(Problem Set 1)

Problem 1.1. (Goodman 10.1.1) Let us prove the following statement: If G is a simple group of order p^{n} then $n=1$ and G is \mathbf{Z} / p. If G is abelian and $n>1$, one uses the structure theorem on finitely generated abelian groups to construct explicitly a proper, non-trivial subgroup of G. If G is not abelian, we have $Z(G) \neq G$. Recall the class equation for a finite group G. If $Z(G)$ is the center and g_{i} for $i=1, \cdots, r$ are elements in the conjugacy classes disjoint from $Z(G)$, we have the counting

$$
|G|=|Z(G)|+\sum_{i=1}^{r}\left|G: C_{G}\left(g_{i}\right)\right|
$$

where $C_{G}\left(g_{i}\right)$ denotes the centralizer of g_{i}. Then $p|Z(G)|$. But $e \in Z(G)$ so $|Z(G)|$ can be divided by a power l of p where $l>0$. This means $|Z(G)|>1$ so that $e \neq Z(G)$. If $n>1$ since we assumed G is not abelian we have

$$
e \subsetneq Z(G) \subsetneq G
$$

, with $Z(G)$ a proper nontrivial normal sub-group of G. This contradicts the assumption that G is simple. Hence $n=1$. The only group of order p has to be cyclic.

We now proceed to the problem. When G is abelian, we know there is a composition series of G with successive quotients equal to \mathbf{Z} / p. When G is not abelian, n is necessarily greater than 1 . By theorem, there is always for a finite group G a composition series. The successive quotients have to be simple and of order p^{k}. But we proved that any simple group of order p^{k} is cyclic of order p.

For part b , this follows from the arguments presented in a.
Problem 1.3. (Goodman 10.1.3) Suppose G has a chain of subgroups with abelian successive quotients. Then apply problem 1.b to the quotient groups G_{i} / G_{i-1}. Then the chain can be refined to a composition series. For this, you might want to review the correspondence: If G is a group and $H \subset G$ is a normal subgroup, every normal subgroup in G / H can be written uniquely as N / H where N is a normal subgroup of G containing H. You also have to know the third isomorphism theorem which symbolically says in the previous setting, we have

$$
\frac{G / H}{N / H} \simeq G / N
$$

Problem 1.7. (Goodman 10.3.4)

1. Let $\sigma \in A_{4}$ be a non-trivial element. Then there exists a pair $i \neq j$ such that $\sigma(i)=j$. Since we are in A_{4}, one chooses pairwise distinct i, j, k, l. Now $\tau=(j k l) \in A_{4}$ and

$$
\sigma \tau(i)=\sigma(i)=j
$$

and

$$
\tau \sigma(i)=\tau(l)=i
$$

Hence σ is not in the center of A_{4}.
2. This follows from the above argument.
3. A_{n} is of index 2 in S_{n}. Hence A_{n} is normal in S_{n}. By exercise 10.3.3, $Z\left(A_{n}\right)$ is normal in S_{n}. By theorem 10.3.2, $Z\left(A_{n}\right)$ is either A_{n} or e.

Problem 1.8. (Goodman 10.3.6) Since G is simple, $e \subset G$ is composition series. By Jordan Hölder theorem, if G has a solvable series, $G / e \simeq G$ has to be abelian. Theorem 10.3.4 tells us that A_{n} is simple. We have seen that A_{n} is not abelian as well. Hence A_{n} is not solvable. As subgroups of a solvable group is solvable, S_{n} is not solvable.

Problem 1.9. Let p be an odd prime. Suppose $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is in the center of $S L_{2}(\mathbf{Z} / p)$. Consider the matrices
$B=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$ and $C=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$. Solving for $B A B=A$ and $C A C=A$ gives us $b=c=0$ and $a=d$ with $a^{2}=1$.

Problem 1.10. For $\left|G L_{2}(\mathbf{Z} / p)\right|$, note that the first row of a matrix A in $G L_{2}(\mathbf{Z} / p)$ can be anything but the zero vector. So there are $p^{2}-1$ choices for the first row. Check that $\operatorname{det} A=0$ is equivalent to the condition that the secod row of A is a multiple of the first. So the second row only has $p^{2}-p$ choices. Hence

$$
\left|G L_{2}(\mathbf{Z} / p)\right|=\left(p^{2}-1\right) \cdot\left(p^{2}-p\right)
$$

For $\left|S L_{2}(\mathbf{Z} / p)\right|$, the first row for $A \in S L_{2}(\mathbf{Z} / p)$ can have $p^{2}-1$ choices. Since $\operatorname{det} A=1$, if $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, we have

$$
a d-b c=1
$$

For a fix row a, b, suppose $a \neq 0$. Then a has a multiplicative inverse. Then $d=a^{-1}(1+b c)$. As b runs through the entire \mathbf{Z} / p, we see that the second row c, d has p choices. Hence

$$
\left|S L_{2}(\mathbf{Z} / p)\right|=\left(p^{2}-1\right) \cdot p
$$

Finally,

$$
\left|P S L_{2}(\mathbf{Z} / p)\right|=\left|S L_{2}(\mathbf{Z} / p)\right| /|Z|=\left(p^{2}-1\right) \cdot p / 2
$$

