Math 404A: Introduction to Modern Algebra (Spring 2021) Jarod Alper Homework 2 Due: Friday, April 9

You do not need to do Problem 2.3-it will be on next week's homework.

Problem 2.1. For each of the following actions of a group G on a set X, determine the orbit $Gx = \{g \cdot x \mid g \in G\}$ and stabilizer $G_x = \{g \in G \mid g \cdot x = x\}$ for each element $x \in X$:

- (a) $G = S_3$ acting on $X = S_3$ via conjugation: for $g \in G$ and $x \in X$, the action is defined by $g \cdot x = gxg^{-1}$.
- (b) $G = \{(1), (12), (345), (354), (12)(345), (12)(354)\} \subset S_6$ acting on $X = \{1, 2, 3, 4, 5, 6\}$ via permutation.

To check your answer, recall that for any $x \in X$, then $|G| = |G_x||Gx|$.

Problem 2.2.

- (a) Express $x_1^4 + x_2^4 + x_3^4 + x_4^4$ as a polynomial in terms of the elementary symmetric functions s_1, s_2, s_3, s_4 .
- (b) Let $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ denote the complex roots of the polynomial

$$x^4 + x^3 + 2x^2 + 3x + 5.$$

Determine the number $\alpha_1^4 + \alpha_2^4 + \alpha_3^4 + \alpha_4^4$.

Hint: Do not actually solve for the roots α_i explicitly!

Problem 2.3. (Moved to HW3) Let $f(x) = x^n + a_1 x^{n-1} + \cdots + a_{n-1} x + a_n$ be a polynomial with roots $\alpha_1, \ldots, \alpha_n$. The discriminant of f(x) is defined as

$$\Delta = \prod_{i < j} (\alpha_i - \alpha_j)^2$$

- (a) Prove that this is a symmetric function.
- (b) If $f(x) = x^3 + a_2x + a_3$, express the discriminant Δ in terms of coefficients a_2, a_3 .

Problem 2.4. Let $f \in k[\alpha_1, \ldots, \alpha_n]$ be any polynomial. Let f_1, \ldots, f_k be the orbit of f under the action of S_n . (Note that one of the f_i is equal to f.)

- (a) Show that $f_1 + \cdots + f_k$ is symmetric.
- (b) If $s(x_1, \ldots, x_k)$ is any symmetric polynomial in x_1, \ldots, x_k , show that $s(f_1, \ldots, f_k)$ is a symmetric polynomial in $\alpha_1, \ldots, \alpha_n$.

Challenge Problem 2.5. (5 points) Let

$$f_1 = (\alpha_1 + \alpha_2)(\alpha_3 + \alpha_4)$$

$$f_2 = (\alpha_1 + \alpha_3)(\alpha_2 + \alpha_4)$$

$$f_3 = (\alpha_1 + \alpha_4)(\alpha_2 + \alpha_3)$$

- (a) Express $f_1 + f_2 + f_3$ as a polynomial in terms of the elementary symmetric functions s_1, \ldots, s_4 .
- (b) Express $f_1f_2 + f_1f_3 + f_2f_3$ as a polynomial in s_1, \ldots, s_4 .
- (c) Express $f_1 f_2 f_3$ as a polynomial in s_1, \ldots, s_4 .

Problem 2.6.

- (1) Verify that Lagrange's method to solve the quartic yields the correct solutions to $x^4 + a_0 = 0$.
- (2) Use Lagrange's method to solve $x^4 + x + 1 = 0$.

Challenge Problem 2.7. (10 points) Try to use a similar method to Lagrange's solution of the quartic to derive a solution to the cubic equation.

Hint: Search for a polynomial $f(\alpha_1, \alpha_2, \alpha_3)$ whose orbit under S_3 consists of only 2 elements (or in other words whose stabilizer subgroup has 3 elements).

Challenge Problem 2.8. (10 points) In 1540, Da Coi posed the following challenge to Cardan: Divide 10 into three parts such that they shall be in continued proportion and the product of the first two is $6.^{1}$

Use Lagrange's method to solve the above classical problem.

¹Cardan states it as:

Exemplum. Fac ex 10 tres partes proportionales, ex quarum ductu primæin secundam, producantur 6. Hanc proponebat Ioannes Colla, & dicebat solui non posse, ego uero dicebam, eam posse solui, modum tame ignorabam, donec Ferrarius eum inuenit." *Ars Magna* cap. XXXIV, qvæstio V; 1545 ed., fol. 73, v.

See pg.467 History of Mathematics, Band 2 by David Eugene Smith for an account of the history of this problem.