Tutorial 4.1. Let $L=\mathbb{Q}(\sqrt{2}, i) \subset \mathbb{C}$. Find all intermediate field extensions

$$
\mathbb{Q} \subset K \subset L
$$

Tutorial 4.2. Determine (with proof) the degrees of the following field extensions, and write down an explicit basis for each:
(a) $\mathbb{Q}(\sqrt{3}, i) / \mathbb{Q}$
(b) $\mathbb{Q}\left(e^{2 \pi i / 6}\right) / \mathbb{Q}$ for a prime p
(c) $\mathbb{Q}(\sqrt{5+2 \sqrt{6}}, \sqrt{6}) / \mathbb{Q}$
(d) $\mathbb{Q}(\sqrt[3]{\pi}) / \mathbb{Q}(\pi)$

Tutorial 4.3. Let $K \subset L$ be a field extension of prime degree. Prove that L / K is primitive.

Tutorial 4.4.

(1) Show that a square can be duplicated using only a ruler and a compass.
(2) Construct a square using only a ruler and a compass.
(3) Construct a hexagon using only a ruler and a compass.
(4) Construct a regular pentagon using only a ruler and a compass.
Hint: Consider formulas for $\cos (5 \theta)$.

