MATH 403 Winter 2018
Homework II
Winter 2018

Problem 2.1 (PS 1,4.1 in 403A): Judson 16.6.1

1. Depending whether you accept a ring to have a multiplication identity or not, your answer will be yes if you allowed rings to have no multiplicative idenity. This is not a field because 7 does not have a mupltiplicative inverse.
2. Show that if $a=a^{\prime} \bmod 18$ and $b=b^{\prime} \bmod 18$, then $a b=a^{\prime} b^{\prime} \bmod 18$. This is a ring but not a field becaue it is not an integral domain. For example, $6 \cdot 3=0$.
3. Note that $(a+b \sqrt{2})(a-b \sqrt{2})=a^{2}-2 b^{2}$. Hence

$$
(a+b \sqrt{2})\left(\frac{a}{a^{2}-2 b^{2}}-\frac{b}{a^{2}-2 b^{2}} \cdot \sqrt{2}\right)=1
$$

Obviously $a^{2}-2 b^{2} \in \mathbf{Q}$ hence $\frac{a}{a^{2}-2 b^{2}}-\frac{b}{a^{2}-2 b^{2}} \cdot \sqrt{2} \in \mathbf{Q}(\sqrt{2})$ is the inverse.
4. Note that

$$
\mathbf{Q}(\sqrt{2}, \sqrt{3})=\mathbf{Q}(\sqrt{2})(\sqrt{3})
$$

Similarly, for all $a, b \in \mathbf{Q}(\sqrt{2})$ we have

$$
(a+b \sqrt{3})(a-b \sqrt{3})=a^{2}-3 b^{2}
$$

Then we already proved $\mathbf{Q}(\sqrt{2})$ is a field so that $\frac{a}{a^{2}-3 b^{2}}, \frac{b}{a^{2}-3 b^{2}}$ are also in $\mathbf{Q}(\sqrt{2})$. Then

$$
\frac{a}{a^{2}-3 b^{2}}-\frac{b}{a^{2}-3 b^{2}} \cdot \sqrt{3}
$$

is the inverse for $a+b \sqrt{3}$.
5. This is a ring but not a field. Consider $\sqrt{3}$. If $1 / \sqrt{3} \in \mathbf{Z}(\sqrt{3})$, then there are $a, b \in \mathbf{Z}$ such that $a+b \sqrt{3}=1 \sqrt{3}$. Then $a \sqrt{3}+3 b=1$ so that $a \sqrt{3}=1-3 b \in \mathbf{Z}$. This implies $\sqrt{3} \in \mathbf{Q}$.
6. This is not a ring.
7. This is a ring but not a field. You will compute the units later.
8. This ring is a vector space over \mathbf{Q} with spanning set $\left\{1,3^{1 / 3}, 3^{2 / 3}\right\}$. Hence it is finite dimensional (less than 3). For a non-zero element $\alpha \in \mathbf{Q}\left(3^{1 / 3}\right)$, the set $\left\{1, \alpha, \alpha^{2}, \alpha^{3}\right\}$ has to be linearly dependent over \mathbf{Q}. Then α is zero of a non-zero polynomial $f \in \mathbf{Q}[x]$. Among all polynomials havinfg α as a root, take an f that has the smallest degree. Then I claim that f has nonzero constant term. If not, then $f=x f^{\prime}$ and

$$
0=f(\alpha)=\alpha \times f^{\prime}(\alpha) \in \mathbf{Q}\left(3^{1 / 3}\right) \subset \mathbf{R}
$$

. Since $\alpha \neq 0$, and \mathbf{R} is a field, we have $f^{\prime}(\alpha)=0$, contradicting the assumption that f is of the smallest degree. Now write $f(x)=a_{n} x^{n}+\cdots c_{0}$, then

$$
0 \neq c_{0}=x\left(-a_{n} x^{n-1}-\cdots-a_{1}\right)
$$

Plugging in α, we see that α has a multiplicative inverse.

1. Prove that the set R^{\times}of units of a ring R is a group under multiplication. Then R^{\times}has t elements. The order of an element in a finite group necessarily divides of size of the group. Hence $u^{t}=1$ for all $u \in R^{\times}$.
2. $(\mathbf{Z} / n)^{\times}$are represented by integers that are relative prime to $n . \varphi(n)$ is then the size of $(\mathbf{Z} / n)^{\times}$. Now apply (a).

Problem 2.4 (PS $\sharp 5.1$ in 403A): Goodman 1.11.9

For a, let $\pi_{a}: \mathbf{Z} \rightarrow \mathbf{Z} / a$ be the quotient map, which is a ring homomorphism. Let $\pi_{b}: \mathbf{Z} \rightarrow \mathbf{Z} / b$ be the quotient map for b. Then this induces a map $\pi: \mathbf{Z} \rightarrow \mathbf{Z} / a \oplus \mathbf{Z} / b$. The kernel of this map is the integers that are divisible by both a and b. Since $(a, b)=1$, the kernel of π is the ideal generated by $a \cdot b$. Then π factors through $\pi_{a, b}: \mathbf{Z} / a b \rightarrow(\mathbf{Z} / a) \oplus(\mathbf{Z} / b)$.
PS $\sharp 5.5$ in 403A (Problem 2.8 Judson 16.6.7)
Suppose there is an isomorphism $\varphi: \mathbf{C} \rightarrow \mathbf{R}$ of rings. Then $\varphi(1)=1$ so $\varphi(-1)=-1$. Let $\varphi(i)=\alpha \in \mathbf{R}$ Then

$$
-1=\varphi(-1)=\varphi\left(i^{2}\right)=\varphi(i)^{2}=\alpha^{2}
$$

There is no real number α that can satisfy $\alpha^{2}=-1$. Hence \mathbf{C} is not isomorphic to \mathbf{R} as rings.
Problem 2.11 (PS $\sharp 6.3$ in 403A): Judson 16.6.11
Simply note that $\mathbf{Z}[i]$ is a subring of \mathbf{C}, which is an integral domain. PS $\sharp 6.4$ in 403A (Problem 2.12)

The norm $\|\cdot\|: \mathbf{C} \rightarrow \mathbf{R}$ on \mathbf{C} is multiplicative. Henec if $a+b i$ has a unit in $\mathbf{Z}[i]$ and $c+d i$ is its inverse, we have $\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)=1$. The only integers (a, b) that satisifies this are $(0, \pm 1)$, $(\pm 1,0)$. They corresponds to ± 1 and $\pm i$. One checks that they are indeed units.

