Midterm 1 Solutions

Calculus I (Math 124)
Instructor: Jarod Alper
Fall 2019
October 22, 2019
Name:

Section: \qquad

Read all of the following information before starting the exam:

- You may use a Ti-30x IIS calculator.
- You may refer to your hand-written note sheet (8.5 "x11", two-sided).
- You may not consult any other outside sources (phone, computer, textbook, other students, ...) to assist in answering the exam problems. All of the work will be your own!
- Write clearly!! You need to write your solutions carefully and clearly in order to convince me that your solution is correct. Partial credit will be awarded.
- Good luck!

Problem	Points	
1	$(20$ points $)$	-
2	$(20$ points $)$	-
3	$(20$ points $)$	-
4	$(20$ points $)$	-
5	$(20$ points $)$	
Total	$(100$ points $)$	

Problem 1. Calculate the following limits:
(a)

$$
\lim _{x \rightarrow 1} \frac{x^{3}-x^{2}}{x^{2}-1}
$$

Solution: By factoring $x^{3}-x^{2}=x^{2}(x-1)$ and $x^{2}-1=(x-1)(x+1)$, we compute

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{x^{3}-x^{2}}{x^{2}-1} & =\lim _{x \rightarrow 1} \frac{x^{2}(x-1)}{(x-1)(x+1)} \\
& =\lim _{x \rightarrow 1} \frac{x^{2}}{x+1} \\
& =\frac{1}{2}
\end{aligned}
$$

(b)

$$
\lim _{x \rightarrow 2^{+}} \frac{\cos (\pi x)}{8-x^{3}}
$$

Solution: First observe that $\lim _{x \rightarrow 2^{+}} \cos (\pi x)=1$ and that $\lim _{x \rightarrow 2^{+}}=0$. Thus the limit $\lim _{x \rightarrow 2^{+}} \frac{\cos (\pi x)}{8-x^{3}}$ will either be positive or negative infinity. To compute the sign, observe that as x approaches 2 from the right, the values of $\cos (2 \pi)$ are positive but the values of $8-x^{3}$ are negative. It follows that $\lim _{x \rightarrow 2^{+}} \frac{\cos (\pi x)}{8-x^{3}}=-\infty$.
(c)

$$
\lim _{x \rightarrow \infty} \frac{x+1}{\sqrt{x^{2}+1}}
$$

Solution: We will divide both the numerator and denominator by $1 / x$ to compute

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{x+1}{\sqrt{x^{2}+1}} & =\lim _{x \rightarrow \infty}\left(\frac{x+1}{\sqrt{x^{2}+1}} \cdot \frac{1 / x}{1 / x}\right) \\
& =\lim _{x \rightarrow \infty} \frac{1+\frac{1}{x}}{\sqrt{1+\frac{1}{x^{2}}}} \\
& =\frac{\left(\lim _{x \rightarrow \infty} 1\right)+\left(\lim _{x \rightarrow \infty} \frac{1}{x}\right)}{\sqrt{\left(\lim _{x \rightarrow \infty} 1\right)+\left(\lim _{x \rightarrow \infty} \frac{1}{x^{2}}\right)}} \\
& =\frac{1+0}{\sqrt{1+0}} \\
& =1
\end{aligned}
$$

Problem 2. A ball is thrown into the air at time $t=0$ seconds and the height $h(t)$ of the ball from the ground after t seconds is given in meters by the equation

$$
h(t)=-5 t^{2}+20 t+10
$$

(a) Find the height of the ball when it is released.

Solution: We calculate $h(0)=10$ meters.
(b) Find the average velocity of the ball between the time it is released and the time it hits the ground.

Solution: To find the time that the ball hits the ground, we solve for the solutions to $h(t)=-5 t^{2}+20 t+10=0$. The solutions are given by the quadratic formula

$$
t=\frac{-20 \pm \sqrt{20^{2}-4(-5)(10)}}{2(-5)}=\frac{-20 \pm \sqrt{600}}{-10}=2 \pm \sqrt{6}=-0.449,4.449
$$

Thus the ball hits the ground at $t=2+\sqrt{6}=4.449$ seconds.
The height of the ball at $t=0$ is $h(0)=10$ and at $t=2+\sqrt{6}=4.449$ is 0 .
Thus the average velocity, which is the change in height over the change in time, is given by

$$
-10 /(2+\sqrt{6}) \mathrm{m} / \mathrm{s}=-10 / 4.449 \mathrm{~m} / \mathrm{s}=-2.247 \mathrm{~m} / \mathrm{s}
$$

(c) Find the velocity of the ball when it hits the ground.

Solution: The velocity at time t is given by the derivative $h^{\prime}(t)=-10 t+20$. Evaluating at $t=2+\sqrt{6}=4.449$, we get that the velocity is $-10 \sqrt{6} \mathrm{~m} / \mathrm{s}$ or $-24.495 \mathrm{~m} / \mathrm{s}$.

