Problem 5.1. \quad Determine the splitting fields $\mathbb{Q} \subseteq K$ of the following polynomials defined over \mathbb{Q} and compute the degree $|K: \mathbb{Q}|$.
(a) $f(x)=x^{3}-2$.
(b) $f(x)=x^{4}-3$.
(c) $f(x)=x^{4}-2 x^{2}-3$.
(d) $f(x)=x^{9}-1$.

Problem 5.2. Show that any field extension $K \subseteq L$ of degree 2 is normal.

Let $K \subseteq L$ be a field extension. Recall that we say $\alpha \in L$ is separable over K if the minimal polynomial of α over L has no multiple roots. We say that $K \subseteq L$ is a separable field extension if every element $\alpha \in L$ is separable over K. You may use freely the following two properties (which will be proved next week):

- If the characteristic of K is zero, then $K \subseteq L$ is separable.
- If the characteristic of K is p and every element of K has a p th root, then $K \subseteq L$ is separable.

Problem 5.3. For each of the following field extensions, determine whether it is normal and whether it is separable.
(a) $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{-5})$.
(b) $\mathbb{Q}(i) \subseteq \mathbb{Q}(\sqrt[3]{2}, i)$.
(c) $\mathbb{F}_{p} \subseteq \mathbb{F}_{p^{n}}$ where p is a prime.
(d) $\mathbb{F}_{p}\left(x^{p}\right) \subseteq \mathbb{F}_{p}(x)$ where p is a prime.

