
Math 404 HW 2 Solutions

Problem 2.1

For each of the following actions of a group G on a set X, determine
the orbit Gx = {g · x|g ∈ G} and stabilizer Gx = {g ∈ G|g · x = x} for
each element x ∈ X:

(a) (a) G = S3 acting on X = S3 via conjugation: for g ∈ G and
x ∈ X,the action is defined by g · x = gxg−1.

(b) (b) G = (1), (12), (345), (354), (12)(345), (12)(354) ⊂ S6 acting on
X = {1, 2, 3, 4, 5, 6} via permutation.

(a) We are looking at the action of S3 on itself by conjugation. Perhaps
the most straightforward way to find Gx and Gx are by direct computation.
Recall that we are using the convention of composition for calculating the
product of cycles, so we are going right to left.

Geometric interpretation: The stabilizer is the set of all elements which
do not ”move” a point x away from itself under the action. It lives in the
domain G. The orbit of x is the set of all possible images of x under the
action of G, so it lives in the target space.

First, note that S3 = {(1), (12), (13), (23), (123), (132)}. We will first com-
pute the stabilizer of every element;, then, let x = (12).

(1)(12)(1) = (12)
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(12)(12)(12) = (12)

(13)(12)(13) = (23)(23)(12)(23) = (13)

(123)(12)(132) = (23)(132)(12)(123) = (23)

(132)(12)(123) = (23)

We can see directly from this that G(12) = {(1), (12)}. By replicating this
calculation for each of the elements in S3, we get that:

G(13) = {(1), (13)}

G(23) = {(1), (23)}

G(123) = {(1), (123), (132)}

G(132) = {(1), (123), (132)}

G(1) = {(1)}

Next, we compute the orbit of each element. As a note, because conjugation
is an automorphism, it should preserve cycle type. We also have the given
hint that |G| = |Gx||Gx|. Both of these can help you to check your work.

By using our earlier computation, we can simply collect all of the products
of the conjugation g(12)g−1, because those are the image of (12) under the
action of G. Then,

G(12) = {(12), (13), (23)}

G(13) = {(12), (23), (13)}

G(23) = {(12), (23), (13)}

G(123) = {(123), (132))}

G(132) = {(123), (132)}

G(1) = {(12), (23), (13), (123), (132)} = S3

We can see that the orbit set only includes cycles of the same type, like
we mentioned earlier.

(b) Let G = (1), (12), (345), (354), (12)(345), (12)(354) ⊂ S6 act on X =
1, 2, 3, 4, 5, 6 via permutation. What does it mean to act by permutation? In
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previous quarters, we learned that the symmetric group Sn is the collection
of bijections between a set X and itself, where |X| = n. Symbolically, for
σ ∈ Sn, σ · x = σ(x), and the image of x is whatever element σ sends x to.
As an example, if x = 4 and σ = (1423), then σ(x) = 2.

We can find the orbits and stabilizers again by direct calculation of where
each element of G sends each element of X = S6.

For x = 1, G(1) = {1, 2}, and G(1) = {(1), (345), (354)}.
For x = 2, G(2) = {2, 1}, and G(2) = {(1), (345), (354)}. For x = 3, G(3) =
{3, 4, 5}, and G(3) = {(1), (12)}. For x = 4, G(4) = {4, 5, 3}, and G(4) =
{(1), (12)}. For x = 5, G(5) = {5, 3, 4}, and G(5) = {(1), (12)}. For x = 6,
G(6) = {6}, and G(6) = G. This is because 6 is not an element of any per-
mutation on G.
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Problem 2.2

(a) Express f = x41 + x42 + x43 + x44 as a polynomial combination of the
elementary symmetric polynomials s1, . . . , s4

(b) Let α1, . . . α4 denote the roots of the polynomial

g = x4 + x3 + 2x2 + 3x+ 5.

Determine the number α4
1 + α4

2 + α4
3 + α4

4

(a) By degree considerations, we wish to find rational numbers A through
E so that

x41 + x42 + x43 + x44 = As41 +Bs21s2 + Cs22 +Ds1s3 + Es4 (1)

For the rest of this problem, we use the fact that the fundamental
theorem on symmetric functions guarantees that there exist unique
values for A through E that make this equality hold. We simply figure
out enough constraints to determine what the values must be, and then
the fundamental theorem guarantees we must have the desired equality
at the end. Or if values for the coefficients have been prescribed, the
desired equality can always be checked quickly using mathematica or
some equivalent piece of software. We’ll present one solution, and a
sketch of another.

0.1 Equating Coefficients

By investigating the coefficient of x41 on both sides of (1), we can im-

mediately deduce that A = 1 .

