Problem 7.1. Factor the polynomial $f=-6 x^{3}+6 x^{2} y^{2}+6 x^{3} y-3 x y+3 x y^{2} \in$ $\mathbb{Z}[x, y]$ as a product of irreducible elements.

Problem 7.2.

(a) Factor 13 and 17 over $\mathbb{Z}[i]$.
(b) Write $221=13 \cdot 17$ as a sum of two squares in two different ways.

Hint: Using the factorization from (a), write 221 in two distinct ways as $(a+b i)(a-b i)$ with $a, b \in \mathbb{Z}$.
Problem 7.3. Let $\omega=e^{2 \pi i / 3}$ and let $\mathbb{Z}[\omega]=\{a+b \omega \mid a, b \in \mathbb{Z}\} \subset \mathbb{C}$. Show that $\mathbb{Z}[\omega]$ is a Euclidean Domain.
Problem 7.4. Let $a, b \in \mathbb{Z}$. Show that the greatest common divisor of a and b in \mathbb{Z} is equal to the greatest common divisor of a and b in $\mathbb{Z}[i]$.
Problem 7.5. Find a generator of the ideal of $\mathbb{Z}[\omega]$ generated by 5 and $3-\omega$.
Problem 7.6. Let $p \neq 3$ be a prime integer. Prove the following:
(a) The polynomial $x^{2}+x+1$ has a root in \mathbb{Z} / p if and only if $p \equiv 1 \bmod 3$.
(b) The ideal $(p) \subset \mathbb{Z}[\omega]$ is maximal if and only if $p \equiv 2 \bmod 3$.
(c) The element $p \in \mathbb{Z}[\omega]$ factors in $\mathbb{Z}[\omega]$ if and only if p can be written as $p=a^{2}+a b+b^{2}$ for integers a and b.
Problem 7.7. Show that $3 \in \mathbb{Z}[\sqrt{-5}]$ is an irreducible element that is not prime.
Problem 7.8. For which integers n does the circle defined by $x^{2}+y^{2}=n$ contain a point with integer coordinates?

