
Math 404 HW 3 Solutions

1 Problem 3.1

Let f ∈ k[x] be a degree n polynomial with roots α1, . . . , αn. Define
the discriminant as

∆ =
∏
i<j

(αi − αj)2

(a) Show that ∆ is a symmetric function

(b) If f = x3 + a2x+ a3, express ∆ in terms of the coefficients a2, a3.

1. Let σ ∈ Sn. Note that

σ ·∆ =
∏
i<j

(ασ(i) − ασ(j))2.

Thus, we wish to show∏
i<j

(αi − αj)2 =
∏
i<j

(ασ(i) − ασ(j))2 (1)

We look at these products term by term. Fix some i < j, so on the left
hand side we have the term fij = (αi − αj)2. Let k, ` = σ−1(i), σ−1(j).
We know that k 6= `, so either k < ` or k > `.

If k < ` then on the right hand side we have the term

(ασ(k) − ασ(`))2 = (αi − αj)2 = fij,

so the term fij on the left hand side of (1) also appears on the right
hand side.
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If k > `, then on the right hand side we have the term

(ασ(`) − ασ(k))2 = (αj − αi)2 = [(−1)(αi − αj)]2 = fij

So the term fij also appears on the right hand side of (1). Thus, all
the terms on the left hand side of (1) appear on the right hand side
of (1). Replacing σ by σ−1 yields that all the terms on the right hand
side of (1) appear on the left hand side of (1). Thus, both sides of (1)
are products of the same terms arranged in a different order, and since
multiplication is commutative, they are the same product.

(note, this reasoning also shows that if you define δ =
√

∆, then σ · δ =
±δ, think about why this is the case. The positive or negative sign
here is called the sign of the permutation σ)

2. Here we just give the formula, and leave the reasoning behind it to you.
We have that

∆ = −4a32 + 27a33
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2 Problem 3.2

(a) Show that {1,
√

2,
√

3,
√

6} are linearly independent over Q.

(b) Show that {1, 3
√

2, 3
√

4} are linearly independent over Q

(a) Consider the field extensions Q ⊂ Q(
√

2) ⊂ Q(
√

2,
√

3). We will show
that {1,

√
2} is a basis for Q(

√
2)/Q and that {1,

√
3} is a basis for

Q(
√

2,
√

3)/Q(
√

2). First we show how the problem will follow from
this. Assuming this claim has been proven, the argument of theo-
rem 11.4 yields that {1 · 1, 1 ·

√
3,
√

2 · 1,
√

2 ·
√

3} is a basis for for
Q(
√

2,
√

3)/Q. But then the problem result follows from noting that√
6 =
√

2 ·
√

3.

First, we prove the claim that Q(
√

2)/Q has basis {1,
√

2). Indeed, the
polynomial x2 − 2 is irreducible over Q by Eisenstein or the rational
root test, so this claim follows from theorem 11.7.

Next we investigate the field extension Q(
√

2,
√

3)/Q(
√

2). This is a
simple field extension with generator

√
3. This generator is a root of

the polynomial f = x2 − 3, which is irreducible over Q by the same
argument as above, but it still remains to be seen if it is irreducible
over the larger field Q(

√
2). Once we show that f is irreducible over

Q(
√

2), then theorem 11.7 again will yield that {1,
√

3} is a basis for
Q(
√

2,
√

3)/Q(
√

2), as desired.

Since f is of degree two, it is irreducible if and only if it has no roots.
To see that f has no roots in Q(

√
2), suppose towards a contradiction

that α = a+ b
√

2 is a root of f , with a, b ∈ Q. Then we have

a2 + 2b2 + 2ab
√

2 = 3

If neither a nor b are zero, then we get that
√

2 = 3−a2−2b2
2ab

, which yields

that
√

2 is rational, which we proved false earlier in this problem. If
b = 0, then we get a2 − 3 = 0. But this is impossible, as x2 − 3 is
irreducible over Q by Eisenstein’s criterion or the rational root test. If
a = 0 then we get 2b2 − 3 = 0. But this is impossible, as 2x2 − 3 is



4

irreducible over Q by Eisenstein at 3 or the rational root test. This
covers all possible values for a and b, so we must have that f has no
roots, as desired.

