Midterm solutions

Advanced Linear Algebra (Math 340)
Instructor: Jarod Alper
April 26, 2017
Name: \qquad

Read all of the following information before starting the exam:

- You may not consult any outside sources (calculator, phone, computer, textbook, notes, other students, ...) to assist in answering the exam problems. All of the work will be your own!
- Show all work, clearly and in order, if you want to get full credit. Partial credit will be awarded.
- Throughout the exam, the symbol \mathbb{F} denotes either the real numbers \mathbb{R} or complex numbers \mathbb{C}.
- Circle or otherwise indicate your final answers.
- Good luck!

Problem	Points	
1	(10 points)	-
2	(10 points)	-
3	(10 points)	-
4	(10 points)	-
5	(10 points)	-
Total	(50 points)	

1. (10 points)

Determine whether the following statements are true or false. It is not necessary to explain your answers.
(1) False If V is a vector space over \mathbb{F}, then any equality of the form $a x=b x$ where $a, b \in \mathbb{F}$ and $x \in V$ implies that in fact $a=b$.
(2) True \qquad If S is a linearly independent subset of a vector space V, then any subset of S is also linearly independent.
(3) True Every subspace of \mathbb{R}^{n} is finite dimensional.
(4) True \qquad If $T: V \rightarrow W$ is a linear transformation, then $T(0)=0$.
(5) False If $T: V \rightarrow W$ is a linear transformation, then $N(T)=(0)$ if and only if T is onto.
2. (10 points) Recall that $P_{n}(\mathbb{R})$ denotes the vector space consisting of polynomials of degree $\leq n$ with real coefficients.
a. (5 pts) Show that that $\beta=\left\{1,1+x, 1+x+x^{2}, 1+x+x^{2}+x^{3}\right\}$ is a basis of $P_{3}(\mathbb{R})$

Solution: As $\left\{1, x, x^{2}, x^{3}\right\}$ is a basis of $P_{3}(\mathbb{R})$, we know that $\operatorname{dim} P_{3}(\mathbb{R})=4$. Therefore, it suffices to show that the span of β is all of $P_{3}(\mathbb{R})$. Indeed, we know from lecture that there is a linearly independent subset of β which has the same span and therefore is a basis. Since the number of elements in any two bases is the same, we see that as long as the span of β is $P_{3}(\mathbb{R})$, then β must be a basis.

To show that β spans $P_{3}(\mathbb{R})$, it suffices to show that $1, x, x^{2}$ and x^{3} can be written as linear combinations of elements of β. Clearly, 1 is in the span of β. Also, $x=-1+(1+x) \in \operatorname{span}(\beta)$, $x^{2}=\left(1+x+x^{2}\right)+-1(1+x) \in \operatorname{span}(\beta)$, and $x^{3}=\left(1+x+x^{2}+x^{3}\right)+-1\left(1+x+x^{2}\right) \in \operatorname{span}(\beta)$.
b. (5 pts) What is the nullspace of the linear transformation $T: P_{3}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ defined by taking a polynomial $f(x)$ to its derivative $\frac{d f}{d x}$?

Solution: Let $f=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3} \in P_{3}(\mathbb{R})$. Then $T(f)=a_{1}+2 a_{2} x+3 a_{3} x^{2}$. We see that $T(f)=0$ if and only if $a_{1}=a_{2}=a_{3}=0$. We conclude that

$$
N(T)=\left\{a_{0} \mid a_{0} \in \mathbb{R}\right\} .
$$

In other words, the null space consists of only the constant polynomials.
3. (10 points) Suppose that V is a vector space over \mathbb{F} and that $\{u, v\}$ is a basis of V.
a. (3 pts) What is the dimension of V ?

Solution: The dimension of V is the number of elements in any basis. Therefore, $\operatorname{dim} V=2$.
b. (4 pts) Show that $\{u-v, u+v\}$ is also a basis of V.

Solution: To see that $\{u-v, u+v\}$ is linearly independent, suppose $a(u-v)+b(u+v)=0$ for some $a, b \in \mathbb{F}$. Then $(b+a) u+(b-a) v=0$ and since $\{u, v\}$ is a basis, we see that $b+a=b-a=0$. This clearly implies that $a=b=0$.