Next we investigate the coefficient of x31x2. On the left hand side of
(1), we have zero. For the right hand side, note that the s22, s1s3, and
s4 terms all contribute zero to this monomial. For the s21s2 term, if
were to imagine expanding it out, we would get a sum consisting of
products of every possible way of choosing two monomials from s1, and
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one from s2. To get x31x2, the only monomial from s2 we can pick is
x1x2, and this forces picking the x1 term for both choices from s1. For
the s41 term, we need to pick the x1 term three times and the x2 term
once, so our choice is just which of the 4 copies of s1 we pick the x2
from (the multinomial theorem is good for this, if you want to look it
up. That is, we have a coefficient of

(
4

3,1,0,0

)
here).

That is to say, we get an equality

0 = 4A+B,

from equating the coefficients of x31x2 on both sides. Since A = 1, we

get B = −4 .

We can continue in this way analyzing the x21x
2
2, x

2
1x2x3, and finally

x1x2x3x4 terms, solving for the remaining coefficients B,C, and D one
at a time. This choice of terms to analyze is motivated by moving up in
the lexicographic order, and increasing the number of variables present
one at a time. Admittedly, the combinatorics gets more complicated
as we go. At the end, we obtain

f = s41 − 4s21s2 + 2s22 + 4s1s3 − 4s4,

which can be checked by plugging both sides into Mathematica or some
equivalent piece of software.

0.2 Successive evaluations

We are trying to solve

x41 + x42 + x43 + x44 = As41 +Bs21s2 + Cs22 +Ds1s3 + Es4 (2)

This is an equality of polynomials. So if we had values A through
E which yielded this equality, then the equality would persist after
evaluating the xi at some rational numbers. If we evaluate at 5 different
sets of rational numbers for the xi, then we’ll get 5 different linear
equations of rational numbers in the five unknowns A through E. If
we chose these 5 sets of values generically enough, then linear algebra
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says that this system of equations has a unique solution, and we can
find that solution by any standard method of solving linear systems of
equations (for example, row reduction).

For example, if we evaluate both sides at (x1, x2, x3, x4) = (1, 0, 0, 0) we
get 1 = A, as s2, s3 and s4 all vanish when evaluated at (1, 0, 0, 0). Eval-
uating at 4 more values (where some of these zeros become nonzero),
we can get the 4 remaining unknowns. A nice next choice might be
(1, 1, 0, 0) as s3 and s4 vanish there.

(b) We recall that if we write

g = x4 + a3x
3 + a2x

2 + a1x+ a0

= x4 + x3 + 2x2 + 3x+ 5

with roots α1, . . . , α4, then we have

s1(α) = −a3 = −1

s2(α) = a2 = 2

s3(α) = −a1 = −3

s4(α) = a0 = 5.

Using the result of part (a), we obtain

α4
1 + α4

2 + α4
3 + α4

4 = f(α)

= s41(α)− 4s21s2(α) + 2s22(α) + 4s1s3(α)− 4s4(α)

= (−1)4 − 4(−1)2(2) + 2(2)2 + 4(−1)(−3)− 4(5)

= −7
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Problem 2.4

Let f ∈ k[α1, . . . , αn] be any polynomial. Let f1, . . . , fk be the orbit
of f under the action of Sn.

(a) Show that f1 + · · ·+ fk is symmetric.

(b) If s(x1, . . . , xk) is a symmetric polynomial in x1, . . . , xk, show that
s(f1, . . . , fk) is a symmetric polynomial in α1, . . . , αn

Throughout this problem, we will fix an element σ ∈ Sn. First is a lemma
we will use in both parts of the problem.

Lemma 1. There is an element τ ∈ Sk so that

σ · fi = fτ(i). (3)

Proof. Since the fi are all in the orbit of f , there exist ρi ∈ Sn so that
ρi · f = fi (these ρi are not unique unless k = n!). Then we have

σ · fi = σ · (ρi · f)

= (σρi) · f,

by associativity of the group action. This shows that σ · fi is in the orbit of
f , so that we at least get some function τ : {1, . . . , k} → {1, . . . k} so that
(3) holds. We can use the same reasoning applied to the action of σ−1 to
build an inverse for τ , so τ ∈ Sk, as desired.

Exercise Say you have a group G acting on a set X. Can you make a
similar statement to this lemma about the action of G on the orbits? Can
you prove it?

(a) Note that

σ · (f1 + · · ·+ fk) = σ(f1) + · · ·+ σ(fk)

= fτ(1) + · · ·+ fτ(k)

= f1 + · · ·+ fk.

Since σ ∈ Sn was arbitrary, the result holds.