(b) Suppose we have a linear dependence a+ b 3
√

2 + c 3
√

4 = 0, with a, b, c ∈
Q(i). We wish to show that a = b = c = 0. Note that 3

√
4 = ( 3

√
2)2.

Let f = a + bx + cx2 ∈ Q(i)[x], so that f( 3
√

2) = 0. If any of a, b, or
c were nonzero, this would yield that the degree of the field extension
Q(i)( 2

√
3)/Q(i) was at most 2 (theorem 11.7 again). So it suffices to

show that this extension has degree 3. This field extension naturally
sits in the following diagram of field extensions

Q( 3
√

2, i)

Q( 3
√

2) Q(i)

Q

Now our goal is to figure out as many of the degrees in this picture as
possible, and use the multiplicative property of the degree to figure out
the rest.

The extensions Q(i)/Q and Q( 2
√

3, i)/Q( 2
√

3) are each simple, generated
by i. Note that i is a root of the polynomial g = x2 + 1, which has no
roots in R. Since Q ⊂ R and Q( 3

√
2) ⊂ R (some real analysis shows

that 3
√

2 exists in R), g has no roots in either of these fields, and so is
irreducible over both of them. Thus, we have

[Q(i) : Q] = [Q(
2
√

3, i)/Q(
2
√

3)] = 2

The extension Q( 3
√

2)/Q has degree 3, as 3
√

2 is a root of the polynomial
x3 − 2, which is irreducible over Q by Eisenstein or the rational root
test. We repeat the preceding diagram, but with the known degrees of
extension labeled.
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Q( 3
√

2, i)

Q( 3
√

2) Q(i)

Q

2

23

Since the degree is multiplicative, using the left hand side of the above
diagram, we get

[Q(
3
√

2, i) : Q] = [Q(
3
√

2, i) : Q(
2
√

3)] · [Q(
2
√

3) : Q = 6.

Using the other side of the above diagram, we get

6 = [Q(
3
√

2, i) : Q] = [Q(
3
√

2, i) : Q(i)] · [Q(i) : Q] = [Q(
3
√

2, i) : Q(i)] · 2

Thus, we get that [Q( 3
√

2, i) : Q(i)] = 3, as desired.
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3 Problem 3.3

Let f(x) ∈ F [x] be an irreducible degree n polynomial (so n ≥ 1),
with F a field. Then dimF F [x]/(f) = n.

Proof. We claim that the congruence classes [1], [x], . . . , [xn−1] form a basis
for F [x]/(f).

Linear independence

Suppose that we have a linear dependence relation in F [x]/(f)

0 = b0[1] + b1[x] + · · ·+ bn−1[x
n−1]

= [b0 + b1x+ · · ·+ bn−1x
n−1]

with bi ∈ F . We wish to show that all bi = 0. By definition of congruence
classes, there exists some g ∈ F [x] so that

fg = b0 + b1x+ · · ·+ bn−1x
n−1,

with the equality holding in F [x]. If g 6= 0, then we have that deg(fg) =
deg(f) + deg(g) ≥ deg(f) = n. However, looking at the right hand side of
the above equation yields that deg(fg) ≤ n − 1, a contradiction. Thus, we
must have that g = 0, so that

0 = fg = b0 + b1x+ · · ·+ bn−1x
n−1

By definition of the polynomial ring, this means bi = 0 for all i, as desired.

