Sample exam problems

Problem 1.1. Let *V* be a vector space over \mathbb{F} and $W_1, W_2 \subset V$ be subspaces such that $W_1 \subset W_2$. Show that there is an onto linear transformation $T: V/W_1 \to V/W_2$.

Problem 1.2. Recall that $P_i(\mathbb{R})$ denotes the vector space of polynomials of degree $\leq i$ with real coefficients. Let $S = \{x^2 + 1, x^3 + x, x^4 + x^2, x^4 - 1\} \subset P_4(\mathbb{R})$. What is the dimension of the span of *S*?

Problem 1.3. Consider the linear transformation $T: P_4(\mathbb{R}) \to P_4(\mathbb{R})$ defined by T(f) = f - f'. Consider also the basis $\beta = \{1, x, x^2, x^3, x^4\}$ of $P_4(\mathbb{R})$. What is the matrix representation $[T]_\beta$ of T with respect to the basis β ? Show that T is invertible.

Problem 1.4. Let $A = \begin{pmatrix} 4 & 3 \\ 3 & 4 \end{pmatrix}$. What are the eigenvalues of *A*? What are the corresponding eigenspaces? Is *A* diagonalizable?

Problem 1.5. Show that if *A* and *B* are similar matrices, then *A* and *B* have the same characteristic polynomial.

Problem 1.6. Consider \mathbb{R}^3 with the standard inner product. Let a, b, c be real numbers which are not all zero. Let $W \subset \mathbb{R}^3$ be the plane of points $(x, y, z) \in \mathbb{R}^3$ defined by the equation ax + by + cz = 0. What is the orthogonal complement W^{\perp} ?

Problem 1.7. Consider the linear transformation $T : \mathbb{C}^2 \to \mathbb{C}^2$ defined by T(x, y) = (x - iy, ix + y). Is *T* normal? If so, find an orthonormal basis consisting of eigenvectors of *T*.

Problem 1.8. Consider \mathbb{C}^4 with the standard inner product. Find an orthonormal basis for the span of $\{(1,0,1,0), (0,1,1,0), (1,1,1,1)\}$.

Problem 1.9. Let $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$. Is A a diagonalizable matrix over the

real numbers? If so, find a real $n \times n$ matrix P such that $P^{-1}AP$ is diagonal.

Problem 1.10. Recall that if $A = (A_{i,j})$ is an $n \times n$ matrix, then the trace of A is defined as $tr(A) = \sum_{i=1}^{n} A_{i,i}$. Show that if A and B are $n \times n$ matrices, then tr(AB) = tr(BA).