Algebra 2, Semester 12015
Jarod Alper
Homework 11
Due: Friday, May 29

Problem 11.1. Suppose K is a finite field extension of \mathbb{Q}. Let $K \subseteq L$ be a Galois field extension and $K \subseteq K^{\prime}$ be a finite field extension. Show that $K^{\prime} \subseteq K^{\prime} L$ is a Galois field extension and

$$
\operatorname{Gal}\left(K^{\prime} L / K^{\prime}\right) \cong \operatorname{Gal}\left(L / L \cap K^{\prime}\right)
$$

Remark: This abstract result was used in the proof in class of the theorem stating that a polynomial is solvable by radicals if and only if the Galois group of the splitting field is solvable.
Problem 11.2. Determine the Galois group of the splitting fields over \mathbb{Q} of the following polynomials:
(a) $f(x)=x^{3}+2 x+1$.
(b) $f(x)=x^{4}+3 x-3$.
(c) $f(x)=x^{4}+5 x^{2}-5$.

Hint: You may want to use the follwing formulae:

- the discriminant of $f(x)=x^{3}+a x+b$ is $-4 a^{3}-27 b^{2}$.
- the discriminant of $f(x)=x^{4}+a x+b$ is $-27 a^{4}+256 b^{3}$
- the resolvent cubic of $f(x)=x^{4}+a x+b$ is $x^{3}-4 b x+a^{2}$.

Problem 11.3. Show that for any prime $p \neq 3,5$, the polynomial

$$
x^{4}+p x+p \in \mathbb{Q}[x]
$$

is irreducible and the Galois group of the splitting field is S_{4}.
Extra credit: What happens if $p=3$ or 5 ?

