Midterm 1

Modern Algebra (Math 403)
Instructor: Jarod Alper
Winter 2018
January 29, $2018 \quad$ Name:

Read all of the following information before starting the exam:

- You may not consult any outside sources (calculator, phone, computer, textbook, notes, other students, ...) to assist in answering the exam problems. All of the work will be your own!
- Write clearly!! You need to write your solutions carefully and clearly in order to convince me that your solution is correct. Partial credit will be awarded.
- Good luck!

Problem	Points	
1	$(25$ points $)$	-
2	$(25$ points $)$	-
3	$(25$ points $)$	-
4	$(25$ points $)$	
Total	$(100$ points $)$	

Problem 1. Write down a composition series for the dihedral group of order 12

$$
D_{6}=\left\langle r, s \mid r^{6}=s^{2}=1, r s=s r^{5}\right\rangle
$$

Solution: Consider the sequence of subgroups

$$
0 \subset\left\langle r^{2}\right\rangle \subset\langle r\rangle \subset D_{6}
$$

Observe that

- $D_{6} /\langle r\rangle \cong \mathbb{Z} / 2$;
- $\langle r\rangle /\left\langle r^{2}\right\rangle \cong \mathbb{Z} / 2$; and
- $\left\langle r^{2}\right\rangle \cong \mathbb{Z} / 3$.

Each factor above is a cyclic group of prime order which we know from lecture is a simple group. It follows that the above sequence is a composition series.

Problem 2. Let $f(x)=6 x^{5}+2 x^{3}-x+1$ and $g(x)=x^{2}+1$ be polynomials in $\mathbb{Q}[x]$. Find polynomials $q, r \in \mathbb{Q}[x]$ such that $f=q g+r$ with $\operatorname{deg} r<\operatorname{deg} g$ or $r=0$.

Solution: We perform the division algorithm. Noticing that $6 x^{3} g$ and f have the same leading term of $6 x^{5}$, we compute that $f-6 x^{3} g=-4 x^{3}-x+1$. Since $-4 x g$ and $f-6 x^{3} g$ have the same leading term, we compute that $f-\left(6 x^{3}-4 x\right) g=3 x+1$. Thus, if we set $q=6 x^{3}-4 x$ and $r=3 x+1$, we have that $f=q g+r$.

Problem 3. Prove that there is a ring isomorphism

$$
\mathbb{C}[x] /\left(x^{2}+1\right) \cong \mathbb{C} \times \mathbb{C}
$$

Solution: Observe that $x^{2}+1$ factors over \mathbb{C} as $x^{2}+1=(x+i)(x-i)$. If we define the ideals $I=(x+i)$ and $J=(x-i)$, we see that $I+J=(1)$ (since $\left.\frac{1}{2 i}((x+i)-(x-i))=1\right)$. By the Chinese Remainder Theorem for Rings (Problem 3.5-Judson 16.6.40), we have an isomorphism of rings

$$
\mathbb{C}[x] /(I \cap J) \rightarrow \mathbb{C}[x] / I \times \mathbb{C}[x] / J
$$

We also have that the ring homomorphism $\phi: \mathbb{C}[x] /(x+i) \rightarrow \mathbb{C}$ defined by $\phi(f)=f(-i)$ is an isomorphism. Likewise, $\mathbb{C}[x] /(x-i) \cong \mathbb{C}$. Finally, we claim that $I \cap J=\left(x^{2}+1\right)$. Clearly, $\left(x^{2}+1\right) \subset I \cap J$. On other hand, suppose $f \in I \cap J$. Then both $x+i$ and $x-i$ divides f which in turn implies that $x^{2}+1=(x-i)(x+i)$ divides f. Therefore $I \cap J \subset\left(x^{2}+1\right)$. Combining the above observations, we obtain the desired isomorphism.

Alternatively, we can define a map

$$
\varphi: \mathbb{C}[x] \rightarrow \mathbb{C} \times \mathbb{C}, \quad f \mapsto(f(i), f(-i))
$$

One needs to check that: (1) φ is a ring homomorphism, (2) φ is surjective and (3) $\operatorname{ker}(\varphi)=\left(x^{2}+1\right)$. It is easy to check that (1) holds (details not included here as we've already given a complete proof above). For (2), set $f_{1}=\frac{1}{-2 i}(x-i)$ and $f_{2}=\frac{1}{2 i}(x+i)$. Clearly, $\varphi\left(f_{1}\right)=(0,1)$ and $\varphi\left(f_{2}\right)=(1,0)$. It follows that f is surjective since for any $\left(a_{1}, a_{2}\right) \in \mathbb{C} \times \mathbb{C}$, we have that $f\left(a_{1} f_{1}+a_{2} f_{2}\right)=\left(a_{1}, a_{2}\right)$. For (3), observe that $f \in \operatorname{ker}(\varphi)$ if and only if $f(i)=f(-i)=0$, that is, both i and $-i$ are roots. The latter conditions holds if and only both $x+i$ and $x-i$ divides f, which is equivalent to $x^{2}-1$ dividing f. Therefore, $\operatorname{ker}(\varphi)=\left(x^{2}+1\right)$ and we may appeal to the first isomorphism theorem to conclude that $\mathbb{C}[x] /\left(x^{2}+1\right) \cong \mathbb{C} \times \mathbb{C}$.

Problem 4.

(a) Let R be a commutative ring. Show that any maximal ideal of R is also prime.
(b) Give an example of a commutative ring R and an ideal $\mathfrak{p} \subset R$ which is prime but not maximal.

Solution: For (a), we could appeal to the following two facts from lecture. If $I \subset R$ is an ideal, then I is prime if and only if R / I is an integral domain, and I is maximal if and only if R / I is a field. Since fields are integral domains, we see that maximal ideals are prime.

Alternatively, we could argue directly. Let $\mathfrak{m} \subset R$ be a maximal ideal and suppose $x y \in \mathfrak{m}$. Let us suppose that both x and y are not in \mathfrak{m} and we'll try to get a contradiction. Since \mathfrak{m} is maximal and $x, y \notin \mathfrak{m}$, we have that $\mathfrak{m}+(x)=\mathfrak{m}+(y)=R$. Therefore, we can write $1=z_{1}+r_{1} x$ and $1=z_{2}+r_{2} y$ with $z_{1}, z_{2} \in \mathfrak{m}$ and $r_{1}, r_{2} \in R$. By taking the product of these expressions, we have that

$$
1=1 \cdot 1=\left(z_{1}+r_{1} x\right)\left(z_{2}+r_{2} y\right)=z_{1} z_{2}+r_{1} x z_{2}+z_{1} r_{2} y+r_{1} r_{2} x y
$$

but since $z_{1}, z_{2}, x y \in \mathfrak{m}$, the right hand expression is in the maximal ideal \mathfrak{m}. This shows that $1 \in \mathfrak{m}$, which is a contradiction. Thus $x \in \mathfrak{m}$ or $y \in \mathfrak{m}$, and \mathfrak{m} is prime.

For (b), take $R=\mathbb{Z}$ and the ideal $\mathfrak{p}=(0)$. Clearly \mathfrak{p} is prime but it is not maximal (for instance, $(0) \subsetneq(2) \subsetneq \mathbb{Z}$).

