MATH 403 Winter 2018 Homework I Winter 2018

(Problem Set 1)

Problem 1.1. (Goodman 10.1.1) Let us prove the following statement: If G is a simple group of order p^n then n = 1 and G is \mathbb{Z}/p . If G is abelian and n > 1, one uses the structure theorem on finitely generated abelian groups to construct explicitly a proper, non-trivial subgroup of G. If G is not abelian, we have $Z(G) \neq G$. Recall the class equation for a finite group G. If Z(G) is the center and g_i for $i = 1, \dots, r$ are elements in the conjugacy classes disjoint from Z(G), we have the counting

$$|G| = |Z(G)| + \sum_{i=1}^{r} |G: C_G(g_i)|$$

where $C_G(g_i)$ denotes the centralizer of g_i . Then p|Z(G)|. But $e \in Z(G)$ so |Z(G)| can be divided by a power l of p where l > 0. This means |Z(G)| > 1 so that $e \neq Z(G)$. If n > 1 since we assumed G is not abelian we have

 $e \subsetneq Z(G) \subsetneq G$

, with Z(G) a proper nontrivial normal sub-group of G. This contradicts the assumption that G is simple. Hence n = 1. The only group of order p has to be cyclic.

We now proceed to the problem. When G is abelian, we know there is a composition series of G with successive quotients equal to \mathbb{Z}/p . When G is not abelian, n is necessarily greater than 1. By theorem, there is always for a finite group G a composition series. The successive quotients have to be simple and of order p^k . But we proved that any simple group of order p^k is cyclic of order p.

For part b, this follows from the arguments presented in a.

Problem 1.3. (Goodman 10.1.3) Suppose G has a chain of subgroups with abelian successive quotients. Then apply problem 1.b to the quotient groups G_i/G_{i-1} . Then the chain can be refined to a composition series. For this, you might want to review the correspondence: If G is a group and $H \subset G$ is a normal subgroup, every normal subgroup in G/H can be written uniquely as N/H where N is a normal subgroup of G containing H. You also have to know the third isomorphism theorem which symbolically says in the previous setting, we have

$$\frac{G/H}{N/H} \simeq G/N$$

Problem 1.7. (Goodman 10.3.4)

1. Let $\sigma \in A_4$ be a non-trivial element. Then there exists a pair $i \neq j$ such that $\sigma(i) = j$. Since we are in A_4 , one chooses pairwise distinct i, j, k, l. Now $\tau = (jkl) \in A_4$ and

$$\sigma\tau(i) = \sigma(i) = j$$

and

$$\tau\sigma(i) = \tau(l) = i.$$

Hence σ is not in the center of A_4 .

2. This follows from the above argument.

3. A_n is of index 2 in S_n . Hence A_n is normal in S_n . By exercise 10.3.3, $Z(A_n)$ is normal in S_n . By theorem 10.3.2, $Z(A_n)$ is either A_n or e.

Problem 1.8. (Goodman 10.3.6) Since G is simple, $e \subset G$ is composition series. By Jordan Hölder theorem, if G has a solvable series, $G/e \simeq G$ has to be abelian. Theorem 10.3.4 tells us that A_n is simple. We have seen that A_n is not abelian as well. Hence A_n is not solvable. As subgroups of a solvable group is solvable, S_n is not solvable.

Problem 1.9. Let *p* be an odd prime. Suppose $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is in the center of $SL_2(\mathbf{Z}/p)$. Consider the matrices

 $B = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$. Solving for BAB = A and CAC = A gives us b = c = 0 and a = d with $a^2 = 1$.

Problem 1.10. For $|GL_2(\mathbf{Z}/p)|$, note that the first row of a matrix A in $GL_2(\mathbf{Z}/p)$ can be anything but the zero vector. So there are $p^2 - 1$ choices for the first row. Check that det A = 0is equivalent to the condition that the second row of A is a multiple of the first. So the second row only has $p^2 - p$ choices. Hence

$$|GL_2(\mathbf{Z}/p)| = (p^2 - 1) \cdot (p^2 - p).$$

For $|SL_2(\mathbf{Z}/p)|$, the first row for $A \in SL_2(\mathbf{Z}/p)$ can have $p^2 - 1$ choices. Since det A = 1, if $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, we have

$$ad - bc = 1.$$

For a fix row a, b, suppose $a \neq 0$. Then a has a multiplicative inverse. Then $d = a^{-1}(1 + bc)$. As b runs through the entire \mathbf{Z}/p , we see that the second row c, d has p choices. Hence

$$|SL_2(\mathbf{Z}/p)| = (p^2 - 1) \cdot p$$

Finally,

$$|PSL_2(\mathbf{Z}/p)| = |SL_2(\mathbf{Z}/p)|/|Z| = (p^2 - 1) \cdot p/2$$