Math 404A: Introduction to Modern Algebra (Spring 2021)
Jarod Alper
Homework 1
Due: Friday, April 2

Problem 1.1. Let $f(x)=x^{5}+x^{4}+x^{3}+x^{2}+x-5 \in \mathbb{Z}[x]$. Find a polynomial $g(x)$ such that

$$
f(x)=(x-1) g(x)
$$

Problem 1.2. Let k be a field. Recall that a non-constant polynomial $f(x) \in k[x]$ is irreducible if it cannot be written as the product $f(x)=g(x) h(x)$ where both $g(x)$ and $h(x)$ are non-constant polynomials. Show that that the following statements are equivalent for a polynomial $f(x) \in k[x]$:
(1) $f(x)$ is irreducible;
(2) the ideal $(f) \subset k[x]$ is prime; and
(3) the quotient ring $k[x] /(f)$ is a field.

Problem 1.3.

(a) Show that $\mathbb{R}[x] /\left(x^{2}+x+1\right) \cong \mathbb{C}$.
(b) How many elements does the quotient ring $\mathbb{F}_{3}[x, y] /\left(x^{3}, x^{2} y^{2}, y^{3}\right)$ have?

Notation: For a prime p, \mathbb{F}_{p} denotes the field $\mathbb{Z} / p \mathbb{Z}$. Hungerford uses the notation \mathbb{Z}_{p} but we will not use this notation.

Problem 1.4.

(a) Prove that $x^{5}-x^{2}+1 \in \mathbb{Q}[x]$ is irreducible.
(b) Provide a factorization of $x^{5}-x \in \mathbb{F}_{5}[x]$ into irreducibles.

Problem 1.5. Find the solution to the following cubic equations using the method introduced in class on Wednesday:
(a) $x^{3}-3 x+2=0$.
(b) $x^{3}+3 x-36=0$. Which solutions are real? rational?