Problem 3.

(a) Find the equation of the tangent line to the graph of

$$
y=\frac{x^{2}+1}{x-3}
$$

at $(4,17)$.
Solution: We first compute the derivative using the quotient rule

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\frac{d}{d x}\left(x^{2}+1\right)(x-3)-\left(x^{2}+1\right) \frac{d}{d x}(x-3)}{(x-3)^{2}} \\
& =\frac{2 x(x-3)-\left(x^{2}+1\right)}{(x-3)^{2}} \\
& =\frac{x^{2}-6 x-1}{(x-3)^{2}}
\end{aligned}
$$

Evaluating at $x=4$, we get that $\frac{d y}{d x}=-9$. Therefore, the equation of the tangent line through $(4,17)$ is

$$
y=-9(x-4)+17=-9 x+53
$$

(b) Find the x-coordinates of all of the points on the graph where the tangent line is horizontal.

Solution: We simply need to find the x-coordinates of all the points where $\frac{d y}{d x}=0$. Solutions of

$$
\frac{d y}{d x}=\frac{x^{2}-6 x-1}{(x-3)^{2}}=0
$$

are given by solutions of the numerator $x^{2}-6 x-1=0$. Using the quadratic formula, we see that there are two solutions $(6 \pm \sqrt{40}) / 2=3 \pm \sqrt{10}$, or in other words -0.1623 and 6.1623 .

Problem 4. Let $f(x)=\sqrt{x^{2}+5}$. Find $f^{\prime}(2)$ using the definition of the derivative as a limit.

Solution: Using the definition, we compute

$$
\begin{aligned}
f^{\prime}(2) & =\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{(2+h)^{2}+5}-3}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{h^{2}+4 h+9}-3}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{h^{2}+4 h+9}-3}{h} \cdot\left(\frac{\sqrt{h^{2}+4 h+9}+3}{\sqrt{h^{2}+4 h+9}+3}\right) \\
& =\lim _{h \rightarrow 0} \frac{\left(h^{2}+4 h+9\right)-9}{h\left(\sqrt{h^{2}+4 h+9}+3\right)} \\
& =\lim _{h \rightarrow 0} \frac{h^{2}+4 h}{h\left(\sqrt{h^{2}+4 h+9}+3\right)} \\
& =\lim _{h \rightarrow 0} \frac{h+4}{\left(\sqrt{h^{2}+4 h+9}+3\right)} \\
& =\frac{0+4}{\sqrt{9}+3} \\
& =2 / 3 .
\end{aligned}
$$

We can check the answer using our rules for derivatives. Namely, writing $f(x)=$ $\left(x^{2}+5\right)^{1 / 2}$ and using the chain rule, we compute that $f^{\prime}(x)=\frac{1}{2}\left(x^{2}+5\right)^{-1 / 2}(2 x)$. Evaluating at $x=2$, we see that $f^{\prime}(2)=2 / 3$ confirming our answer above.

Problem 5. Find the derivatives of the following functions:
(a) $f(x)=\frac{2 \tan (x)}{x^{3}+1}$.

Solution: Using that $\frac{d}{d x}(\tan (x))=\sec ^{2}(x)$, we compute using the quotient rule that.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(\frac{2 \tan (x)}{x^{3}+1}\right) \\
& =\frac{\frac{d}{d x}(2 \tan (x))\left(x^{3}+1\right)-2 \tan (x) \frac{d}{d x}\left(x^{3}+1\right)}{\left(x^{3}+1\right)^{2}} \\
& =\frac{2 \sec ^{2}(x)\left(x^{3}+1\right)-2 \tan (x)\left(3 x^{2}\right)}{\left(x^{3}+1\right)^{2}} \\
& =\frac{2 \sec ^{2}(x)\left(x^{3}+1\right)-6 x^{2} \tan (x)}{\left(x^{3}+1\right)^{2}}
\end{aligned}
$$

(b) $f(x)=e^{\sqrt[3]{x} \sin (x)}$.

Solution: We compute that:

$$
\begin{array}{rlrl}
f^{\prime}(x) & =\frac{d}{d x}\left(e^{\sqrt[3]{x} \sin (x)}\right) & & \text { (chain rule) } \\
& =e^{\sqrt[3]{x} \sin (x)} \frac{d}{d x}(\sqrt[3]{x} \sin (x)) & & \\
& =e^{\sqrt[3]{x} \sin (x)}\left(\frac{d}{d x}(\sqrt[3]{x}) \sin (x)+\sqrt[3]{x} \frac{d}{d x}(\sin (x))\right) & & \text { (product rule) } \\
& =e^{\sqrt[3]{x} \sin (x)}\left(\frac{1}{3} x^{-2 / 3} \sin (x)+\sqrt[3]{x} \cos (x)\right) &
\end{array}
$$