To see that $\{u-v, u+v\}$ spans V, it suffices to show that $u, v \in \operatorname{span}(u-v, u+v)$. But clearly $u=\frac{1}{2}(u-v)+\frac{1}{2}(u+v)$ and $v=-\frac{1}{2}(u-v)+\frac{1}{2}(u+v)$.
c. (3 pts) If $\{u, v, w\}$ is a basis of a vector space W over \mathbb{F}, then is $\{u-v, v-w, w-u\}$ also a basis of W ?

Solution: No, $\{u-v, v-w, w-u\}$ is not linearly dependent as $(u-v)+(v-w)+(w-u)=0$.

4. (10 points)

a. (5 pts) Let V be a vector space over \mathbb{F}. Show that if W_{1}, W_{2} are subspaces of V, then so is the intersection $W_{1} \cap W_{2}$.

By definition, the intersection $W_{1} \cap W_{2}$ consists of those vectors in V that lie both in W_{1} and W_{2}.

Solution: We need to show the following two properties

- For $w_{1}, w_{2} \in W_{1} \cap W_{2}$, then $w_{1}+w_{2} \in W_{1} \cap W_{2}$: Since w_{1}, w_{2} are in both W_{1} and in W_{2} and using that both W_{1} and W_{2} are subspaces, we see that $w_{1}+w_{2}$ are contained in W_{1} and W_{2}. Therefore, $w_{1}+w_{2} \in W_{1} \cap W_{2}$.
- For $w \in W_{1} \cap W_{2}$ and $a \in \mathbb{F}$, then $a w \in W_{1} \cap W_{2}$: Since w is in both W_{1} and W_{2} and since both W_{1} and W_{2} are closed under scalar multiplication, we see that $a w$ is contained in both W_{1} and W_{2}; that is, $a w \in W_{1} \cap W_{2}$.
b. (5 pts) Let $U, W \subset V$ be supsaces of a vector space V. Denote by $T: V \rightarrow V / W$ the linear transformation to quotient space V / W. Show that U is contained in W if and only if $T(U)=(0)$.

Recall that V / W denotes the vector space of cosets $v+W$ for $v \in V$, and that T is defined by setting $T(v)=v+W$. Also, the set $T(U) \subset V / W$, by definition, consists of all vectors of the form $T(u)$ for some $u \in U$.

Solution: The zero element in V / W is the coset $W \in V / W$. Since $T(U)=\{u+W \mid u \in U\}$, we see that $T(U)=(0)$ if and only if $u+W=W$ for all $u \in U$. But we know that a coset $v+W$ is equal to W if and only if $v \in W$. We thus see that $T(U)=(0)$ if and only if for all $u \in U$, then $u \in W$. This latter condition is simply the requirement that $U \subset W$.
5. (10 points) Let V be a vector space over \mathbb{F}. Let $\beta=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be a subset of V. Define the linear transformation $T: \mathbb{F}^{n} \rightarrow V$ by setting $T\left(a_{1}, a_{2}, \ldots, a_{n}\right)=a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{n} v_{n}$. Prove that β is a basis if and only if T is an isomorphism.

Solution: We will prove the following two equivalences:

- T is one-to-one if and only if β is linearly independent: We know that T is one-to-one if and only if $N(T)=(0)$. Suppose $w=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{F}^{n}$ is a vector such that $T(w)=0$. Using the definition of the linear transformation T, we see that $T(w)=$ $a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{n} v_{n}=0$. Thus, $N(T)=(0)$ if and only if for all scalars $a_{1}, a_{2}, \ldots, a_{n}$ with $a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{n} v_{n}=0$, then $a_{1}=a_{2}=\cdots=a_{n}=0$. This last property is the definition that β is linearly independent.
- T is onto if and only if β spans V : By definition, T is onto if and only if the range $R(T)=V$. But as $R(T)=\left\{T(w) \mid w \in \mathbb{F}^{n}\right\}$, we see that T is onto if and only if for every vector $v \in V$, there exists $w=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{F}^{n}$ such that $T(w)=$ $a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{n} v_{n}=v$. This last property is the definition that β spans V.
Finally, we know that β is a basis if and only if β is both linearly independent and spans V. Similarly, T is an isomorphism if and only if T is one-to-one and onto. By the two equivalences above, we conclude that β is a basis if and only if T is an isomorphism.

