MATH 403 Winter 2018
Homework 6
Winter 2018

1. Problem Set 6.3(a) Observe that we have

$$
6=2 \cdot 3=(1+\sqrt{-5}) \cdot(1-\sqrt{-5})
$$

As before, the function $N: \mathbf{Z}[\sqrt{-5}] \rightarrow \mathbf{Z}$ defined by

$$
(a+b \sqrt{-5}) \mapsto a^{2}+5 b^{2}
$$

is multiplicative. Hence if $\alpha \in \mathbf{Z}[\sqrt{-5}]$ is a unit, we have

$$
1=N(1)=N\left(\alpha \alpha^{-1}\right)=N(\alpha) N\left(\alpha^{-1}\right)
$$

This shows that $N(\alpha)= \pm 1$ is necessary for α to be unit in $\mathbf{Z}[\sqrt{-5}]$. Conversely, if α is a unit, we have

$$
\frac{1}{\alpha}=\frac{\bar{\alpha}}{\alpha \bar{\alpha}}=\frac{\bar{\alpha}}{N(\alpha)}= \pm \bar{\alpha} \in \mathbf{Z}[\sqrt{-5}]
$$

We deduce that α is a unit if and only if $N(\alpha)=a^{2}+5 b^{2}= \pm 1$. In this case we have that α is a unit exactly when $\alpha= \pm 1$. Then clearly 2 is not an associate to $1+\sqrt{-5}$ nor to $1-\sqrt{-5} .3$ is not an associate to $1+\sqrt{-5}$ nor to $1-\sqrt{-5}$.
2. Problem 6.5: Judson 18.3.9 The ring $\mathbf{Z}[i]$ is obviously a subring of $\mathbf{Q}(i)$. You can easily check that $\mathbf{Q}(i)$ is a field. Hence the field of fractions Q of $\mathbf{Z}[i]$ is contained inside $\mathbf{Q}(i)$. To see that $Q=\mathbf{Q}(i)$, it remains to show that any element $q_{1}+q_{2} \cdot i$ for $q_{1}, q_{2} \in \mathbf{Q}$ is actually an element in Q. For this, write $q_{1}=\frac{a_{1}}{b_{1}}$ and $q_{2}=\frac{a_{2}}{b_{2}}$ for some $a_{1}, a_{2}, b_{1}, b_{2} \in \mathbf{Z}$. Then

$$
q_{1}+q_{2} i=\frac{a_{1} b_{2}+a_{2} b_{1} i}{b_{1} b_{2}}=\frac{a_{1} b_{2}+a_{2} b_{1} i}{b_{1} b_{2}+0 i} \in Q .
$$

3. Problem 6.7: Judson 18.3.11

(a) $\mathbf{Z}[\sqrt{2}]$ is a subring of \mathbf{R}.
(b) The function $N: \mathbf{Z}[\sqrt{2}] \rightarrow \mathbf{Z}$ defined by

$$
N(a+b \sqrt{2})=a^{2}-2 b^{2}
$$

is multiplicative. Hence if $\alpha \in \mathbf{Z}[\sqrt{2}]$ is a unit, we have

$$
1=N(1)=N\left(\alpha \cdot \alpha^{-1}\right)=N(\alpha) \cdot N\left(\alpha^{-1}\right)
$$

Since $N(\alpha) \in \mathbf{Z}$, the only possibility is that $N(\alpha)= \pm 1$. This is a necessary condition for α to be a unit in $\mathbf{Z}[\sqrt{2}]$. Conversely, if $N(\alpha)= \pm 1$, we have

$$
\frac{1}{\alpha}=\frac{\bar{\alpha}}{\alpha \bar{\alpha}}=\frac{\bar{\alpha}}{N(\alpha)}= \pm \bar{\alpha} \in \mathbf{Z}[\sqrt{2}] .
$$

Hence $N(\alpha)= \pm 1$ is a necessary and sufficient condition for α to be a unit in $\mathbf{Z}[\sqrt{2}]$. Translating this, we have $\alpha=a+b \sqrt{2}$ is a unit if and only if $a^{2}-2 b^{2}= \pm 1$.
(c) Let $\mathbf{Q}(\sqrt{2})$ be the subset of \mathbf{R} defined by $r \in \mathbf{R}$ is in $\mathbf{Q}(\sqrt{2})$ if and only if there are $q_{1}, q_{2} \in \mathbf{Q}$ such that $r=q_{1}+q_{2} \cdot \sqrt{2}$. You can easily check that $\mathbf{Q}(\sqrt{2})$ is a field that contains $\mathbf{Z}[\sqrt{2}]$. Hence the field Q of fractions of $\mathbf{Z}[\sqrt{2}]$ is contained in $\mathbf{Q}(\sqrt{2})$. Conversely, we have for any $q_{1}, q_{2} \in \mathbf{Q}$, choose $a_{1}, a_{2}, b_{1}, b_{2} \in \mathbf{Z}$ such that $q_{1}=\frac{a_{1}}{b_{1}}$ and $q_{2}=\frac{a_{2}}{b_{2}}$. Then

$$
q_{1}+q_{2} \sqrt{2}=\frac{a_{1} b_{2}+a_{2} b_{1} \sqrt{2}}{b_{1} b_{2}}=\frac{a_{1} b_{2}+a_{2} b_{1} \sqrt{2}}{b_{1} b_{2}+0 \sqrt{2}} \in Q
$$

(d) Let $a_{1}+b_{1} \sqrt{-2}$ and $a_{2}+b_{2} \sqrt{-2}$ be two elements in $\mathbf{Z}[\sqrt{-2}]$. The main task is to show that there exist an $m+n \sqrt{-2} \in \mathbf{Z}[\sqrt{-2}]$ and an $r+s \sqrt{-2} \in \mathbf{Z}[\sqrt{-2}]$ such that

- $a_{1}+b_{1} \sqrt{-2}=(m+n \sqrt{-2}) \cdot\left(a_{2}+b_{2} \sqrt{-2}\right)+(r+s \sqrt{-2})$ and
- $\mu(r+s \sqrt{-2})<\mu\left(a_{2}+b_{2} \sqrt{-2}\right)$.

