Algebra 2, Semester 1 2015 Jarod Alper Tutorial 10 Friday, May 22

Tutorial 10.1.

(a) Show that a primitive 14th root of unity satisfies the sextic equation

$$x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 = 0.$$

(b) Solve the equation from part (1) by radicals. Hint: Substitute y = x + 1/x.

Tutorial 10.2.

- (a) Can you give an example of an element $\alpha \in \mathbb{C}$ which can be expressed by radicals but such that $\mathbb{Q} \subseteq \mathbb{Q}(\alpha)$ is not a radical field extension (i.e. $\mathbb{Q}(\alpha)$ is not obtained from \mathbb{Q} by adjoining an *n*th root of an element $a \in \mathbb{Q}$).
- (b) Can you give an example of an element α ∈ C which can be expressed by radicals but such that there does not exist a sequence of field extensions

$$\mathbb{Q} = K_0 \subseteq K_1 \subseteq \cdots \subseteq K_r = \mathbb{Q}(\alpha)$$

where each $K_i \subseteq K_{i+1}$ is a radical field extension.

Tutorial 10.3. Let $L = \mathbb{Q}(\sqrt{2}, \sqrt{-3}, \sqrt[3]{5})$.

(a) Prove that $\mathbb{Q} \subseteq L$ is a Galois extension with Galois group

 $\operatorname{Gal}(L/\mathbb{Q}) \cong \mathbb{Z}/2 \times S_3.$

(b) Give the complete correspondence between intermediate field extensions $\mathbb{Q} \subseteq L' \subseteq L$ and subgroups $H \subseteq \text{Gal}(L/\mathbb{Q})$.

Tutorial 10.4. Let $f(x) \in \mathbb{Q}[x]$ be an irreducible quartic.

- (a) Show that the discriminant of f is equal to the discriminant of the resolvent cubic of f.
- (b) Show that if $Gal(f) = \mathbb{Z}/4\mathbb{Z}$ then the discriminant of *f* is positive.

Tutorial 10.5. Determine the Galois group of the splitting fields over \mathbb{Q} of the following polynomials:

- (a) $f(x) = x^3 + 3x + 1$.
- (b) $f(x) = x^3 3x + 1$.
- (c) $f(x) = x^4 + 4x^2 2$
- (d) $f(x) = x^4 + x^2 + 1$

(e) $f(x) = x^4 + 36x + 63$

Hint: You may want to use the following formulae:

- the discriminant of $f(x) = x^3 + ax + b$ is $-4a^3 27b^2$. the discriminant of $f(x) = x^4 + ax + b$ is $-27a^4 + 256b^3$. the resolvent cubic of $f(x) = x^4 + ax + b$ is $x^3 4bx + a^2$. the discriminant of $f(x) = x^4 + ax^2 + b$ is $16b(a^2 4b)^2$.

2