Tutorial 9.1. Show that the polynomial $x^{5}-4 x+2 \in \mathbb{Q}[x]$ is not solvable by radicals.

Tutorial 9.2. Recall that the discriminant of a polynomial

$$
f(x)=\prod_{i=1}^{n}\left(x-\alpha_{i}\right) \in \mathbb{Q}[x]
$$

is

$$
\Delta(f)=\prod_{1 \leq i<j \leq n}\left(\alpha_{i}-\alpha_{j}\right)^{2} .
$$

Show that $\Delta(f)$ is a square in \mathbb{Q} if and only if $\operatorname{Gal}(f)$ is contained in A_{n}. (Hint: Let $\delta(f)=\sqrt{\Delta(f)}=\prod_{1 \leq i<j \leq n}\left(\alpha_{i}-\alpha_{j}\right)$ and consider the action of $\operatorname{Gal}(f)$ on $\delta(f)$.)

Tutorial 9.3. Let $f(x) \in \mathbb{Q}[x]$ be an irreducible quartic with roots $\alpha_{1}, \ldots, \alpha_{4}$. Show that the cubic polynomial $r(x)$ with roots

$$
\left(\alpha_{1}+\alpha_{2}\right)\left(\alpha_{3}+\alpha_{4}\right),\left(\alpha_{1}+\alpha_{3}\right)\left(\alpha_{2}+\alpha_{4}\right),\left(\alpha_{1}+\alpha_{4}\right)\left(\alpha_{2}+\alpha_{3}\right)
$$

is irreducible over \mathbb{Q} if and only if $\operatorname{Gal}(f)$ is S_{4} or A_{4}.
Tutorial 9.4. Using questions 2 and 3, determine the Galois groups of the following quartics:
(a) $x^{4}+x+1$
(b) $x^{4}+4 x+3$
(Hint: Recall that given a quartic of the form $f(x)=x^{4}+a_{3} x+a_{4}$, $\Delta(f)=-27 a_{3}^{4}+256 a_{4}^{3}$ and $r(x)=x^{3}-4 a_{4} x+a_{3}^{2}$.)

