Algebra 2, Semester 1 2015 Jarod Alper Homework 10 Due: Monday, May 18

**Problem 10.1.** Let  $f(x) \in \mathbb{Q}[x]$  be an irreducible polynomial of degree 3. Let  $\mathbb{Q} \subseteq L$  be the splitting field of f(x) over  $\mathbb{Q}$ .

- (a) Show that if f(x) has only one real root, then  $\operatorname{Gal}(L/\mathbb{Q}) \cong S_3$ .
- (b) Recall that the discriminant  $\Delta$  is defined as

$$\Delta = (\alpha_1 - \alpha_2)^2 (\alpha_1 - \alpha_3)^2 (\alpha_2 - \alpha_3)^2$$

where  $\alpha_1, \alpha_2, \alpha_3$  are the roots of f(x). Also recall from HW1 that if  $f(x) = x^3 + ax + b$ , then the discriminant

$$\Delta = -4a^3 - 27b^2.$$

Show that  $\operatorname{Gal}(L/Q) \cong \mathbb{Z}_3$  if  $\Delta$  is a square of a rational number and is  $S_3$  otherwise.

(c) Does there exist a cubic polynomial  $f(x) \in \mathbb{Q}[x]$  with three real roots such that  $\operatorname{Gal}(L/\mathbb{Q}) \cong S_3$ .

**Problem 10.2.** Let  $f(x) \in \mathbb{Q}[x]$  be an irreducible polynomial of degree p where p is prime. Let  $\mathbb{Q} \subseteq L$  be the splitting field of f(x) over  $\mathbb{Q}$ . Show that if f(x) has precisely p - 2 real roots, then  $\operatorname{Gal}(L/Q) \cong S_p$ .

*Hint:* Use the lemma proved in class regarding when subgroups of  $S_p$  are the entire group.

## Problem 10.3.

- (1) Show that the polynomial  $x^5 4x^2 + 2 \in \mathbb{Q}[x]$  is not solvable by radicals.
- (2) Show that the polynomial  $x^7 10x^5 + 15x + 5$  is not solvable by radicals.