8

(b) We’ll present two solutions. One where we just show the result directly,
and one where we first prove it for elementary symmetric polynomials
in k variables, then deduce it for arbitrary symmetric polynomials.

Direct proof

I claim that we have a commutative diagram

k[x1, . . . , xk] k[x1, . . . , xk]

k[α1, . . . , αn] k[α1, . . . , αn]

τ

(f1,...,fk) (f1,...,fk)

σ

(4)

with the vertical arrows the homomorphisms defined by xi 7→ fi. Com-
mutativity of this diagram means that for any g ∈ k[x1, . . . , xn] that
σ · g(f1, . . . , fk) = (τ · g)(f1, . . . , fk). This equality follows from the
equality (3) and the fact that homomorphisms out of k[x1, . . . , xn] are
uniquely determined by what happens to the field k and the images of
the elements xi.

The result of this problem will follow from investigating the image
of s ∈ k[x1, . . . , xk]. Going along the bottom left composite, s goes
to σ · s(f1, . . . , fk). Going along the top right compsite, s goes to
(τ · s)(f1, . . . , fk). But since s was symmetric by assumption, we have
τ · s = s. Combining this, we have that σ · s(f1, . . . fk) = s(f1, . . . , fk),
as desired.

Elementary first

First we prove a lemma:

Lemma 2. Let f ∈ k[x1, . . . , xn] with orbit {f1, . . . , fk} under the stan-
dard Sn action. Let s ∈ k[α1, . . . , αk] be an elementary symmetric
polynomial in k variables. Then s(f1, . . . , fk) is a symmetric polyno-
mial in n variables.
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Proof. Let σ ∈ Sn be arbitrary. For any integer 1 ≤ ` ≤ k let
(
[k]
`

)
be

the collection of all m-element subsets of {1, . . . , k}. By definition of
elementary symmetric polynomials, we have that there is some integer
1 ≤ ` ≤ k so that

s =
∑

D∈([k]
` )

∏
i∈D

αi.

Then we have that

s(f1, . . . , fk) =
∑

D∈([k]
` )

∏
i∈D

fi, and

σ · s(f1, . . . , fk) =
∑

D∈([k]
` )

∏
i∈D

σ · fi

=
∑

D∈([k]
` )

∏
i∈D

fτ(i),

with τ ∈ Sk the permutation given by lemma (1). These are the same
sum and products written in a different order, as i ∈ D if and only if
τ(i) ∈ τ(D), and τ permutes the `-element subsets of [k], that is, τ
permutes

(
[k]
`

)
. Since addition and multiplication are commutative, we

have that σ · s(f1, . . . , fk) = s(f1, . . . , fk), as desired.

Now for the main result, we want to use the fundamental theorem on
symmetric functions, that any symmetric function s ∈ k[α1, . . . , αk] is
a polynomial in the elementary symmetric functions. One way to do
this is as follows.

Let R ⊂ k[α1, . . . , αk] be the set of all polynomials r ∈ k[α1, . . . , αk]
so that r(f1 . . . , fk) is symmetric (this is a kind of ”stabilizer”). We
have shown that all the elementary symmetric polynomials si ∈ R. It’s
also immediate to see that the base field k ⊂ R. Thus, if we can show
that R is a subring of k[α1, . . . , αk], then R will necessarily have to
contain all polynomials in the si. Since every symmetric function is a
polynomial in this si, this shows that the collection of all symmetric
functions is contained in R, which is what the problem is asking.
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So all that needs to be done is show that if r, r′ ∈ R, then r + r′ and
rr′ ∈ R. To see this, let σ ∈ Sn, and compute

σ · (r + r′)(f1, . . . , fk) = σ · [r(f1, . . . , fk) + r′(f1, . . . , fk)]

= σ · r(f1, . . . , fk) + σ · r′(f1, . . . , fk)
= r(f1, . . . , fk) + r′(f1, . . . , fk) (as r, r′ ∈ R)

= (r + r′)(f1, . . . , fk),

so r + r′ ∈ R, as desired. Multiplication follows via the exact same
argument, and so the result holds.
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Problem 2.5

Let
f1 = (α1 + α2)(α3 + α4)

f2 = (α1 + α3)(α2 + α4)

f3 = (α1 + α4)(α2 + α3)

(a) Express f1 + f2 + f3 as a polynomial in terms of the elementary
symmetric functions s1, . . . , s4.

(b) Express f1f2 + f1f3 + f2f3 as a polynomial in s1, . . . , s4.

(c) Express f1f2f3 as a polynomial in s1, . . . , s4.

Solution: The formulas are:

f1 + f2 + f3 = 2s2

f1f2 + f1f3 + f2f3 = s22 + s1s3 − 4s4

f1f2f3 = s1s2s3 − s4s21 − s23
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Problem 2.6

(a) Verify that Lagrange’s method to solve the quartic yields the correct
solutions to x4 + a0 = 0.

