Algebra 2, Semester 1 2015 Jarod Alper Homework 8 Due: Wednesday, April 29

Problem 8.1. Let $K \subseteq L$ be a field extension.

(a) Show that

$$Gal(L/K) := \{K\text{-automorphisms } \sigma \colon L \to L\}$$

is a group under composition.

(b) Let $f(x) \in K[x]$ be a polynomial and $\alpha \in L$ be a root of f(x). Show that if $\sigma: L \to L$ is a *K*-automorphism, then $\sigma(\alpha)$ is also a root of f(x).

Problem 8.2. Consider the field $\mathbb{C}(t)$. As usual, we denote $\operatorname{Gal}(\mathbb{C}(t)/\mathbb{C})$ as the group of all \mathbb{C} -automorphisms $\sigma \colon \mathbb{C}(t) \to \mathbb{C}(t)$.

- (a) For each n, let $\rho_n = e^{2\pi i/n}$. Show that there is a well-defined field automorphism $\sigma_n \colon \mathbb{C}(t) \to \mathbb{C}(t)$ defined by $\sigma_n(t) = \rho_n t$.
- (b) Conclude that $\operatorname{Gal}(\mathbb{C}(t)/\mathbb{C})$ is not finite.
- (c) Let $H_n \subseteq \text{Gal}(\mathbb{C}(t)/\mathbb{C})$ be the subgroup generated by σ_n . Show that $\mathbb{C}(t)^{H_n} \cong \mathbb{C}(t^n)$.

Problem 8.3. Let *L* be the splitting field of $f(x) = x^4 - 2$ over \mathbb{Q} .

- (a) Determine $\operatorname{Gal}(L/\mathbb{Q})$.
- (b) Give the complete correspondence between intermediate field extensions $\mathbb{Q} \subseteq L' \subseteq L$ and subgroups $H \subseteq \text{Gal}(L/\mathbb{Q})$.

Problem 8.4. Let *L* be the splitting field of $f(x) = x^3 - 2$ over \mathbb{Q} . Let $\rho = e^{2\pi i/3}$ be a primitive 3rd root of unity. We saw in the HW Problem 7.2 and in Tutorial 6 that $\operatorname{Gal}(L/\mathbb{Q}) \cong S_3$ is generated by automorphisms σ, τ , where

$$\sigma: L \to L \qquad \tau: L \to L$$

$$\sqrt[3]{2} \mapsto \rho \sqrt[3]{2} \qquad \sqrt[3]{2} \mapsto \sqrt[3]{2}$$

$$\rho \mapsto \rho \qquad \rho \mapsto \rho^{2}$$

- (a) Let $H = \{1, \sigma, \sigma^2\}$. Compute the orbit $\{\alpha_1, \alpha_2, \alpha_3\}$ of the element $\sqrt[3]{2} + \rho$ under the action of *H*.
- (b) Show directly that the coefficients of the polynomial $f(x) = (x \alpha_1)(x \alpha_2)(x \alpha_3)$ are in $\mathbb{Q}(\rho)$.
- (c) Conclude that f(x) is the minimal polynomial of $\sqrt[3]{2} + \rho$ over $\mathbb{Q}(\rho)$.

Problem 8.5. Let $K \subseteq L$ be a Galois field extension with $Gal(L/K) \cong \mathbb{Z}/4\mathbb{Z}$. Show that *L* is the splitting field of a polynomial

$$f(x) = (x^2 - a)^2 - b$$

for elements $a, b \in K$ such that $a \neq 0$, $\sqrt{b} \notin K$ and $\sqrt{a^2 - b} \in K$.

2