Tutorial 5.1. \quad Determine the splitting fields $\mathbb{Q} \subseteq K$ of the following polynomials defined over \mathbb{Q} and compute the degree $|K: \mathbb{Q}|$.
(a) $f(x)=x^{3}-2$.
(b) $f(x)=\left(x^{2}-3\right)\left(x^{3}+1\right) \in \mathbb{Q}[x]$.

Tutorial 5.2. Let η be a primitive 9th root of unity.
(a) What is the minimal polynomial for η ?
(b) Express η^{-1} as a \mathbb{Q}-linear combination of $1, \eta, \eta^{2}, \ldots, \eta^{5}$.

Tutorial 5.3. Show that the multiplicative group \mathbb{F}_{11}^{\times}is isomorphic to $\mathbb{Z} / 10 \mathbb{Z}$.

Tutorial 5.4. Let p be a prime.
(a) Show that for any integer $1<i<p$, then the prime p divides the binomial coefficient $\binom{p}{i}$.
(b) Conclude that if K is a field of characteristic p, then there is an equality

$$
(x-a)^{p}=x^{p}-a^{p} .
$$

Let $K \subseteq L$ be a field extension. Recall that we say $\alpha \in L$ is separable over K if the minimal polynomial of α over L has no multiple roots. We say that $K \subseteq L$ is a separable field extension if every element $\alpha \in L$ is separable over K. You may use freely the following two properties (which will be proved next week):

- If the characteristic of K is zero, then $K \subseteq L$ is separable.
- If the characteristic of K is p and every element of K has a p th root, then $K \subseteq L$ is separable.

Tutorial 5.5. For each of these field extensions, determine (a) whether it is normal and (b) whether it is separable.
(a) $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{3})$.
(b) $\mathbb{F}_{2} \subseteq \mathbb{F}_{2}[x] /\left(x^{3}+x+1\right)$.
(c) $\mathbb{F}_{p}(t) \subseteq \mathbb{F}_{p}(t)[x] /\left(x^{p}-t\right)$ where p is a prime.

