Problem 2.1. In 1545, Cardan was given the following problem: Divide 10 into three parts such that they shall be in continued proportion and the product of the first two is $6 .{ }^{1}$

Use Lagrange's method to solve the above classical problem.
Problem 2.2. Let A be a ring and $I \subset A$ be an ideal.
(a) Prove that $I \subset A$ is prime if and only if A / I is an integral domain.
(b) Prove that $I \subset A$ is maximal if and only if A / I is a field.
(c) Conclude that every maximal ideal is prime.

Problem 2.3.

(a) Show that $\mathbb{R}[x] /\left(x^{2}+x+1\right) \cong \mathbb{C}$.
(b) How many elements does the quotient ring $\mathbb{F}_{3}[x, y] /\left(x^{3}, x y, y^{3}\right)$ have?

Problem 2.4. Recall that the Dihedral group D_{8} is the group of size 8 with generators x and y such that $x^{4}=y^{2}=\mathrm{id}$ and $y x=x^{-1} y$. If $f=\left(\alpha_{1}+\alpha_{2}\right)\left(\alpha_{3}+\alpha_{4}\right)$, show that the subgroup

$$
H=\left\{\sigma \in S_{4} \mid \sigma \cdot f=f\right\}
$$

is isomorphic to D_{8}.
Problem 2.5. Use a similar method of Lagrange's solution of the quartic to solve the cubic equation.
Hint: Search for a polynomial $f\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ whose orbit under S_{3} consists of only 2 elements.

[^0]
[^0]: ${ }^{1}$ Cardan states it as:
 Exemplum. Fac ex 10 tres partes proportionales, ex quarum ductu primæin secundam, producantur 6. Hanc proponebat Ioannes Colla, \& dicebat solui non posse, ego uero dicebam, eam posse solui, modum tame ignorabam, donec Ferrarius eum inuenit." Ars Magna cap. XXXIV, qvæstio V; 1545 ed., fol. 73, v.
 See pg. 467 History of Mathematics, Band 2 by David Eugene Smith for an account of the history of this problem.

