MATH 403 Winter 2018 Homework 6 Winter 2018 1. Problem Set 6.3(a) Observe that we have

$$6 = 2 \cdot 3 = (1 + \sqrt{-5}) \cdot (1 - \sqrt{-5}).$$

As before, the function $N: \mathbb{Z}[\sqrt{-5}] \to \mathbb{Z}$ defined by

$$(a+b\sqrt{-5})\mapsto a^2+5b^2$$

is multiplicative. Hence if $\alpha \in \mathbb{Z}[\sqrt{-5}]$ is a unit, we have

$$1 = N(1) = N(\alpha \alpha^{-1}) = N(\alpha)N(\alpha^{-1}).$$

This shows that $N(\alpha) = \pm 1$ is necessary for α to be unit in $\mathbb{Z}[\sqrt{-5}]$. Conversely, if α is a unit, we have

$$\frac{1}{\alpha} = \frac{\bar{\alpha}}{\alpha\bar{\alpha}} = \frac{\bar{\alpha}}{N(\alpha)} = \pm\bar{\alpha} \in \mathbf{Z}[\sqrt{-5}].$$

We deduce that α is a unit if and only if $N(\alpha) = a^2 + 5b^2 = \pm 1$. In this case we have that α is a unit exactly when $\alpha = \pm 1$. Then clearly 2 is not an associate to $1 + \sqrt{-5}$ nor to $1 - \sqrt{-5}$. 3 is not an associate to $1 + \sqrt{-5}$ nor to $1 - \sqrt{-5}$.

2. Problem 6.5: Judson 18.3.9 The ring $\mathbf{Z}[i]$ is obviously a subring of $\mathbf{Q}(i)$. You can easily check that $\mathbf{Q}(i)$ is a field. Hence the field of fractions Q of $\mathbf{Z}[i]$ is contained inside $\mathbf{Q}(i)$. To see that $Q = \mathbf{Q}(i)$, it remains to show that any element $q_1 + q_2 \cdot i$ for $q_1, q_2 \in \mathbf{Q}$ is actually an element in Q. For this, write $q_1 = \frac{a_1}{b_1}$ and $q_2 = \frac{a_2}{b_2}$ for some $a_1, a_2, b_1, b_2 \in \mathbf{Z}$. Then

$$q_1 + q_2 i = \frac{a_1 b_2 + a_2 b_1 i}{b_1 b_2} = \frac{a_1 b_2 + a_2 b_1 i}{b_1 b_2 + 0 i} \in Q.$$

3. Problem 6.7: Judson 18.3.11

- (a) $\mathbf{Z}[\sqrt{2}]$ is a subring of **R**.
- (b) The function $N: \mathbb{Z}[\sqrt{2}] \to \mathbb{Z}$ defined by

$$N(a+b\sqrt{2}) = a^2 - 2b^2$$

is multiplicative. Hence if $\alpha \in \mathbf{Z}[\sqrt{2}]$ is a unit, we have

$$1 = N(1) = N(\alpha \cdot \alpha^{-1}) = N(\alpha) \cdot N(\alpha^{-1}).$$

Since $N(\alpha) \in \mathbf{Z}$, the only possibility is that $N(\alpha) = \pm 1$. This is a necessary condition for α to be a unit in $\mathbf{Z}[\sqrt{2}]$. Conversely, if $N(\alpha) = \pm 1$, we have

$$\frac{1}{\alpha} = \frac{\bar{\alpha}}{\alpha\bar{\alpha}} = \frac{\bar{\alpha}}{N(\alpha)} = \pm\bar{\alpha} \in \mathbf{Z}[\sqrt{2}].$$

Hence $N(\alpha) = \pm 1$ is a necessary and sufficient condition for α to be a unit in $\mathbb{Z}[\sqrt{2}]$. Translating this, we have $\alpha = a + b\sqrt{2}$ is a unit if and only if $a^2 - 2b^2 = \pm 1$.

(c) Let $\mathbf{Q}(\sqrt{2})$ be the subset of \mathbf{R} defined by $r \in \mathbf{R}$ is in $\mathbf{Q}(\sqrt{2})$ if and only if there are $q_1, q_2 \in \mathbf{Q}$ such that $r = q_1 + q_2 \cdot \sqrt{2}$. You can easily check that $\mathbf{Q}(\sqrt{2})$ is a field that contains $\mathbf{Z}[\sqrt{2}]$. Hence the field Q of fractions of $\mathbf{Z}[\sqrt{2}]$ is contained in $\mathbf{Q}(\sqrt{2})$. Conversely, we have for any $q_1, q_2 \in \mathbf{Q}$, choose $a_1, a_2, b_1, b_2 \in \mathbf{Z}$ such that $q_1 = \frac{a_1}{b_1}$ and $q_2 = \frac{a_2}{b_2}$. Then

$$q_1 + q_2\sqrt{2} = \frac{a_1b_2 + a_2b_1\sqrt{2}}{b_1b_2} = \frac{a_1b_2 + a_2b_1\sqrt{2}}{b_1b_2 + 0\sqrt{2}} \in Q.$$