(b) Use Lagrange’s method to solve x4 + x+ 1 = 0.

Solution: In general, if α1, α2, α3, α4 are the roots of a quartic

f(x) = x4 + a2x
2 + a1x+ a0

then
0 = −a3 = s1(α1, α2, α3, α4)

a2 = s2(α1, α2, α3, α4)

−a1 = s3(α1, α2, α3, α4)

a0 = s4(α1, α2, α3, α4).

where s1, . . . , s4 are the elementary symmetric functions. The first equation
gives us the identity α3 + α3 = −(α1 + α2). Taking the orbit of f1 = (α1 +
α2)(α3 + α4) under the action of S4 yields

f1 = (α1 + α2)(α3 + α4)

f2 = (α1 + α3)(α2 + α4)

f3 = (α1 + α4)(α2 + α3).

The goal is to first find the fi by solving the cubic equation

(y − f1)(y − f2)(y − f3) = y3 − (f1 + f2 + f3)y
2 + (f1f2 + f1f3 + f2f3)y − f1f2f3

= y3 − 2s2y
2 + (s22 + s1s3 − 4s4)y + (−s1s2s3 + s4s

2
1 + s23)

= y3 − 2a2y
2 + (a22 − 4a0)y + (a21)

where we’ve used the formulas from Challenge Problem 2.5 and the identity
a3 = 0. Solving for the variable y leads to the solutions fi. The second step is
to solve for the αi: the main idea is to use the relation α3 +α4 = −(α1 +α2)
to get that

α1 + α2 = −(α3 + α4) =
√
−f1

α1 + α3 = −(α2 + α4) =
√
−f2

α1 + α4 = −(α2 + α3) =
√
−f3
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and α3 + α4 = −
√
−f1. The αi’s are expressed using the fi’s as

α1 =

√
−f1 +

√
−f2 +

√
−f3

2

α2 =

√
−f1 −

√
−f2 −

√
−f3

2

α3 =
−
√
−f1 +

√
−f2 −

√
−f3

2

α4 =
−
√
−f1 −

√
−f2 +

√
−f3

2

To solve (1), observe that the above cubic becomes

y3 − 4a0y = 0

and the solutions for y are 0,±2
√
a0 where

√
a0 denotes a choice of a square

root (if a0 > 0, we can arrange for this choice to be the positive real solution).
Writing f1 = 0, f2 = 2

√
a0 and f3 = −2

√
a0, we know that

0 = f1 = (α1 + α2)(α3 + α4) = −(α1 + α2)
2

and we get that α1 + α2 = α3 + α4 = 0 so α2 = −α1 and α4 = −α3. We also
have the equations

2
√
a0 = f2 = (α1 + α3)(α2 + α4) = −(α1 + α3)

2

−2
√
a0 = f3 = (α1 + α4)(α2 + α3) = −(α1 − α3)

2

and we get α1 + α3 =
√
−2
√
a0 and α1 − α3 =

√
2
√
a0. Adding these

equations and dividing by 2 yields

α1 =
1

2
(
√
−2
√
a0 +

√
2
√
a0)

=
1

2

√
2
√
a0(i+ 1)

= 4
√
a0
(√2

2
+

√
2

2
i
)

= 4
√
a0

4
√
−1

= 4
√
−a0

Solving the remaining αi gives α2 = − 4
√
−a0, α3 = 4

√
−a0i and α4 = − 4

√
−a0i.

In the end, we get the expected solutions to x4 + a0 = 0!



14

To solve (2) where a3 = a2 = 0 and a1 = a0 = 1, the cubic becomes

y3 − 4y + 1 = 0.

To solve the cubic, we use the substitution y = z + 4
3z

which yields (after
simplifying)

z6 + z3 +
64

27
= 0.

Solving for z3 using the quadratic formula gives

z3 =
−1±

√
1− 4(64)/27

2
= −1

2
±
√

229

108
i ≈ −.5± 1.449i

where one of the solutions is

z0 =
3

√
−1

2
+

√
229

108
i ≈ 0.9304 + 0.6839i

and the others are ωz0 ≈ −1.05474 + 0.4638i and ω2z0 ≈ 0.1271 − 1.1477i
where ω = e2πi/3 is a 3rd root of unity. This gives the following three solutions
for y = z + 4

3z

f1 ≈ 1.8608, f2 ≈ −2.1149, f3 ≈ 0.2541

which gives the four solutions

x ≈ 0.7271± 0.9371i,−0.7271± 0.4300i

Alternatively, one can of course express these solutions using radicals.
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