MATH 403 Winter 2018 Homework II Winter 2018

Problem 2.1 (PS 1,4.1 in 403A): Judson 16.6.1

- 1. Depending whether you accept a ring to have a multiplication identity or not, your answer will be yes if you allowed rings to have no multiplicative idenity. This is not a field because 7 does not have a muphiplicative inverse.
- 2. Show that if $a = a' \mod 18$ and $b = b' \mod 18$, then $ab = a'b' \mod 18$. This is a ring but not a field becaue it is not an integral domain. For example, $6 \cdot 3 = 0$.
- 3. Note that $(a + b\sqrt{2})(a b\sqrt{2}) = a^2 2b^2$. Hence

$$(a + b\sqrt{2})(\frac{a}{a^2 - 2b^2} - \frac{b}{a^2 - 2b^2} \cdot \sqrt{2}) = 1.$$

Obviously $a^2 - 2b^2 \in \mathbf{Q}$ hence $\frac{a}{a^2 - 2b^2} - \frac{b}{a^2 - 2b^2} \cdot \sqrt{2} \in \mathbf{Q}(\sqrt{2})$ is the inverse.

4. Note that

$$\mathbf{Q}(\sqrt{2},\sqrt{3}) = \mathbf{Q}(\sqrt{2})(\sqrt{3}).$$

Similarly, for all $a, b \in \mathbf{Q}(\sqrt{2})$ we have

$$(a + b\sqrt{3})(a - b\sqrt{3}) = a^2 - 3b^2.$$

Then we already proved $\mathbf{Q}(\sqrt{2})$ is a field so that $\frac{a}{a^2-3b^2}, \frac{b}{a^2-3b^2}$ are also in $\mathbf{Q}(\sqrt{2})$. Then

$$\frac{a}{a^2-3b^2}-\frac{b}{a^2-3b^2}\cdot\sqrt{3}$$

is the inverse for $a + b\sqrt{3}$.

- 5. This is a ring but not a field. Consider $\sqrt{3}$. If $1/\sqrt{3} \in \mathbb{Z}(\sqrt{3})$, then there are $a, b \in \mathbb{Z}$ such that $a + b\sqrt{3} = 1\sqrt{3}$. Then $a\sqrt{3} + 3b = 1$ so that $a\sqrt{3} = 1 3b \in \mathbb{Z}$. This implies $\sqrt{3} \in \mathbb{Q}$.
- 6. This is not a ring.
- 7. This is a ring but not a field. You will compute the units later.
- 8. This ring is a vector space over \mathbf{Q} with spanning set $\{1, 3^{1/3}, 3^{2/3}\}$. Hence it is finite dimensional (less than 3). For a non-zero element $\alpha \in \mathbf{Q}(3^{1/3})$, the set $\{1, \alpha, \alpha^2, \alpha^3\}$ has to be linearly dependent over \mathbf{Q} . Then α is zero of a non-zero polynomial $f \in \mathbf{Q}[x]$. Among all polynomials havinfg α as a root, take an f that has the smallest degree. Then I claim that f has nonzero constant term. If not, then f = xf' and

$$0 = f(\alpha) = \alpha \times f'(\alpha) \in \mathbf{Q}(3^{1/3}) \subset \mathbf{R}$$

. Since $\alpha \neq 0$, and **R** is a field, we have $f'(\alpha) = 0$, contradicting the assumption that f is of the smallest degree. Now write $f(x) = a_n x^n + \cdots + c_0$, then

$$0 \neq c_0 = x(-a_n x^{n-1} - \dots - a_1).$$

Plugging in α , we see that α has a multiplicative inverse.

PS #4.3 in 403A (Problem 2.3)

- 1. Prove that the set R^{\times} of units of a ring R is a group under multiplication. Then R^{\times} has t elements. The order of an element in a finite group necessarily divides of size of the group. Hence $u^t = 1$ for all $u \in R^{\times}$.
- 2. $(\mathbf{Z}/n)^{\times}$ are represented by integers that are relative prime to n. $\varphi(n)$ is then the size of $(\mathbf{Z}/n)^{\times}$. Now apply (a).

Problem 2.4 (PS #5.1 in 403A): Goodman 1.11.9

For a, let $\pi_a : \mathbf{Z} \to \mathbf{Z}/a$ be the quotient map, which is a ring homomorphism. Let $\pi_b : \mathbf{Z} \to \mathbf{Z}/b$ be the quotient map for b. Then this induces a map $\pi : \mathbf{Z} \to \mathbf{Z}/a \oplus \mathbf{Z}/b$. The kernel of this map is the integers that are divisible by both a and b. Since (a, b) = 1, the kernel of π is the ideal generated by $a \cdot b$. Then π factors through $\pi_{a,b} : \mathbf{Z}/ab \to (\mathbf{Z}/a) \oplus (\mathbf{Z}/b)$.

PS #5.5 in 403A (Problem 2.8 Judson 16.6.7)

Suppose there is an isomorphism $\varphi : \mathbf{C} \to \mathbf{R}$ of rings. Then $\varphi(1) = 1$ so $\varphi(-1) = -1$. Let $\varphi(i) = \alpha \in \mathbf{R}$ Then

$$-1 = \varphi(-1) = \varphi(i^2) = \varphi(i)^2 = \alpha^2.$$

There is no real number α that can satisfy $\alpha^2 = -1$. Hence **C** is not isomorphic to **R** as rings. **Problem 2.11 (PS \ddagger 6.3 in 403A): Judson 16.6.11**

Simply note that $\mathbf{Z}[i]$ is a subring of \mathbf{C} , which is an integral domain. **PS** $\sharp 6.4$ in 403A (Problem 2.12)

The norm $|| \cdot || : \mathbf{C} \to \mathbf{R}$ on \mathbf{C} is multiplicative. Hence if a + bi has a unit in $\mathbf{Z}[i]$ and c + di is its inverse, we have $(a^2 + b^2)(c^2 + d^2) = 1$. The only integers (a, b) that satisifies this are $(0, \pm 1)$, $(\pm 1, 0)$. They corresponds to ± 1 and $\pm i$. One checks that they are indeed units.