Midterm 2 Solutions

Calculus I (Math 124)
Instructor: Jarod Alper
Fall 2019
November 19, 2019
Name:

Section: \qquad

Read all of the following information before starting the exam:

- You may use a Ti-30x IIS calculator.
- You may refer to your hand-written note sheet (8.5 "x11", two-sided).
- You may not consult any other outside sources (phone, computer, textbook, other students, ...) to assist in answering the exam problems. All of the work will be your own!
- Simplify your answers as much as possible. Unless otherwise stated, give exact answers to questions. For example, $2 \ln (3) /$ pi and $1 / 3$ are exact while 0.699 and 0.333 are approximations for the those numbers.
- Write clearly!! You need to write your solutions carefully and clearly in order to convince me that your solution is correct. Partial credit will be awarded.
- Good luck!

Problem	Points	
1	(20 points $)$	-
2	(20 points $)$	-
3	$(20$ points $)$	-
4	$(20$ points $)$	-
5	$(20$ points $)$	-
Total	$(100$ points $)$	

Problem 1.

(a) Find the derivative of $f(x)=\arctan (\sqrt{x})$. (Recall that $\arctan (x)$ is the same function as the inverse tangent function $\tan ^{-1}(x)$.)

Solution: Using the formula $\frac{d}{d x}(\arctan (x))=1 /\left(1+x^{2}\right)$, we obtain that

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{1+(\sqrt{x})^{2}} \frac{d(\sqrt{x})}{d x} \\
& =\frac{1}{1+x}\left(1 / 2 x^{-1 / 2}\right) \\
& =\frac{1}{2(1+x) \sqrt{x}} .
\end{aligned}
$$

(b) If $y=\ln (x)^{\ln (x)}$, find an expression for $\frac{d y}{d x}$ in terms of x.

Solution: We will use logarithmic differentiation in addition to carefully applying the rule that $\ln \left(x^{a}\right)=a \ln (x)$. If we take the natural logarithm $\ln (-)$ of both sides, we obtain

$$
\begin{aligned}
\ln (y) & =\ln \left(\ln (x)^{\ln (x)}\right) \\
& =\ln (x) \ln (\ln (x))
\end{aligned}
$$

and taking the derivative of both sides and using the chain and product rules yields

$$
\begin{aligned}
\frac{1}{y} \frac{d y}{d x} & =\frac{1}{x} \ln (\ln (x))+\ln (x) \frac{1}{\ln (x)} \frac{1}{x} \\
& =\frac{1}{x}(\ln (\ln (x))+1)
\end{aligned}
$$

Solving for $\frac{d y}{d x}$ and substituting $y=\ln (x)^{\ln (x)}$ gives

$$
\frac{d y}{d x}=\frac{\ln (x)^{\ln (x)}}{x}(\ln (\ln (x))+1)
$$

Problem 2. Consider the curve defined by the equation $x^{4}-2 x^{2} y^{2}=-56$. (a) Find the equation of the tangent line at the point $(2,3)$.

Solution: (a) We will use implicit differentiation. Taking $d / d x$ of both sides and using both the chain and product rule, we obtain that

$$
4 x^{3}-4 x y^{2}-4 x^{2} y \frac{d y}{d x}=0
$$

and solving for $\frac{d y}{d x}$ yields

$$
\frac{d y}{d x}=\frac{4 x^{3}-4 x y^{2}}{4 x^{2} y}=\frac{x^{2}-y^{2}}{x y}
$$

At $(2,3), d y / d x=-5 / 6$. So the tangent line is $y-3=-5 / 6(x-2)$.
(b) Let P be the point on the curve near $(2,3)$ with x-coordinate 2.1. Find an approximate value of the y-coordinate of P. (Please round your answer to three digits after the decimal.)

Solution: The linear approximation at $(2,3)$ is $L(x)=-5 / 6(x-2)+3$. Evaluating at 2.1 , we get $L(2.1)=-5 / 6(.1)+3=3-5 / 60=2.917$.

Problem 3. An hourglass is made up of two glass cones connected at their tips (as in the diagram below). Both cones have radius 1 cm and height 2 cm . When the hourglass is flipped over, sand starts falling to the lower cone.

(a) When the sand remaining in the upper cone has height $y \mathrm{~cm}$, give a formula for its volume A in terms of y.

Solution: If R denotes the radius of the cone containing the sand remaining in the upper cone, then the ratio of R to y must the same as the ratio of 1 cm (the radius of the entire glass cone) to 2 cm (the height of the entire glass cone). Therefore, $R / y=1 / 2$ or in other words $R=y / 2$. The volume A is therefore

$$
A=\frac{1}{3} \pi R^{2} y=\frac{\pi}{12} y^{3} .
$$

(b) When the sand in the lower cone has reached a height of $h \mathrm{~cm}$, give a formula for its volume B in terms of h.

Solution: The volume B can be expressed as the difference of the volume of the entire bottom glass cone subtracted by the volume of the bottom cone not containing sand. The height of this bottom cone not containing sand is $2-h$ and therefore its radius is $(2-h) / 2$ (using again that the ratio of the height to the radius should be $2 / 1$ as above).

