{Q} \subset \mathbb{Q}(\sqrt{2}, \sqrt[3]{2})$.
(a) What is the degree $[\mathbb{Q}(\sqrt{2}, \sqrt[3]{2}): \mathbb{Q}]$ of this field extension?
(b) Prove that this is a simple field extension; that is, find an element α such that $\mathbb{Q}(\alpha)=\mathbb{Q}(\sqrt{2}, \sqrt[3]{2})$.
Challenge Problem 3.6. (10 points) Try to use a similar method to Lagrange's solution of the quartic to derive a solution to the cubic equation.
Hint: Search for a polynomial $f\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ whose orbit under S_{3} consists of only 2 elements (or in other words whose stabilizer subgroup has 3 elements).

