Tutorial 10.1.

(a) Show that a primitive 14th root of unity satisfies the sextic equation

$$
x^{6}-x^{5}+x^{4}-x^{3}+x^{2}-x+1=0 .
$$

(b) Solve the equation from part (1) by radicals.

Hint: Substitute $y=x+1 / x$.

Tutorial 10.2.

(a) Can you give an example of an element $\alpha \in \mathbb{C}$ which can be expressed by radicals but such that $\mathbb{Q} \subseteq \mathbb{Q}(\alpha)$ is not a radical field extension (i.e. $\mathbb{Q}(\alpha)$ is not obtained from \mathbb{Q} by adjoining an nth root of an element $a \in \mathbb{Q}$).
(b) Can you give an example of an element $\alpha \in \mathbb{C}$ which can be expressed by radicals but such that there does not exist a sequence of field extensions

$$
\mathbb{Q}=K_{0} \subseteq K_{1} \subseteq \cdots \subseteq K_{r}=\mathbb{Q}(\alpha)
$$

where each $K_{i} \subseteq K_{i+1}$ is a radical field extension.
Tutorial 10.3. Let $L=\mathbb{Q}(\sqrt{2}, \sqrt{-3}, \sqrt[3]{5})$.
(a) Prove that $\mathbb{Q} \subseteq L$ is a Galois extension with Galois group

$$
\operatorname{Gal}(L / \mathbb{Q}) \cong \mathbb{Z} / 2 \times S_{3} .
$$

(b) Give the complete correspondence between intermediate field extensions $\mathbb{Q} \subseteq L^{\prime} \subseteq L$ and subgroups $H \subseteq \operatorname{Gal}(L / \mathbb{Q})$.

Tutorial 10.4. Let $f(x) \in \mathbb{Q}[x]$ be an irreducible quartic.
(a) Show that the discriminant of f is equal to the discriminant of the resolvent cubic of f.
(b) Show that if $\operatorname{Gal}(f)=\mathbb{Z} / 4 \mathbb{Z}$ then the discriminant of f is positive.

Tutorial 10.5. Determine the Galois group of the splitting fields over \mathbb{Q} of the following polynomials:
(a) $f(x)=x^{3}+3 x+1$.
(b) $f(x)=x^{3}-3 x+1$.
(c) $f(x)=x^{4}+4 x^{2}-2$
(d) $f(x)=x^{4}+x^{2}+1$

2
(e) $f(x)=x^{4}+36 x+63$

Hint: You may want to use the follwing formulae:

- the discriminant of $f(x)=x^{3}+a x+b$ is $-4 a^{3}-27 b^{2}$.
- the discriminant of $f(x)=x^{4}+a x+b$ is $-27 a^{4}+256 b^{3}$.
- the resolvent cubic of $f(x)=x^{4}+a x+b$ is $x^{3}-4 b x+a^{2}$.
- the discriminant of $f(x)=x^{4}+a x^{2}+b$ is $16 b\left(a^{2}-4 b\right)^{2}$.

