THE GALOIS GROUP OF $K \subseteq L$ WHEN K IS INFINITE

ARNAB SAHA

Let $K \subseteq L$ be a finite extension and assume that K is infinite. Then there exists a minimal set of generators $\alpha_{1}, \ldots, \alpha_{n} \in L$ such that $L=K\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. Let $f_{i} \in K[x]$ be the minimal polynomials for each α_{i} respectively.

Claim. We can choose α_{i} such that $f_{i} \neq f_{j}$ when $i \neq j$.
Proof. We will prove by induction on n. Clearly it is true for $n=1$. Assume true for $n-1$. Consider $K\left(\alpha_{1}, \ldots, \alpha_{n-1}\right) \subset K\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. If $f_{n} \neq f_{i}$ for all $i=1, \ldots, n-1$, then we are done. Otherwise, $f_{n}=f_{i}$ for some $i=1, \ldots, n-1$. Let S denote the set of the union of all the roots of f_{1}, \ldots, f_{n-1} that lie in L. Clearly, $|S|$ if finite and $\alpha_{n} \in S$ by assumption. Now consider the set $H=\left\{\lambda \alpha_{n} \mid \lambda \in K^{\times}\right\}$. H is infinte because the field K is. Therefore there exists $\beta_{n} \in H$ such that $\beta_{n} \notin S$. Consider the minimal polynomial g_{n} of β, then $g_{n} \neq f_{i}$ for all $i=1, \ldots, n-1$. Replace α_{n} by β_{n} and we have $L=K\left(\alpha_{1}, \ldots, \alpha_{n}\right)=K\left(\alpha_{1}, \ldots, \beta_{n}\right)$ and we are done.

Lemma 1.1. For any $\sigma \in \operatorname{Gal}(L / K), f_{i}\left(\sigma\left(\alpha_{i}\right)\right)=0$.
Proof. Let $f_{i}(x)=a_{m} x^{m}+a_{m-1} x^{m-1}+\cdots+a_{0}$. Since α_{i} is a root of f_{i}, we have

$$
a_{m} \alpha_{i}^{m}+\cdots+a_{0}=0
$$

By applying σ to both sides, we get

$$
\sigma\left(a_{m}\right) \sigma\left(\alpha_{i}\right)^{m}+\cdots+\sigma\left(a_{0}\right)=0
$$

Since σ is identity on K, we have $\sigma\left(a_{i}\right)=a_{i}$ for all i and this proves the claim.

Lemma 1.2. Let $\sigma \in \operatorname{Gal}(L / K)$. Then $\sigma\left(\alpha_{i}\right)$ is not a root for any $f_{j}, j \neq i$.
Proof. Suppose $\sigma\left(\alpha_{i}\right)$ satisfies $f_{j}\left(\sigma_{i}\right)$ for some $j \neq i$. Let $f_{j}(x)=a_{m} x^{m}+\cdots+a_{0}$ with $a_{i} \in K$. Then $f\left(\sigma\left(\alpha_{i}\right)\right)=0$ implies $a_{m} \sigma\left(\alpha_{i}\right)^{m}+\cdots+a_{0}=0$. Applying σ^{-1}, we get $a_{m} \alpha_{i}^{m}+\cdots+a_{0}=0$ which implies $f_{j}\left(\alpha_{i}\right)=0$. But that is a contradiction to our choices of α_{i} since f_{j} is not the minimal polynomial of α_{i}.

For each $i=1, \ldots, n$, let S_{i} denote the set of distinct roots of f_{i} that are in L. Set $m_{i}=\left|S_{i}\right| \leq \operatorname{deg} f_{i}$. Clearly, $\prod_{i=1}^{n} m_{i} \leq \prod_{i=1}^{n} \operatorname{deg} f_{i}=[L: K]$. Consider $S=S_{1} \times \cdots \times S_{n}$ and let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in S$.

