Tutorial 3.1. Show $\mathbb{Q}[x] /\left(x^{2}-2\right) \cong\{a+b \sqrt{2} \mid a, b \in \mathbb{Q}\}$. Describe explicitly additional, multiplication and division on the right hand side.

Tutorial 3.2. Consider the field extension $\mathbb{Q} \subset \mathbb{Q}(\sqrt{2}, \sqrt{3})$.
(a) What is the degree, $[\mathbb{Q}(\sqrt{2}, \sqrt{3}): \mathbb{Q}]$, of this field extension?
(b) Prove that this is a primitive field extension; that is, find an element α such that $\mathbb{Q}(\alpha)=\mathbb{Q}(\sqrt{2}, \sqrt{3})$.
(c) What is the minimum polynomial of the element α from part (b)? That is, find a monic polynomial with coefficients in \mathbb{Q} of minimal degree which has α as a root.

Tutorial 3.3.

(a) Prove that $x^{4}+12 x^{3}+9 x^{2}-3 x+3$ is not irreducible.
(b) Prove that $x^{m}+1 \in \mathbb{Q}[x]$ is irreducible if and only if $m=2^{n}$.

Tutorial 3.4. Give an example of a polynomial $f(x) \in \mathbb{Z}[x]$ which has a root in every finite field \mathbb{F}_{p}, but no root in \mathbb{Z}. You may want to use the following remarkable fact from elementary number theory:

Given $a, b \in \mathbb{F}_{p}$, suppose that $x^{2}=a$ and $x^{2}=b$ do not have solutions in \mathbb{F}_{p}. Then $x^{2}=a b$ does have a solution in \mathbb{F}_{p}.

