Algebra 2, Semester 1 2015 Jarod Alper Tutorial 5 Friday, March 20

Tutorial 5.1. Determine the splitting fields $\mathbb{Q} \subseteq K$ of the following polynomials defined over \mathbb{Q} and compute the degree $|K : \mathbb{Q}|$.

(a) $f(x) = x^3 - 2$.

(b)
$$f(x) = (x^2 - 3)(x^3 + 1) \in \mathbb{Q}[x].$$

Tutorial 5.2. Let η be a primitive 9th root of unity.

- (a) What is the minimal polynomial for η ?
- (b) Express η^{-1} as a \mathbb{Q} -linear combination of $1, \eta, \eta^2, \ldots, \eta^5$.

Tutorial 5.3. Show that the multiplicative group \mathbb{F}_{11}^{\times} is isomorphic to $\mathbb{Z}/10\mathbb{Z}$.

Tutorial 5.4. Let *p* be a prime.

- (a) Show that for any integer 1 < i < p, then the prime *p* divides the binomial coefficient $\binom{p}{i}$.
- (b) Conclude that if *K* is a field of characteristic *p*, then there is an equality

 $(x-a)^p = x^p - a^p.$

Let $K \subseteq L$ be a field extension. Recall that we say $\alpha \in L$ is *separable over* K if the minimal polynomial of α over L has no multiple roots. We say that $K \subseteq L$ is a *separable* field extension if every element $\alpha \in L$ is separable over K. You may use freely the following two properties (which will be proved next week):

- If the characteristic of *K* is zero, then $K \subseteq L$ is separable.
- If the characteristic of *K* is *p* and every element of *K* has a *p*th root, then $K \subseteq L$ is separable.

Tutorial 5.5. For each of these field extensions, determine (a) whether it is normal and (b) whether it is separable.

- (a) $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{3})$.
- (b) $\mathbb{F}_2 \subseteq \mathbb{F}_2[x]/(x^3 + x + 1).$
- (c) $\mathbb{F}_p(t) \subseteq \mathbb{F}_p(t)[x]/(x^p t)$ where *p* is a prime.