Define the map

$$
\begin{aligned}
\theta: \operatorname{Gal}(L / K) & \rightarrow S \\
\sigma & \mapsto\left(\sigma\left(\alpha_{1}\right), \ldots, \sigma\left(\alpha_{n}\right)\right)
\end{aligned}
$$

We will also write $\sigma(\alpha):=\left(\sigma\left(\alpha_{1}\right), \ldots, \sigma\left(\alpha_{n}\right)\right)$. With this notation, $\theta(\sigma)=\sigma(\alpha)$. By lemma 1.1 and 1.2 , this map is well defined.

Lemma 1.3. Let $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right) \in S$. Then there exists $\sigma \in G a l(L / K)$ such that $\sigma(\alpha)=\beta$.

Proof. We can write the field L as a quotient $L=K\left[x_{1}, \ldots, x_{n}\right] /\left(f_{1}, \ldots, f_{n}\right)$ where α_{i} is the image of x_{i} in L for each i. Here each $f_{i}\left(x_{i}\right)$ is considered as a polnomial in the variable x_{i}. Define a ring homomorphism

$$
\begin{aligned}
\Psi: K\left[x_{1}, \ldots, x_{n}\right] & \rightarrow K\left[x_{1}, \ldots, x_{n}\right] /\left(f_{1}, \ldots, f_{n}\right)=L \\
g\left(x_{1}, \ldots, x_{n}\right) & \mapsto g\left(\beta_{1}, \ldots, \beta_{n}\right)
\end{aligned}
$$

Note that $\Psi\left(x_{i}\right)=\beta_{i}$ for each $i=1, \ldots, n$ and that $\Psi(c)=c$ for $c \in K$. We want to show that Ψ induces a homomorphism $\bar{\Psi}: L \rightarrow L$. By the first isomorphism theorem, it is enough to show that $\Psi\left(f_{i}\left(x_{i}\right)\right)=0$ for all $i=1, \ldots, n$. But then $\Psi\left(f_{i}\left(x_{i}\right)\right)=f_{i}\left(\beta_{i}\right)=0$ since β_{i} is a root of f_{i} and we are done.
Proposition 1.4. The map θ induces a bijection between $G a l(L / K)$ and S.
Proof. Let $\sigma, \sigma^{\prime} \in \operatorname{Gal}(L / K)$ such that $\sigma(\alpha)=\sigma^{\prime}(\alpha)$. Then $\sigma\left(\sigma^{\prime}\right)^{-1}(\alpha)=\alpha$. But then $\sigma\left(\sigma^{\prime}\right)^{-1}\left(\alpha_{i}\right)=\alpha_{i}$ for all i, that is, it fixes the whole of L and therefore must be identity. Hence we have $\sigma=\sigma^{\prime}$. This proves the injectivity of θ.

Surjectivity follows from lemma 1.3.
Corollary 1.5. If K is infinite, then $|G a l(L / K)| \leq[L: K]$.
Proof. It follows from the fact that $|\operatorname{Gal}(L / K)|=|S|=\left|S_{1}\right| \times \cdots\left|S_{n}\right|=$ $\prod_{i=1}^{n} m_{i} \leq \prod_{i=1}^{n} \operatorname{deg} f_{i}=[L: K]$.
Corollary 1.6. Let K is infinite, then $|G a l(L / K)|=[L: K]$ if and only if $K \subseteq L$ is normal and separable.

Proof. If $K \subseteq L$ is normal and separable, then $\left|S_{i}\right|=\operatorname{deg} f_{i}$. Hence $|S|=[L: K]$ and therefore $|G a l(L / K)|=[L: K]$.

Conversely, if $|\operatorname{Gal}(L / K)|=[L: K]$, then $|S|=\prod m_{i}=\prod \operatorname{deg} f_{i}=[L: K]$. This is possible if $m_{i}=\operatorname{deg} f_{i}$. This means that all the roots of f_{i} lie in L, that is, L is the splitting field for all $f_{i} \mathrm{~s}$ and therefore L is normal.

Also, the roots of f_{i} s are all distinct and therefore $\alpha_{1}, \ldots, \alpha_{n}$ are all separable which implies $L=K\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is separable.
Definition 1.7. A finite extension $K \subseteq L$ is called Galois if it is both normal and separable over K.