Spanning

. Let γ ∈ F [x]/(f). Then we have that γ = [g] for some g ∈ F [x]. Since f is
nonzero, we may apply the division algorithm, and write

g = qf + r

with deg(r) < deg(f) = n. By definition of congruence classes, we have that

γ = [g] = [qf + r] = [r].
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Furthermore, since deg(r) < n, we uniquely write

r = c0 + c1x+ · · ·+ cn−1x
n−1

with ci ∈ F . Then we have that

γ = [r] = c0 + c1[x] + · · ·+ cn−1[x
n−1],

so that γ is in the span of [1], . . . , [xn−1, as desired.

Note, we didn’t actually use irreducibility of f anywhere. Just that f was
nonzero.
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4 Problem 3.4

Eisenstein’s criterion with a twist

(a) Let a be any integer. Let f(x) ∈ Z[x]. Then f(x) is irreducible if
and only if f(x+ a) is irreducible

(b) Use this trick to show that x3 − 3x2 + 9x− 5 is irreducible.

(c) Use this trick to show that, for any prime p, the polynomial xp−1 +
xp−2 + · · ·+ x+ 1 is irreducible.

(a) First we show that f(x+a) being irreducible implies f(x) is irreducible.
To do this, suppose we have a factorization f(x) = g(x)h(x) with
f(x) 6= 0. Define

f ′(x) := f(x+ a)

g′(x) := g(x+ a)

h′(x) := h(x+ a)

So our assumption is that f ′(x) is irreducible, and we wish to show that
exactly one of g(x) or h(x) is a unit. To do this, note that evaluating
at x+ a is a homomorphism, so we have

f ′(x) = g′(x)h′(x).

Since f ′(x) is irreducible, exactly one of g′(x) or h′(x) is a unit. Say
without loss of generality that g′(x) is a unit and h′(x) is not.

Thus, there exists some polynomial p′(x) so that g′(x)p′(x) = 1. Eval-
uating both sides of this equality at x− a yields

1 = g′(x− a)p′(x− a) = g(x− a+ a)p′(x− a) = g(x)p′(x− a).

Thus, g(x) is a unit. So all that remains to be shown is that h(x) is
not a unit.
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Suppose towards a contradiction that there is some polynomial q(x) so
that h(x)q(x) = 1. Then evaluating both sides at x+ a yields

1 = h(x+ a)q(x+ a) = h′(x)q(x+ a),

contradicting our assumption that h′(x) was a nonunit.

Thus, in any factorization f(x) = g(x)h(x) exactly one of the two terms
is a unit, and so f is irreducible, as desired.

Thus, we have shown that for any integer a, that if f(x + a) is ir-
reducible, then f(x) is irreducible as well. For the reverse implica-
tion, suppose f(x) is irreducible, and let f ′(x) = f(x + a). Then
f ′(x + (−a)) = f(x), which is irreducible. Thus by the previous rea-
soning applied to the integer −a, we have that f ′(x) is irreducible, as
desired.

Exercise If you’ll notice, all we used were that evaluating at x+a and
x − a were inverse homomorphisms. So try and prove the following:
Let ϕ : R

∼−→ S be an isomorphism of integral domains. Then for any
r ∈ R we have that r is irreducible if and only if ϕ(r) is irreducible.

(b) Let f(x) = x3− 3x2 + 9x− 5. Note that Eisenstein’s criterion does not
apply to f , but there are lots of evaluations of f after which Eisenstein’s
criterion applies. Here we write out the evaluations, and a prime for
which Eisenstein’s criterion applies

f(−1) = −18 + 18x− 6x2 + x3 (p = 2)

f(1) = 2 + 6x+ x3 (p = 2)

f(3) = 22 + 18x+ 6x2 + x3 (p = 2)

(c) Define

f(x) =

p−1∑
i=0

xi

g(x) = xp − 1,
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so that our goal is to show that f(x) is irreducible. Note that

f(x) · (x− 1) =

(
p−1∑
i=0

xi

)
· (x− 1)

=

p−1∑
i=0

xi+1 −
p−1∑
i=0

xi.

