Due: Wednesday, April 29

Problem 8.1. Let $K \subseteq L$ be a field extension.
(a) Show that

$$
\operatorname{Gal}(L / K):=\{K \text {-automorphisms } \sigma: L \rightarrow L\}
$$

is a group under composition.
(b) Let $f(x) \in K[x]$ be a polynomial and $\alpha \in L$ be a root of $f(x)$. Show that if $\sigma: L \rightarrow L$ is a K-automorphism, then $\sigma(\alpha)$ is also a root of $f(x)$.
Problem 8.2. Consider the field $\mathbb{C}(t)$. As usual, we denote $\operatorname{Gal}(\mathbb{C}(t) / \mathbb{C})$ as the group of all \mathbb{C}-automorphisms $\sigma: \mathbb{C}(t) \rightarrow \mathbb{C}(t)$.
(a) For each n, let $\rho_{n}=e^{2 \pi i / n}$. Show that there is a well-defined field automorphism $\sigma_{n}: \mathbb{C}(t) \rightarrow \mathbb{C}(t)$ defined by $\sigma_{n}(t)=\rho_{n} t$.
(b) Conclude that $\operatorname{Gal}(\mathbb{C}(t) / \mathbb{C})$ is not finite.
(c) Let $H_{n} \subseteq \operatorname{Gal}(\mathbb{C}(t) / \mathbb{C})$ be the subgroup generated by σ_{n}. Show that $\mathbb{C}(t)^{H_{n}} \cong \mathbb{C}\left(t^{n}\right)$.

Problem 8.3. Let L be the splitting field of $f(x)=x^{4}-2$ over \mathbb{Q}.
(a) Determine $\operatorname{Gal}(L / \mathbb{Q})$.
(b) Give the complete correspondence between intermediate field extensions $\mathbb{Q} \subseteq L^{\prime} \subseteq L$ and subgroups $H \subseteq \operatorname{Gal}(L / \mathbb{Q})$.
Problem 8.4. Let L be the splitting field of $f(x)=x^{3}-2$ over \mathbb{Q}. Let $\rho=e^{2 \pi i / 3}$ be a primitive 3rd root of unity. We saw in the HW Problem 7.2 and in Tutorial 6 that $\operatorname{Gal}(L / \mathbb{Q}) \cong S_{3}$ is generated by automorphisms σ, τ, where

$$
\begin{aligned}
\sigma: L & \rightarrow L & \tau: L & \rightarrow L \\
\sqrt[3]{2} & \mapsto \rho \sqrt[3]{2} & \sqrt[3]{2} & \mapsto \sqrt[3]{2} \\
\rho & \mapsto \rho & \rho & \mapsto \rho^{2}
\end{aligned}
$$

(a) Let $H=\left\{1, \sigma, \sigma^{2}\right\}$. Compute the orbit $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$ of the element $\sqrt[3]{2}+\rho$ under the action of H.
(b) Show directly that the coefficients of the polynomial $f(x)=(x-$ $\left.\alpha_{1}\right)\left(x-\alpha_{2}\right)\left(x-\alpha_{3}\right)$ are in $\mathbb{Q}(\rho)$.
(c) Conclude that $f(x)$ is the minimal polynomial of $\sqrt[3]{2}+\rho$ over $\mathbb{Q}(\rho)$.

Problem 8.5. Let $K \subseteq L$ be a Galois field extension with $\operatorname{Gal}(L / K) \cong$ $\mathbb{Z} / 4 \mathbb{Z}$. Show that L is the splitting field of a polynomial

$$
f(x)=\left(x^{2}-a\right)^{2}-b
$$

for elements $a, b \in K$ such that $a \neq 0, \sqrt{b} \notin K$ and $\sqrt{a^{2}-b} \in K$.

