Tutorial 2.1. Prove that $\mathbb{R}[x] /\left(x^{2}+1\right) \cong \mathbb{C}$.
Tutorial 2.2. Use Lagrange's method to solve

$$
x^{4}-16=0 .
$$

Tutorial 2.3. Find a polynomial $f\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ whose orbit under S_{3} consists of only two elements.
Tutorial 2.4. Consider the polynomial

$$
\begin{aligned}
f\left(\alpha_{1}, \ldots, \alpha_{5}\right)= & \left(\alpha_{1} \alpha_{2}+\alpha_{2} \alpha_{3}+\alpha_{3} \alpha_{4}+\alpha_{4} \alpha_{5}+\alpha_{5} \alpha_{1}\right. \\
& \left.-\alpha_{1} \alpha_{3}-\alpha_{2} \alpha_{4}-\alpha_{3} \alpha_{5}-\alpha_{4} \alpha_{1}-\alpha_{5} \alpha_{2}\right)^{2}
\end{aligned}
$$

(1) Show that the orbit of $f\left(\alpha_{1}, \cdots, \alpha_{5}\right)$ under the action of S_{5} consists of 6 elements.
(2) Let

$$
x^{5}+a_{2} x^{3}+a_{3} x^{2}+a_{4} x+a_{5}=0
$$

be a quintic equation (i.e. degree 5 equation) with five distinct roots $\alpha_{1}, \ldots, \alpha_{5}$. Show that the six values $f_{1}\left(\alpha_{1}, \ldots, \alpha_{5}\right)$, $\ldots, f_{6}\left(\alpha_{1}, \ldots, \alpha_{5}\right)$ (where the functions f_{1}, \ldots, f_{6} denote the orbit of f) are the solutions to a sextic equation (i.e. degree 6 equation).
(3) Why does this not help in solving the quintic?

Tutorial 2.5. Let A be a ring and $I \subset A$ be an ideal. Let $\phi: A \rightarrow A / I$ be the canonical ring homomorphism. Prove the following assertion: If $\psi: A \rightarrow B$ is an ring homomorphism with $I \subset \operatorname{ker}(\psi)$, then there exists a unique ring homomorphism $\lambda: A / I \rightarrow B$ such that $\psi=\lambda \circ \phi$.

In other words, you need to show that given such a ψ, there is a unique dotted arrow filling in the diagram

