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1 Ideal class groups.

The ideal class group of a number field F' is defined as the quotient group
Clrp = Fr/Pr, where Fr denotes the group of fractional ideals of F' and Pp
denotes the subgroup of principal fractional ideals. It has been an object of
intense study since the nineteenth century. One of the fundamental theorems
of algebraic number theory is that Clp is a finite, abelian group. The fact
that it is abelian is obvious, but the finiteness was first proved by Kummer
for the number field F' = Q(p,), where p is any prime and p, denotes the
group of p-th roots of unity.

If F' is any number field, we denote the order of Clr by hp, the class
number of F. If p is a prime, then Clp[p™] denotes the p-primary subgroup
of Clr and hgf) denotes its order. Iwasawa’s papers in the 1950s concern the

growth of h%’g where the F,’s are a sequence of number fields such that
F=FKCcFCcCkcCc..CF,C ..

and F), is a cyclic extension of F' of degree p™ for all n > 0. Here p is a fixed
prime. One of Iwasawa’s main theorems shows that there is some degree of
regularity in the behavior of h%pn). We will discuss this and other theorems
of Iwasawa concerning Clg, [p™] in chapter 2. In the first three sections of
this chapter, we just consider a single finite extension F’/F. Although some
of the results will be more general, the most interesting ones will concern
the case where F'/F is a cyclic extension, especially a cyclic p-extension.
These results will already show some close relationships between Clz[p™] and
Clp[p™®] under various hypotheses. Results of this kind were undoubtedly
part of the original inspiration behind Iwasawa’s work.

The first two sections of this chapter discuss the kernels and images of
two natural homomorphisms between the ideal class groups Cly and Clgr of
those number fields:

NF//FIClFI —)CZF, JFI/FCZF%CZF/ (1)

Class field theory provides the main tool for studying Ngr . Under rather
mild assumptions, one can prove surjectivity. Under more stringent assump-
tions, one can obtain some useful results about the kernel. The map Jp//r is
more difficult to study. It involves the structure of the unit group O;, as a
Galois module.



)

The third section concerns “genus theory.” which shows the influence of
the ramified primes on dimg, (Clp[p]) when F'/F is a cyclic p-extension. We
won’t attempt to prove the most general or precise results, just enough for
certain applications later on.

The fourth section concerns the so-called “reflection principle.”. We con-
sider a number field F' containing p,, where p is a prime, and a group A
of automorphisms of F. It is assumed that p doesn’t divide |A|. One can
regard Clp[p] as a representation space for A over the field F,. It can be
decomposed as a direct sum of the irreducible representations of A over F,,
each with a certain multiplicity. These irreducible representations occur in
pairs in a certain way. The reflection principle shows that the corresponding
multiplicities for each such pair are somehow related. The idea is that one
can study cyclic, unramified extensions of F' of degree p by both class field
theory and by Kummer theory.

The final topic in this chapter deals with a certain object which can be
viewed as a generalization of the ideal class group, or, more precisely, the
Pontryagin dual of Clg[p™]. It is defined as the subgroup of a Galois coho-
mology group consisting of cocycle classes which are unramified at all primes
of F'. These groups are certainly closely related to ideal class groups, but
over extensions of the field F'. It is natural to ask how various results extend
to these more general objects. Section 5 will discuss some general properties
of these groups. Section 6 deals with an important special case associated to
one dimensional representations of Gal(F'(py=)/F). The behavior of these
groups is intimately related to classical Iwasawa theory, as we will explain
near the end of chapter 2. These last two sections will also help to make
the transition to the second half of this book, where we describe even more
far-reaching generalizations of the objects studied in the classical theory.

1.1 The norm map.

Consider an arbitrary finite extension F'/F of number fields. We first re-
call the definition of two basic homomorphisms studied in algebraic number
theory:

NFI/FifIF%FF, jFI/FIfF%fFI

The second map Jpr/r is defined simply by mapping an element I € Fr to
IO, the fractional ideal of F”' generated by I. The map Jp/r is injective,
but not surjective if [F' : F] > 1. To define the first map, it is sufficient to
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define N/ /p(P') for every prime ideal P' of F' since Fp is the free abelian
group on the set of those prime ideals. For any such P, let P = P'NOp, the
prime ideal of O lying below P’, and let f(P’'/P) denote the residue field
degree [Op /P’ : Op/P]. Then define

Npip(P') = PIE/P) (2)

If [F': F] > 1, then the map N/ p is neither injective nor surjective.