For this, note that in \mathbf{C}, we have

$$
\frac{a_{1}+b_{1} \sqrt{-2}}{a_{2}+b_{2} \sqrt{-2}}=\frac{a_{1} a_{2}-2 b_{1} b_{2}}{a_{2}^{2}+2 b_{2}^{2}}+\frac{a_{1} b_{2}+a_{2} b_{1}}{a_{2}^{2}+2 b_{2}^{2}} \sqrt{-2}
$$

Choose $m \in \mathbf{Z}$ and $n \in \mathbf{Z}$ so that m is the closest to $\frac{a_{1} a_{2}-2 b_{1} b_{2}}{a_{2}^{2}+2 b_{2}^{2}}$ and n is the closest to $\frac{a_{1} b_{2}+a_{2} b_{1} \text {. Let } c_{1}=\frac{a_{1} a_{2}-2 b_{1} b_{2}}{a_{2}^{2}+2 b_{2}^{2}}-m \text { and } c_{2}=\frac{a_{1} b_{2}+a_{2} b_{1}}{a_{2}^{2}+2 b_{2}^{2}}-n \text {. Then necessarily we have }}{\text { a }}$

$$
\left|c_{1}\right|,\left|c_{2}\right| \leq \frac{1}{2}
$$

Letting $r+s \sqrt{-2}=\left(c_{1}+c_{2} \sqrt{-2}\right) \cdot\left(a_{2}+b_{2} \sqrt{-2}\right)$, we have

$$
a_{1}+b_{1} \sqrt{-2}=(m+n \sqrt{-2}) \cdot\left(a_{2}+b_{2} \sqrt{-2}\right)+r+s \sqrt{-2} .
$$

Since $a_{1}+b_{1} \sqrt{-2}$ and $m+n \sqrt{-2}$ are in $\mathbf{Z}[\sqrt{-2}]$, we have that $r+s \sqrt{-2} \in \mathbf{Z}[\sqrt{-2}]$. It remains to check that $\mu(r+s \sqrt{-2})<\mu\left(a_{2}+b_{2} \sqrt{-2}\right)$. Since

$$
\begin{aligned}
\mu(r+s \sqrt{-2}) & =(r+s \sqrt{-2})(r-s \sqrt{-2}) \\
& =\left(c_{1}+c_{2} \sqrt{-2}\right)\left(c_{1}-c_{2} \sqrt{-2}\right)\left(a_{2}+b_{2} \sqrt{-2}\right)\left(a_{2}-b_{2} \sqrt{-2}\right) \\
& =\left(c_{1}+c_{2} \sqrt{-2}\right)\left(c_{1}-c_{2} \sqrt{-2}\right) \cdot \mu\left(a_{2}+b_{2} \sqrt{-2}\right),
\end{aligned}
$$

it is sufficient to show that $\left(c_{1}+c_{2} \sqrt{-2}\right) \cdot\left(c_{1}-c_{2} \sqrt{-2}\right)<1$. This is clear from the fact that

$$
\left|c_{1}\right|,\left|c_{2}\right| \leq \frac{1}{2}
$$

4. Problem 6.8: Judson 18.3.12

(a) If d and d^{\prime} are both greatest common divisors for a, b, then $d \mid d^{\prime}$ and $d^{\prime} \mid d$. Then there are $r, r^{\prime} \in D$ such that

$$
\begin{aligned}
d & =r^{\prime} d^{\prime} \\
d^{\prime} & =r d
\end{aligned}
$$

Then

$$
d=r r^{\prime} d
$$

Since D is an integral domain, we have that $r r^{\prime}=1$. Hence r, r^{\prime} are units, meaning that d and d^{\prime} are associates.
(b) Since D is a PID, the ideal (a, b) is generated by one element d. I claim that d is a greatest common divisor for a, b. Clearly d divides both a and b. If d^{\prime} divides both a and b then

$$
(d)=(a, b) \subset\left(d^{\prime}\right) .
$$

This implies $d^{\prime} \mid d$ and shows that d is a greatest common divisor for a, b. The result follows.
5. Problem 6.9 Suppose r is a prime, then $r=r_{1} r_{2}$ implies either $r \mid r_{1}$ or $r \mid r_{2}$. If $r \mid r_{1}$, we have $r_{1}=s_{1} r$ for some $s_{1} \in R$. Then $r=s_{1} r r_{2}$. Since R is a domain, we get $s_{1} r_{2}=1$. Hence r_{2} is a unit. We can argue entirely the same if $r \mid r_{2}$ and conclude that r_{1} is a unit. Hence r is irreducible. Conversely, if r is irreducible and $r \mid r_{1} r_{2}$. Since R is a UFD, r has to be a factor of r_{1} or r_{2}, showing that r is a prime.

