Algebra 2, Semester 12015
Jarod Alper
Homework 3
Due: Tuesday, March 10

Problem 3.1. (a) Show that there are ideals in $\mathbb{Z}[x]$ which are not generated by a single element.
(b) Show that the element 6 in the ring $\mathbb{Z}[\sqrt{-5}]=\{a+b \sqrt{-5} \mid$ $a, b \in \mathbb{Z}\}$ does not factor uniquely. That is, write 6 has a product $6=a b$ and $6=a^{\prime} b^{\prime}$ in two distinct ways such that $a, b, a^{\prime}, b^{\prime}$ are irreducible, and both a and b are not units times a^{\prime} or b^{\prime}. Conclude that there is an irreducible element of $\mathbb{Z}[\sqrt{-5}]$ which does not generate a prime ideal.
Problem 3.2. Show $\mathbb{Q}[x] /\left(x^{2}+x+1\right) \cong\{a+b \omega \mid a, b \in \mathbb{Q}\}$ where $\omega=e^{2 \pi i / 3}$. Describe explicitly additional, multiplication and division on the right hand side.

Problem 3.3. Prove that $x^{5}-x^{2}+1 \in \mathbb{Q}[x]$ is irreducible. (Hint: consider \mathbb{F}_{2})

Problem 3.4. Eisenstein's criterion with a twist.
(a) Let a be any integer. Prove that a polynomial $f(x) \in \mathbb{Z}[x]$ is irreducible iff $f(x+a) \in \mathbb{Z}[x]$ is irreducible.
(b) Use this trick to prove that $x^{3}-3 x^{2}+9 x-5$ is irreducible.
(c) Use this trick to prove that, for any prime p, the polynomial $x^{p-1}+x^{p-2}+\ldots+x+1$ is irreducible.

Problem 3.5. Consider the field extension $\mathbb{Q} \subset \mathbb{Q}(\sqrt{2}, \sqrt[3]{2})$.
(a) What is the degree, $[\mathbb{Q}(\sqrt{2}, \sqrt[3]{2}): \mathbb{Q}]$, of this field extension?
(b) Prove that this is a primitive field extension; that is, find an element α such that $\mathbb{Q}(\alpha)=\mathbb{Q}(\sqrt{2}, \sqrt[3]{2})$.

