Sample exam problems

Problem 1.1. Let V be a vector space over \mathbb{F} and $W_{1}, W_{2} \subset V$ be subspaces such that $W_{1} \subset W_{2}$. Show that there is an onto linear transformation $T: V / W_{1} \rightarrow V / W_{2}$.

Problem 1.2. Recall that $P_{i}(\mathbb{R})$ denotes the vector space of polynomials of degree $\leq i$ with real coefficients. Let $S=\left\{x^{2}+1, x^{3}+x, x^{4}+x^{2}, x^{4}-1\right\} \subset$ $P_{4}(\mathbb{R})$. What is the dimension of the span of S ?

Problem 1.3. Consider the linear transformation $T: P_{4}(\mathbb{R}) \rightarrow P_{4}(\mathbb{R})$ defined by $T(f)=f-f^{\prime}$. Consider also the basis $\beta=\left\{1, x, x^{2}, x^{3}, x^{4}\right\}$ of $P_{4}(\mathbb{R})$. What is the matrix representation $[T]_{\beta}$ of T with respect to the basis β ? Show that T is invertible.

Problem 1.4. Let $A=\left(\begin{array}{ll}4 & 3 \\ 3 & 4\end{array}\right)$. What are the eigenvalues of A ? What are the corresponding eigenspaces? Is A diagonalizable?
Problem 1.5. Show that if A and B are similar matrices, then A and B have the same characteristic polynomial.
Problem 1.6. Consider \mathbb{R}^{3} with the standard inner product. Let a, b, c be real numbers which are not all zero. Let $W \subset \mathbb{R}^{3}$ be the plane of points $(x, y, z) \in \mathbb{R}^{3}$ defined by the equation $a x+b y+c z=0$. What is the orthogonal complement W^{\perp} ?
Problem 1.7. Consider the linear transformation $T: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ defined by $T(x, y)=(x-i y, i x+y)$. Is T normal? If so, find an orthonormal basis consisting of eigenvectors of T.
Problem 1.8. Consider \mathbb{C}^{4} with the standard inner product. Find an orthonormal basis for the span of $\{(1,0,1,0),(0,1,1,0),(1,1,1,1)\}$.
Problem 1.9. Let $A=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$. Is A a diagonalizable matrix over the real numbers? If so, find a real $n \times n$ matrix P such that $P^{-1} A P$ is diagonal.
Problem 1.10. . Recall that if $A=\left(A_{i, j}\right)$ is an $n \times n$ matrix, then the trace of A is defined as $\operatorname{tr}(A)=\sum_{i=1}^{n} A_{i, i}$. Show that if A and B are $n \times n$ matrices, then $\operatorname{tr}(A B)=\operatorname{tr}(B A)$.

