Algebra 2, Semester 1 2015 Jarod Alper Tutorial 2

Tutorial 2.1. Prove that $\mathbb{R}[x]/(x^2+1) \cong \mathbb{C}$.

Tutorial 2.2. Use Lagrange's method to solve

$$x^4 - 16 = 0.$$

Tutorial 2.3. Find a polynomial $f(\alpha_1, \alpha_2, \alpha_3)$ whose orbit under S_3 consists of only two elements.

Tutorial 2.4. Consider the polynomial

$$f(\alpha_1, \dots, \alpha_5) = (\alpha_1 \alpha_2 + \alpha_2 \alpha_3 + \alpha_3 \alpha_4 + \alpha_4 \alpha_5 + \alpha_5 \alpha_1 - \alpha_1 \alpha_3 - \alpha_2 \alpha_4 - \alpha_3 \alpha_5 - \alpha_4 \alpha_1 - \alpha_5 \alpha_2)^2$$

- (1) Show that the orbit of $f(\alpha_1, \dots, \alpha_5)$ under the action of S_5 consists of 6 elements.
- (2) Let

$$x^5 + a_2x^3 + a_3x^2 + a_4x + a_5 = 0$$

be a quintic equation (i.e. degree 5 equation) with five distinct roots $\alpha_1, \ldots, \alpha_5$. Show that the six values $f_1(\alpha_1, \ldots, \alpha_5)$, $\ldots, f_6(\alpha_1, \ldots, \alpha_5)$ (where the functions f_1, \ldots, f_6 denote the orbit of f) are the solutions to a sextic equation (i.e. degree 6 equation).

(3) Why does this not help in solving the quintic?

Tutorial 2.5. Let *A* be a ring and $I \subset A$ be an ideal. Let $\phi : A \to A/I$ be the canonical ring homomorphism. Prove the following assertion: If $\psi : A \to B$ is an ring homomorphism with $I \subset \text{ker}(\psi)$, then there exists a unique ring homomorphism $\lambda : A/I \to B$ such that $\psi = \lambda \circ \phi$.

In other words, you need to show that given such a ψ , there is a unique dotted arrow filling in the diagram

$$A \\ \downarrow \phi \\ A/I \xrightarrow{\lambda} B$$