We will also let N /r denote the norm map from F’ to F' as defined in
field theory. One basic result is that if o/ € F' and a = Np ('), then the
corresponding fractional ideals satisfy

NF’/F(O/OF’) = aOF (3)

and, consequently, we have the inclusion Np//p(Pp) C Pr. One can then
define the map Ng//p in (1) to be the homomorphism induced by Np/r on
the quotient groups Clg and Clp. That is, if ¢ € Clg and I’ is any ideal in
, then Np//p(c') € Clp is defined to be the class of the ideal Np/p(I").

The image of the map Np/p : Clpr — Clp is clearly the subgroup of Clp
generated by the classes of the ideals P/('/?) (using the notation above).
Most of our arguments in this section will be based on properties of the
Artin isomorphism

Al"tH/F : CZF — Gal(H/F),

where H denotes the Hilbert class field of F. The existence of this isomor-
phism is a special case of the Artin reciprocity law, and is discussed briefly in
an appendix. We will just recall the definition of this map and the properties
that we will need.

If P is any prime ideal of F, let op € Gal(H/F) denote the Frobenius
automorphism for P (or, more precisely, for any one of the prime ideals of
H lying above P). Then we can define a homomorphism

FI‘ObH/F : -7:F — Gal(H/F)

by putting Froby, p(P) = op for every prime ideal P of F. As discussed in
the appendix, this map is surjective and its kernel is precisely Pr. The Artin
isomorphism is then defined by Arty,r(c) = Froby,p(I) for every c € Clp,
where I is any element of c.

We first consider the image of the norm map. Surjectivity requires only
a mild assumption about F'/F.



Proposition 1.1.1. If HNF' = F, then Ngp : Clpr — Clp is surjective.

One immediate consequence is that if ' N H = F, then hr divides hp.
Another consequence is that the map Npi/p : Clp/[p™] — Clp[p™] will be
surjective too. One can just assume that [F' N H : F] is prime to p for that
assertion to hold.

Proof. The proof depends on the following commutative diagram from class

field theory:
Clpr —— Gal(H'/F")

lNF’/F JVRF’/F (4)
Clp —— Gal(H/F)

Here H' denotes the Hilbert class field of F’. Note that H C HF' C H'. The
right vertical map is the restriction map g — g|g, where g € Gal(H'/F").
The horizontal maps are the isomorphisms Artg//p and Artg/p. The left
vertical map is the norm map Ng//r, as indicated.

The commutativity of (4) follows from the definitions. If P’ is any
prime ideal of F' and P is the prime ideal of F' lying below P’, then let
op € Gal(H'/F') and op € Gal(H/F') denote the corresponding Frobenius
automorphisms. Then, on the one hand, we have the following well-known

property: op/|g = aﬁ(P’/P

FI‘ObHI/FI (II)|H = FI'ObH/F(NF//F(II))

). Comparing this with (2), we see that

for all I' € Fpr. The commutativity of (4) follows from this.

The restriction map Rp/p : Gal(H'/F') — Gal(H/F') is surjective be-
cause of the hypothesis that H N F' = F. The surjectivity of the map Ng/p
then follows from the above commutative diagram. |

One can give an alternative proof based on the Chebotarev density theo-
rem, applied to any finite Galois extension of F' containing HF'. Under the
assumptions of the proposition, one can show that if ¢ € Clg, then there ex-
ist infinitely many prime ideals P € ¢ such that f(P'/P) =1 for at least one
prime ideal P’ of F' lying above P. If ¢’ is the class of P, then Ng/p(c') = c.

Without the assumption that F' N H = F, the above proof shows that
Npr /i (Clpr) is precisely the inverse image of Gal(H/H N F') under the map
Artyp. Hence, if HNF' # F, then Np//p is not surjective. Also, if H C F',
then Npv/p is the zero-map.



