Algebra 2, Semester 1 2015 Jarod Alper Tutorial 4 Friday, March 13

Tutorial 4.1. Let $L = \mathbb{Q}(\sqrt{2}, i) \subset \mathbb{C}$. Find all intermediate field extensions

$$\mathbb{Q} \subset K \subset L.$$

Tutorial 4.2. Determine (with proof) the degrees of the following field extensions, and write down an explicit basis for each:

(a) $\mathbb{Q}(\sqrt{3}, i)/\mathbb{Q}$ (b) $\mathbb{Q}(e^{2\pi i/6})/\mathbb{Q}$ for a prime p(c) $\mathbb{Q}(\sqrt{5+2\sqrt{6}}, \sqrt{6})/\mathbb{Q}$ (d) $\mathbb{Q}(\sqrt[3]{\pi})/\mathbb{Q}(\pi)$

Tutorial 4.3. Let $K \subset L$ be a field extension of prime degree. Prove that L/K is primitive.

Tutorial 4.4.

- (1) Show that a square can be duplicated using only a ruler and a compass.
- (2) Construct a square using only a ruler and a compass.
- (3) Construct a hexagon using only a ruler and a compass.
- (4) Construct a regular pentagon using only a ruler and a compass.

Hint: Consider formulas for $cos(5\theta)$.