All the terms in these two sums cancel out, except for the xp and −1
terms, so that f(x) · (x − 1) = xp − 1. Evaluating both sides at x + 1
yields

f(x+ 1) · x = (x+ 1)p − 1 (2)

By part (a) it suffices to show that f(x+ 1) is irreducible. Expanding
the right hand side of (2) using the binomial theorem yields

f(x+ 1) =

(
p∑
i=0

(
p
i

)
xi
)
− 1

x

=

p∑
i=1

(
p
i

)
xi

x

=

p∑
i=1

(
p

i

)
xi−1.

We hope to apply Eisenstein’s criterion to this polynomial. Indeed, the
constant term of f(x+ 1) gets a contribution when i− 1 = 0, so i = 1,
with coefficient

(
p
1

)
= p, so p divides the constant term, and p2 does not

divide the constant term. The leading coefficient of f(x+ 1) is
(
p
p

)
= 1,

which is not divisible by p. So all that remains to be shown is that all
the intermediate coefficients are divisible by p.

To do this, we expand the binomial coefficient for 2 ≤ i ≤ p− 1(
p

i

)
=
p(p− 1)(p− 2) · · · (p− (i− 1))

i(i− 1)(i− 2) . . . (2) · 1
(3)

(if you’ve seen a different formula for the binomial coefficients, check
that it agrees with this one). If we’re hoping that p divides this integer,
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then we should be able to factor out the p in the numerator and write(
p

i

)
= p · (p− 1)(p− 2) · · · (p− (i− 1))

i(i− 1)(i− 2) . . . (2) · 1
. (4)

The only problem that remains is how do we know that the fraction
written here is actually an integer, and not just a rational number? The
fraction in (3) is an integer because it is the answer to a combinatorial
question, “How many i-element subsets of a set of size p are there?”
(by the way, there’s an orbit-stabilizer formula implicit in this formula,
see if you can make sense of this)

To see that the fraction in (4) is an integer, we can imagine expanding
all of the terms in each of the products for the numerator and denom-
inator in (3) into their prime factorizations. Since the whole fraction
is an integer, all the primes that appear as factors of the denominator
must appear with potentially larger exponents in the numerator. How-
ever, since i < p all of the prime factors in the denominator are also
less than p, so they must appear with potentially larger exponents in
the terms p − j for j ≥ 1 in the numerator. They can’t appear in the
p term in the numerator. That is, all the factors denominator in (4)
cancel with some of the factors in the numerator in (4). That is, the
fraction in (4) is an integer, as desired.
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5 Problem 3.5

(a) Compute [Q(
√

2, 3
√

2) : Q]

(b) Find a single generator for Q(
√

2, 3
√

2).

(a) We will prove that [Q(
√

2, 3
√

2) : Q] = 6 in a few different ways.

5.1 Direct Computation

Consider the field extensions Q ⊂ Q(
√

2) ⊂ Q(
√

2, 3
√

2). The first
extension has degree 2 as x2 − 2 is irreducible over Q by Eisenstein or
the rational root test.

The multiplicative property of the degree shows that it suffices to prove
that the extension Q(

√
2) ⊂ Q(

√
2, 3
√

2) is of degree 3. Note that this
extension is generated by an element which is a root of the polynomial
f = x3 − 2. If f is irreducible over Q(

√
2), then the extension will be

degree 3. Since f is of degree 3, it suffices to show that f has no roots
in Q(

√
2).

