You do not need to do Problem 2.3-it will be on next week's homework.
Problem 2.1. For each of the following actions of a group G on a set X, determine the orbit $G x=\{g \cdot x \mid g \in G\}$ and stabilizer $G_{x}=\{g \in G \mid g \cdot x=x\}$ for each element $x \in X$:
(a) $G=S_{3}$ acting on $X=S_{3}$ via conjugation: for $g \in G$ and $x \in X$, the action is defined by $g \cdot x=g x g^{-1}$.
(b) $G=\{(1),(12),(345),(354),(12)(345),(12)(354)\} \subset S_{6}$ acting on $X=\{1,2,3,4,5,6\}$ via permutation.
To check your answer, recall that for any $x \in X$, then $|G|=\left|G_{x}\right||G x|$.

Problem 2.2.

(a) Express $x_{1}^{4}+x_{2}^{4}+x_{3}^{4}+x_{4}^{4}$ as a polynomial in terms of the elementary symmetric functions $s_{1}, s_{2}, s_{3}, s_{4}$.
(b) Let $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$ denote the complex roots of the polynomial

$$
x^{4}+x^{3}+2 x^{2}+3 x+5
$$

Determine the number $\alpha_{1}^{4}+\alpha_{2}^{4}+\alpha_{3}^{4}+\alpha_{4}^{4}$.
Hint: Do not actually solve for the roots α_{i} explicitly!
Problem 2.3. (Moved to HW3) Let $f(x)=x^{n}+a_{1} x^{n-1}+\cdots+a_{n-1} x+a_{n}$ be a polynomial with roots $\alpha_{1}, \ldots, \alpha_{n}$. The discriminant of $f(x)$ is defined as

$$
\Delta=\prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right)^{2}
$$

(a) Prove that this is a symmetric function.
(b) If $f(x)=x^{3}+a_{2} x+a_{3}$, express the discriminant Δ in terms of coefficients a_{2}, a_{3}.

Problem 2.4. Let $f \in k\left[\alpha_{1}, \ldots, \alpha_{n}\right]$ be any polynomial. Let f_{1}, \ldots, f_{k} be the orbit of f under the action of S_{n}. (Note that one of the f_{i} is equal to f.)
(a) Show that $f_{1}+\cdots+f_{k}$ is symmetric.
(b) If $s\left(x_{1}, \ldots, x_{k}\right)$ is any symmetric polynomial in x_{1}, \ldots, x_{k}, show that $s\left(f_{1}, \ldots, f_{k}\right)$ is a symmetric polynomial in $\alpha_{1}, \ldots, \alpha_{n}$.

Challenge Problem 2.5. (5 points) Let

$$
\begin{aligned}
& f_{1}=\left(\alpha_{1}+\alpha_{2}\right)\left(\alpha_{3}+\alpha_{4}\right) \\
& f_{2}=\left(\alpha_{1}+\alpha_{3}\right)\left(\alpha_{2}+\alpha_{4}\right) \\
& f_{3}=\left(\alpha_{1}+\alpha_{4}\right)\left(\alpha_{2}+\alpha_{3}\right)
\end{aligned}
$$

(a) Express $f_{1}+f_{2}+f_{3}$ as a polynomial in terms of the elementary symmetric functions s_{1}, \ldots, s_{4}.
(b) Express $f_{1} f_{2}+f_{1} f_{3}+f_{2} f_{3}$ as a polynomial in s_{1}, \ldots, s_{4}.
(c) Express $f_{1} f_{2} f_{3}$ as a polynomial in s_{1}, \ldots, s_{4}.

Problem 2.6.

(1) Verify that Lagrange's method to solve the quartic yields the correct solutions to $x^{4}+a_{0}=0$.
(2) Use Lagrange's method to solve $x^{4}+x+1=0$.

Challenge Problem 2.7. (10 points) Try to use a similar method to Lagrange's solution of the quartic to derive a solution to the cubic equation.

Hint: Search for a polynomial $f\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ whose orbit under S_{3} consists of only 2 elements (or in other words whose stabilizer subgroup has 3 elements).

Challenge Problem 2.8. (10 points) In 1540, Da Coi posed the following challenge to Cardan: Divide 10 into three parts such that they shall be in continued proportion and the product of the first two is $6 .{ }^{1}$

Use Lagrange's method to solve the above classical problem.

[^0]
[^0]: ${ }^{1}$ Cardan states it as:
 Exemplum. Fac ex 10 tres partes proportionales, ex quarum ductu primæin secundam, producantur 6 . Hanc proponebat Ioannes Colla, \& dicebat solui non posse, ego uero dicebam, eam posse solui, modum tame ignorabam, donec Ferrarius eum inuenit." Ars Magna cap. XXXIV, qvæstio V; 1545 ed., fol. 73, v.
 See pg. 467 History of Mathematics, Band 2 by David Eugene Smith for an account of the history of this problem.