- (d) Let $a_1 + b_1\sqrt{-2}$ and $a_2 + b_2\sqrt{-2}$ be two elements in $\mathbb{Z}[\sqrt{-2}]$. The main task is to show that there exist an $m + n\sqrt{-2} \in \mathbb{Z}[\sqrt{-2}]$ and an $r + s\sqrt{-2} \in \mathbb{Z}[\sqrt{-2}]$ such that
 - $a_1 + b_1\sqrt{-2} = (m + n\sqrt{-2}) \cdot (a_2 + b_2\sqrt{-2}) + (r + s\sqrt{-2})$ and • $\mu(r + s\sqrt{-2}) < \mu(a_2 + b_2\sqrt{-2}).$

For this, note that in **C**, we have

$$\frac{a_1 + b_1\sqrt{-2}}{a_2 + b_2\sqrt{-2}} = \frac{a_1a_2 - 2b_1b_2}{a_2^2 + 2b_2^2} + \frac{a_1b_2 + a_2b_1}{a_2^2 + 2b_2^2}\sqrt{-2}$$

Choose $m \in \mathbb{Z}$ and $n \in \mathbb{Z}$ so that m is the closest to $\frac{a_1a_2-2b_1b_2}{a_2^2+2b_2^2}$ and n is the closest to $\frac{a_1b_2+a_2b_1}{a_2^2+2b_2^2}$. Let $c_1 = \frac{a_1a_2-2b_1b_2}{a_2^2+2b_2^2} - m$ and $c_2 = \frac{a_1b_2+a_2b_1}{a_2^2+2b_2^2} - n$. Then necessarily we have

$$|c_1|, |c_2| \le \frac{1}{2}.$$

Letting $r + s\sqrt{-2} = (c_1 + c_2\sqrt{-2}) \cdot (a_2 + b_2\sqrt{-2})$, we have

$$a_1 + b_1\sqrt{-2} = (m + n\sqrt{-2}) \cdot (a_2 + b_2\sqrt{-2}) + r + s\sqrt{-2}.$$

Since $a_1 + b_1\sqrt{-2}$ and $m + n\sqrt{-2}$ are in $\mathbb{Z}[\sqrt{-2}]$, we have that $r + s\sqrt{-2} \in \mathbb{Z}[\sqrt{-2}]$. It remains to check that $\mu(r + s\sqrt{-2}) < \mu(a_2 + b_2\sqrt{-2})$. Since

$$\mu(r+s\sqrt{-2}) = (r+s\sqrt{-2})(r-s\sqrt{-2})$$

= $(c_1 + c_2\sqrt{-2})(c_1 - c_2\sqrt{-2})(a_2 + b_2\sqrt{-2})(a_2 - b_2\sqrt{-2})$
= $(c_1 + c_2\sqrt{-2})(c_1 - c_2\sqrt{-2}) \cdot \mu(a_2 + b_2\sqrt{-2}),$

it is sufficient to show that $(c_1 + c_2\sqrt{-2}) \cdot (c_1 - c_2\sqrt{-2}) < 1$. This is clear from the fact that

$$|c_1|, |c_2| \le \frac{1}{2}.$$

4. Problem 6.8: Judson 18.3.12

(a) If d and d' are both greatest common divisors for a, b, then d|d' and d'|d. Then there are $r, r' \in D$ such that

$$d = r'd'$$
$$d' = rd$$

Then

$$d = rr'd$$

Since D is an integral domain, we have that rr' = 1. Hence r, r' are units, meaning that d and d' are associates.

(b) Since D is a PID, the ideal (a, b) is generated by one element d. I claim that d is a greatest common divisor for a, b. Clearly d divides both a and b. If d' divides both a and b then

$$(d) = (a, b) \subset (d').$$

This implies d'|d and shows that d is a greatest common divisor for a, b. The result follows.

5. **Problem 6.9** Suppose r is a prime, then $r = r_1r_2$ implies either $r|r_1$ or $r|r_2$. If $r|r_1$, we have $r_1 = s_1r$ for some $s_1 \in R$. Then $r = s_1rr_2$. Since R is a domain, we get $s_1r_2 = 1$. Hence r_2 is a unit. We can argue entirely the same if $r|r_2$ and conclude that r_1 is a unit. Hence r is irreducible. Conversely, if r is irreducible and $r|r_1r_2$. Since R is a UFD, r has to be a factor of r_1 or r_2 , showing that r is a prime.