So suppose towards a contradiction that α3−2 = 0, for some α ∈ Q(
√

2)
We’ve shown earlier in this homework that 1,

√
2 forms a basis for

Q(
√

2) over Q, so we may uniquely write α = a + b
√

2 with a, b ∈ Q.
Then we compute

0 = (a+ b
√

2)3 − 2 = a3 + 2b3
√

2 + 3a2b
√

2 + 6ab2 − 2

Rearranging this equation yields
√

2(2b3 + 3a2b) + a3 + 6ab2 − 2 = 0

Since 1 and
√

2 are linearly independent over Q, this is equivalent to
the pair of equations

b(2b2 + 3a2) = 0

a3 + 6ab2 − 2 = 0
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The first equation yields that either b = 0 or 2b2 + 3a2 = 0. However,
since a, b ∈ R we have 2b2 + 3a2 ≥ a2 + b2 ≥ 0, with the second holding
if and only if a = b = 0. However if a = b = 0 then the second equation
above does not hold. Thus, we can not have 2b2 + 3a2 = 0, so we must
have b = 0.

But then the second equation above reads a3 − 2 = 0, which is impos-
sible as a ∈ Q and x3 − 2 ∈ Q[x] is irreducible by Eisenstein or the
rational root test. Thus, our pair of equations can not be solved, and
the result holds.

5.2 Leveraging the multiplicative property of the
degree

Consider the diagram of field extensions, with easy to compute degrees
labeled.

Q(
√

2, 3
√

2)

Q(
√

2) Q( 3
√

2)

Q
32

Let f be the minimal polynomial for 3
√

2 over Q(
√

2). Since 3
√

2 is a
root of g = x3 − 2 ∈ Q(

√
2)[x], we have that f divides g. Thus, we

have that
[Q(
√

2,
3
√

2) : Q(
√

2)] = deg f ≤ deg g = 3.
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Similar reasoning yields that we can fill out this diagram with degree
inequalities

Q(
√

2, 3
√

2)

Q(
√

2) Q( 3
√

2)

Q

≤3 ≤2

32

Using the multiplicative property of the degree, we have that

[Q(
√

2,
3
√

2) : Q] = [Q(
√

2,
3
√

2) : Q(
√

2)] · [Q(
√

2) : Q] ≤ 3 · 2 = 6.

So the overall degree is at most 6. But using the multiplicative property
of the degree moving along each side of the above diagram yields that
2 and 3 each divide [Q(

√
2, 3
√

2) : Q]. Thus, we have that the least
common multiple of 2 and 3 divides [[Q(

√
2, 3
√

2) : Q]. That is, we have
that 6 divides [Q(

√
2, 3
√

2) : Q], so we have

6 ≤ [Q(
√

2,
3
√

2) : Q] ≤ 6,

so we must have equality throughout.

Exercise This same reasoning works in greater generality. Suppose we
have a field k and elements α, β each algebraic over k with n = [k(α) : k]
and m = [k(β) : k] relatively prime. Compute [k(α, β) : k]

5.3 Finding a single generator

Use some of the early ideas in the preceding parts to show that

[Q(
√

2,
3
√

2) : Q] ≤ 6.

For the reverse inequality it suffices to give an element α ∈ Q(
√

2, 3
√

2)
of degree 6 over Q, as then Q(α) ⊂ Q(

√
2, 3
√

2) yields

6 ≥ [Q(
√

2,
3
√

2) : Q] = [Q(
√

2,
3
√

2) : Q(α)] · [Q(α) : Q] = 6,
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so we must have equality throughout. This would also show that
[Q(
√

2, 3
√

2) : Q(α)] = 1, so that Q(
√

2, 3
√

2) = Q(α), solving (b) along
the way. So all that remains is to find an α of degree 6 over Q, which
we do in part (b)

(b) From part (a), we are in search of some element α ∈ Q(
√

2, 3
√

2) of
degree 6 over Q. To find one, note that(√

2
3
√

2

)6

=
23

22
= 2.

Thus, if we let α =
√
2

3√2 , we have that α ∈ Q(
√

2, 3
√

2) and α is a root

of f = x6 − 2 ∈ Q[x]. Note that f is irreducible by Eisenstein at the
prime 2 (rational root test isn’t enough here), so α is of degree 6, as
desired.
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