Algebra 2, Semester 12015
Jarod Alper
Homework 1
Due: Monday, February 23

Problem 1.1. Find the solution to the following cubic equations using the method discussed in class:
(a) $x^{3}-3 x+2=0$.
(b) $x^{3}+3 x-36=0$. Which solutions are real? rational?

Problem 1.2. Let $f(x)=x^{5}+x^{4}+x^{3}+x^{2}+x-5$. Notice that $f(1)=0$. Find the polynomial $g(x)$ such that

$$
f(x)=(x-1) g(x) .
$$

Problem 1.3.

(a) Express $x_{1}^{4}+x_{2}^{4}+x_{3}^{4}+x_{4}^{4}$ as a polynomial in terms of the elementary symmetric functions $s_{1}, s_{2}, s_{3}, s_{4}$.
(b) Let $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$ denote the complex roots of the polynomial

$$
x^{4}+x^{3}+2 x^{2}+3 x+5
$$

Determine the number $\alpha_{1}^{4}+\alpha_{2}^{4}+\alpha_{3}^{4}+\alpha_{4}^{4}$.
Hint: Do not actually solve for the roots α_{i} explicitly!
Problem 1.4. Let $f(x)=x^{n}+a_{1} x^{n-1}+\cdots+a_{n-1} x+a_{n}$ be a polynomial with roots $\alpha_{1}, \ldots, \alpha_{n}$. The discriminant of $f(x)$ is defined as

$$
\Delta=\prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right)^{2}
$$

(a) Prove that this is a symmetric function.
(b) If $f(x)=x^{3}+a_{2} x+a_{3}$, express the discriminant Δ in terms of coefficients a_{2}, a_{3}.

