Problem 10.1. Let $f(x) \in \mathbb{Q}[x]$ be an irreducible polynomial of degree 3. Let $\mathbb{Q} \subseteq L$ be the splitting field of $f(x)$ over \mathbb{Q}.
(a) Show that if $f(x)$ has only one real root, then $\operatorname{Gal}(L / \mathbb{Q}) \cong S_{3}$.
(b) Recall that the discriminant Δ is defined as

$$
\Delta=\left(\alpha_{1}-\alpha_{2}\right)^{2}\left(\alpha_{1}-\alpha_{3}\right)^{2}\left(\alpha_{2}-\alpha_{3}\right)^{2}
$$

where $\alpha_{1}, \alpha_{2}, \alpha_{3}$ are the roots of $f(x)$. Also recall from HW1 that if $f(x)=x^{3}+a x+b$, then the discriminant

$$
\Delta=-4 a^{3}-27 b^{2}
$$

Show that $\operatorname{Gal}(L / Q) \cong \mathbb{Z}_{3}$ if Δ is a square of a rational number and is S_{3} otherwise.
(c) Does there exist a cubic polynomial $f(x) \in \mathbb{Q}[x]$ with three real roots such that $\operatorname{Gal}(L / \mathbb{Q}) \cong S_{3}$.

Problem 10.2. Let $f(x) \in \mathbb{Q}[x]$ be an irreducible polynomial of degree p where p is prime. Let $\mathbb{Q} \subseteq L$ be the splitting field of $f(x)$ over \mathbb{Q}. Show that if $f(x)$ has precisely $p-2$ real roots, then $\operatorname{Gal}(L / Q) \cong$ S_{p}.
Hint: Use the lemma proved in class regarding when subgroups of S_{p} are the entire group.

Problem 10.3.

(1) Show that the polynomial $x^{5}-4 x^{2}+2 \in \mathbb{Q}[x]$ is not solvable by radicals.
(2) Show that the polynomial $x^{7}-10 x^{5}+15 x+5$ is not solvable by radicals.