Therefore,

$$
\begin{aligned}
B & =\frac{1}{3} \pi(1)^{2}(2)-\frac{1}{3} \pi r^{2} h \\
& =\frac{2 \pi}{3}-\frac{\pi}{12}(2-h)^{3} .
\end{aligned}
$$

(c) Assume that the total volume of sand is $2 \pi / 3 \mathrm{~cm}^{3}$ and that the height of the sand in the upper cone is decreasing at a rate of $1 \mathrm{~cm} / \mathrm{sec}$. At the instant that the sand in the lower cone is 1 cm high, determine the rate at which the height of the sand in the lower cone is increasing.

Solution: We have that $2 \pi / 3=A+B$ or in other words

$$
\frac{2 \pi}{3}=\frac{\pi}{12} y^{3}+\frac{2 \pi}{3}-\frac{\pi}{12}(2-h)^{3}
$$

which simplifies to

$$
\begin{equation*}
y^{3}=(2-h)^{3} . \tag{1}
\end{equation*}
$$

When $h=1$, this gives $y=1$. By differentiating (1) with respect to time t, we have $3 y^{2} \frac{d y}{d t}=3(2-h)^{2}\left(-\frac{d h}{d t}\right)$ or in other words

$$
y^{2} \frac{d y}{d t}=(2-h)^{2}\left(-\frac{d h}{d t}\right) .
$$

We are told that $\frac{d y}{d t}=-1$. Therefore, so $\frac{d h}{d t}=1$. The rate at which the height of the sand in the lower cone is increasing is $1 \mathrm{~cm} / \mathrm{sec}$.

Problem 4. Beginning at time $t=0$ seconds, an ant crawls according to the equations

$$
x(t)=t^{3}+45 t+1 \quad \text { and } \quad y(t)=-12 t^{2}
$$

(a) At what times t within the first 10 seconds is the ant's direction of travel parallel to the line $x+y=2$? (Please round your answer to three digits after the decimal.)
Solution: We compute that $x^{\prime}(t)=3 t^{3}+45$ and $y^{\prime}(t)=-24 t$. Thus

$$
\frac{d y}{d x}=\frac{y^{\prime}(t)}{x^{\prime}(t)}=\frac{-24 t}{3 t^{2}+45}
$$

The line $x+y=2$ has slope -1 so we simply need to find all values t for which

$$
\frac{d y}{d x}=\frac{-24 t}{3 t^{2}+45}=-1
$$

In other words, we need to solve $-24 t=-3 t^{2}-45$ or $t^{2}-8 t+15=0$. This latter equation factors as $(t-5)(t-3)=0$ and we obtain the times $t=3,5$.
(b) At what time within the first 10 seconds does the ant attain its maximal speed? (Please round your answer to three digits after the decimal.) Solution:

The maximal speed is attained at the same time at which the square of the speed is maximized. Let $f(t)$ be the square of the speed, namely,

$$
f(t)=x^{\prime}(t)^{2}+y^{\prime}(t)^{2}=\left(3 t^{2}+45\right)^{2}+(24)^{2} t^{2}=9 t^{4}+846 t^{2}+2025
$$

and its derivative is given by

$$
f^{\prime}(t)=36 t^{3}+1692 t=36 t\left(t^{2}+47\right) .
$$

The solutions to $f^{\prime}(t)=0$ are $t=0$. The only critical number of $f(x)$ in $[0,10]$ is 0 . So we only need to evaluate $f(t)$ at 0 and 10 . We compute $f(0)=2025$ and $f(10)=176625$. The maximal speed is attained at $t=10$.

Problem 5. Consider the function

$$
f(x)=x^{4}-6 x^{2}+4
$$

(a) Using interval notation, determine where $f(x)$ is increasing and decreasing.

Solution: Since $f^{\prime}(x)=4 x^{3}-12 x=4 x\left(x^{2}-3\right)$, we see that $f(x)$ is increasing on $(-\sqrt{3}, 0) \cup(\sqrt{3}, \infty)$ and decreasing on $(-\infty,-\sqrt{3}) \cup(0, \sqrt{3})$.
(b) Determine the critical numbers of $f(x)$.

Solution: The derivative $f^{\prime}(x)=4 x\left(x^{2}-3\right)$ exists everywhere and is zero precisely at $0, \pm \sqrt{3}$.
(c) Using interval notation, determine where $f(x)$ is concave up and down.

Solution: Since $f^{\prime \prime}(x)=12 x^{2}-12=12\left(x^{2}-1\right)$, we see that $f(x)$ is concave up on $(-\infty,-1) \cup(1, \infty)$ and concave down on $(-1,1)$.
(d) Determine the inflection points of $f(x)$.

Solution: The concavity switches at ± 1.
(e) For each critical number, determine whether it is a local minimum, local maximum or neither.

Solution: We use the second derivative test. Since $f^{\prime \prime}(\pm \sqrt{3})>0$ and $f^{\prime \prime}(0)<0$, we see that $f(x)$ attains a local minima at both $\pm \sqrt{3}$ and a local maximum at 0 .

