Algebra 2, Semester 1 2015 Jarod Alper Homework 5 Due: Monday, March 23

Problem 5.1. Determine the splitting fields $\mathbb{Q} \subseteq K$ of the following polynomials defined over \mathbb{Q} and compute the degree $|K : \mathbb{Q}|$.

(a) $f(x) = x^3 - 2$. (b) $f(x) = x^4 - 3$. (c) $f(x) = x^4 - 2x^2 - 3$. (d) $f(x) = x^9 - 1$.

Problem 5.2. Show that any field extension $K \subseteq L$ of degree 2 is normal.

Let $K \subseteq L$ be a field extension. Recall that we say $\alpha \in L$ is *separable over* K if the minimal polynomial of α over L has no multiple roots. We say that $K \subseteq L$ is a *separable* field extension if every element $\alpha \in L$ is separable over K. You may use freely the following two properties (which will be proved next week):

- If the characteristic of *K* is zero, then $K \subseteq L$ is separable.
- If the characteristic of *K* is *p* and every element of *K* has a *p*th root, then $K \subseteq L$ is separable.

Problem 5.3. For each of the following field extensions, determine whether it is normal and whether it is separable.

- (a) $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{-5}).$
- (b) $\mathbb{Q}(i) \subseteq \mathbb{Q}(\sqrt[3]{2}, i).$
- (c) $\mathbb{F}_p \subseteq \mathbb{F}_{p^n}$ where *p* is a prime.
- (d) $\mathbb{F}_p(x^p) \subseteq \mathbb{F}_p(x)$ where *p* is a prime.