Algebra 2, Semester 1 2015 Jarod Alper Homework 6 Due: Wednesday, April 1

Problem 6.1. Prove that there exists an inclusion of fields $\mathbb{F}_{p^a} \subseteq \mathbb{F}_{p^b}$ if and only if a|b.

Problem 6.2. Let *p* be a prime and $q = p^n$. Consider the map

$$\sigma \colon \mathbb{F}_q \to \mathbb{F}_q$$
$$x \mapsto x^p.$$

- (1) Show that σ is a well-defined homomorphism of fields.
- (2) Using that there is a field inclusion $\mathbb{F}_p \subseteq \mathbb{F}_q$, show that σ restricts to the identity homomorphism $\mathbb{F}_p \to \mathbb{F}_p$.
- (3) Show that $\sigma \colon \mathbb{F}_q \to \mathbb{F}_q$ is an isomorphism.
- (4) Show that the set of elements fixed by *σ* is precisely F_p; in other words, show that

$$\mathbb{F}_p \cong \{ x \in \mathbb{F}_q \mid \sigma(x) = x \}.$$

Problem 6.3. Recall that a field extension $K \subseteq L$ is *separable* if for every $\alpha \in L$, the minimal polynomial of α over K has no multiple roots. Show directly from this definition that any degree two field extension $\mathbb{Q} \subset K$ is separable.