MATH 403 Winter 2018
Homework III
Winter 2018

Problem 3.1 Let $\pi: R \rightarrow R / I$ be the quotient map. Let $J \subset R$ be an ideal containing I. Then J is an abelian group. Since π is a homomorphism of abelian groups, $\pi(J) \subset R / I$ is an abelian group. Let us check $\pi(J)$ is an ideal. If $r \in R$ and $j \in J$, then $(r+I) \cdot \pi(j)=r \cdot j+I$. Since J is an ideal, we see that $r \cdot j \in J$ so that $(r+I) \cdot \pi(j) \in \pi(J)$. This shows that $\pi(J)$ is an ideal.

Conversely, if $\bar{J} \subset R / I$ is an ideal, we consider $\pi^{-1}(\bar{J}) \subset R$. You can easily show that this is an ideal of R. Since $\pi(I)=0 \in \bar{J}$ we see that $\pi^{-1}(\bar{J})$ necessarily contains I.

Now check that $\pi^{-1}(\pi(J))=J$ for any ideal $J \subset R$ containing I and $\pi\left(\pi^{-1}(\bar{J})\right)=\bar{J}$ for any ideal $\bar{J} \subset R / I$. For the first, if $r \in R$ with $\pi(r)=\pi(j)$ for some $j \in J$. Then $r-j \in I \subset J$ so that $r \in J$. We get

$$
\pi^{-1}(\pi(J)) \subset J
$$

But $J \subset \pi^{-1}(\pi(J))$ by definition of inverse image. The second equality follows from surjectivity of π.
Problem 3.3 Let us show that the units in $\mathbf{Z}_{(p)}$ is of the form $\frac{a}{b}$ where $p \nmid a$ and $(a, b)=1$. If $\frac{a}{b}$ is a unit, then there exists $\frac{c}{d} \in \mathbf{Z}_{(p)}$ such that

$$
\frac{a}{b} \cdot \frac{c}{d}=\frac{a c}{b d}=1
$$

This means $a c=b d$ in Z. If $p \mid a$, then $p \mid b d$. Since $p \nmid d$ by construction, we have $p \mid b$. This contradicts $(a, b)=1$. Hence if $\frac{a}{b}$ is a unit with $(a, b)=1, p \nmid a$. Conversely, if $(a, b)=1$ and $p \nmid a$, then $\frac{b}{a} \in \mathbf{Z}_{(p)}$ is a unit for $\frac{a}{b}$.

Next, oberve that an ideal in a commutative ring with identity is proper if and only if it does not contain any unit. In our case the set of non-units $p \mathbf{Z}_{(p)}:=\left\{\left.\frac{a}{b} \right\rvert\,(a, b)=1\right.$ and $\left.p \mid a\right\}$ obviously forms an ideal in $\mathbf{Z}_{(p)}$. Hence any proper ideal is inside $p \mathbf{Z}_{(p)}$. We conclude that there is only one maximal ideal.

Problem 3.5

1. By assumption ther exists $i_{1}, i_{2} \in I$ and $j_{1}, j_{2} \in J$ such that $i_{1}+j_{1}=r$ and $i_{2}+j_{2}=s$. Let $x=i_{2}+j_{1}$, we see that $x-r \in I$ and $x-s \in J$.
2. If $x_{1}-r \in I, x_{2}-r \in I$ and $x_{1}-s \in J, x_{2}-s \in J$, we have that

$$
x_{1}-x_{2}=\left(x_{1}-r\right)-\left(x_{2}-r\right)=\left(x_{1}-s\right)-\left(x_{2}-s\right) \in I \cap J .
$$

3. The projections $\pi_{I}: R \rightarrow R / I$ and $\pi_{J} R \rightarrow R / J$ induces a ring hmomorphism $\pi: R \rightarrow$ $R / I \times R / J$. Concretely, $\pi(r)=(r+I, r+J)$. By part (a), π is surjective. The kernel is obviously $I \cap J$. Hence we have an isomoprhism

$$
R /(I \cap J) \simeq R / I \times R / J
$$

Problem 3.6

1. Let $r_{1}, r_{2} \in R$ and $r_{1} \cdot r_{2} \in \phi^{-1}(\mathfrak{p})$. Then $\varphi\left(r_{1} r_{2}\right)=\varphi\left(r_{1}\right) \varphi\left(r_{2}\right) \in \mathfrak{p}$. Since \mathfrak{p} is a prime ideal, we see that either $\varphi\left(r_{1}\right)$ or $\varphi\left(r_{2}\right)$ is in \mathfrak{p}. This means either r_{2} or r_{1} is in the preimage.
2. Consider the inclsion $\mathbf{Z} \hookrightarrow \mathbf{Q} .0$ is a maximal ideal in \mathbf{Q} but its preimage is not a maximal ideal in \mathbf{Z}.

Problem 3.9

1. No roots.
2. 2 .
3. 3,4 .
4. No roots.
