Problem 4.1.

(a) How many irreducible polynomials $f(x) \in \mathbb{F}_{2}[x]$ are there of degree 3 ?
(b) What about degree 4?
(c) Show explicitly that $\mathbb{F}_{2}[x] /\left(x^{3}+x+1\right)$ and $\mathbb{F}_{2}[x] /\left(x^{3}+x^{2}+1\right)$ are isomorphic.

Problem 4.2. Let $L=\mathbb{Q}(\sqrt{2}, \sqrt{3}) \subset \mathbb{C}$. Find all intermediate field extensions

$$
\mathbb{Q} \subset K \subset L
$$

Problem 4.3. Determine (with proof) the degrees of the following field extensions, and write down an explicit basis for each:
(a) $\mathbb{Q}(1+\sqrt[3]{2}+\sqrt[3]{4}) / \mathbb{Q}$
(b) $\mathbb{Q}\left(e^{2 \pi i / p}\right) / \mathbb{Q}$ for a prime p
(c) $\mathbb{Q}(\sqrt{10+4 \sqrt{6}}, \sqrt{6}) / \mathbb{Q}$

Problem 4.4 (Extra credit). Let p be a prime number and K be any field of characteristic p; that is, for any $x \in K$,

$$
p \cdot x=\underbrace{x+\cdots+x}_{p \text { times }}=0 .
$$

Prove that for any $a \in K$, the polynomial $x^{p}-a \in K[x]$ is either irreducible or has a root in K. You may assume that there exists a field extension $K \subseteq L$ such that $x^{p}-a$ has a root in L.

Problem 4.5.

(a) Show that any angle can be bisected by ruler and compasses.
(b) Show that the angle 90° can be trisected by ruler and compasses.
(c) Extra credit: Show that the angle θ can be trisected by ruler and compasses if and only if the polynomial

$$
4 x^{3}-3 x-\cos \theta
$$

is reducible over $\mathbb{Q}(\cos \theta)$.

