Tutorial 1.1. Using the method discussed in class to find the solution to:

$$
x^{3}-15 x-4=0 .
$$

Which solutions are real? rational?

Tutorial 1.2. Let $f \in k\left[\alpha_{1}, \ldots, \alpha_{n}\right]$ be any polynomial. Let f_{1}, \ldots, f_{k} be the orbit of f under the action of S_{n}. (Notice that one of the f_{i} is equal to f.) Then
(a) Show that $f_{1}+\cdots+f_{k}$ is symmetric.
(b) If $s\left(x_{1}, \ldots, x_{k}\right)$ is any symmetric polynomial in x_{1}, \ldots, x_{k}, show that $s\left(f_{1}, \ldots, f_{k}\right)$ is a symmetric polynomial in $\alpha_{1}, \ldots, \alpha_{n}$.

Tutorial 1.3. Express

$$
x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{1} x_{2}^{2}+x_{1} x_{3}^{2}+x_{2}^{2} x_{3}+x_{2} x_{3}^{2}
$$

as a polynomial in s_{1}, s_{2}, s_{3}.
Tutorial 1.4. Let

$$
\begin{aligned}
& f_{1}=\left(\alpha_{1}+\alpha_{2}\right)\left(\alpha_{3}+\alpha_{4}\right) \\
& f_{2}=\left(\alpha_{1}+\alpha_{3}\right)\left(\alpha_{2}+\alpha_{4}\right) \\
& f_{3}=\left(\alpha_{1}+\alpha_{4}\right)\left(\alpha_{2}+\alpha_{3}\right)
\end{aligned}
$$

(a) Express $f_{1}+f_{2}+f_{3}$ as a polynomial in s_{1}, \ldots, s_{4}.
(b) Express $f_{1} f_{2}+f_{1} f_{3}+f_{2} f_{3}$ as a polynomial in s_{1}, \ldots, s_{4}.
(c) Express $f_{1} f_{2} f_{3}$ as a polynomial in s_{1}, \ldots, s_{4}.

Tutorial 1.5. Recall that if $h\left(x_{1}, \ldots, x_{n}\right)$ is a polynomial, then $L(h)$ denotes the lowest term of h with respect to the lexigraphical ordering. Is it true that

$$
L(f g)=L(f) L(g)
$$

for polynomials f and g.