Since it will be very useful in the next chapter, we state a corollary for
the p-primary subgroups of the class groups. We will use the notation

AF = Clp[poo], AFI = Clpl[poo] (5)

Let L denote the maximal p-extension of F' contained in H, which we will
refer to as the p-Hilbert class field of F'. Thus, we have a canonical isomor-
phism Art; p : Ap — Gal(L/F). The following result is easily deduced from
proposition 1.1.1. Alternatively, there is a diagram just like (4) which gives
the result by the same argument.

Corollary 1.1.2. If LN F' = F, then the map Npyp : Ap — Ap is
surjective.

Suppose that F'/F is a p-extension and let G = Gal(F'/F). Let Iy, ..., I,
denote the inertia subgroups of G for all the primes of F’ which are ramified
in the extension F'/F. It is clear that L N F' = F if and only if G is
generated by those inertia subgroups. If one assumes that F'/F is a cyclic
p-extension, then G has a unique maximal subgroup, namely G? (assuming
that [F' : F| > 1). In that case, F' N L = F if and only if I; ¢ GP? for at
least one j, 1 < j < r. But this just means that I; = G for at least one j,
or, equivalently, that there exists at least one prime which is totally ramified
in F'/F.

Concerning the kernel of the norm map, diagram (4) shows that ker(Npr/p)
is just the inverse image under Arty: m of ker(Rp ), which is obviously
Gal(H'/HF"). The following result gives a simple description of this kernel
under certain stringent hypotheses on the extension F'/F. It is actually a
result in the “genus theory” of cyclic extensions - a topic that we will pursue
further in section 1.3. If F'/F is a Galois extension, then we will continue to
denote Gal(F'/F) by G. There is a natural action of G on Clg, and so we
can regard Clp as a module for the group ring Z[G]. We will use a multi-
plicative notation for the class group in this chapter, and so, if # € Z[G] and
d € Clp, we will denote the action of § on ¢ by (¢')?. Thus, the image of
Clp under § will be denoted by C19,. We will switch to an additive notation
in chapter 2.

Proposition 1.1.3. Suppose that F'/F is a finite Galois extension and
that G = Gal(F'/F) is cyclic. Assume also that at most one prime of F is
ramified in F'/F. Then

ker (N /) = Clg !

7



where o denotes a generator of G.

Proof. The kernel of Rp/p @ Gal(H'/F') — Gal(H/F) is Gal(H'/HF").
The extension HF'/F is clearly abelian. Let K denote the maximal abelian
extension of F' contained in H'. Then HF' C K. Under the hypotheses of
the proposition, we will first show that K = HF".

If no prime of F' is ramified in F'/F, then H'/F is an unramified ex-
tension and so we obviously have K = H = HF"'. If there is one prime v
of F ramified in F'/F, let I denote the corresponding inertia subgroup of
Gal(K/F) (which is the same for all primes of K lying above v). Then K’ is
the maximal extension of F' contained in K which is unramified at that one
prime, and therefore everywhere unramified. Thus we have K/ = H and so
I = Gal(K/H). But we also have that I N1 Gal(K/F') = 1, since K/F" is an
unramified extension. This means that K = HF"', as stated.

Now we can describe K in another way. Note that H' is a Galois extension
of F'. This is easy to verify just using the definition of the Hilbert class field,
and is left to the reader. Let G = Gal(H'/F) and N = Gal(H'/F"). We then

have an exact sequence
15N3G—>G—>1

Since N is abelian, there is a natural action of G' on N. Let o be as above,
a generator of G. Choose an element o € G such that o = o. If n € N,
then o acts on 7 as follows: 7° = ono~!. Considering N as a Z[G]-module
(for which we will use an exponential notation), we then have that n°~! =
ono—'n~". This is a commutator in G, and so we have N°~! C D(G), where
D(G) denotes the commutator subgroup of G. In fact, we have

D(G) = N°!

To see this, note that N°~! is a normal subgroup of G. Consider the exact

sequence B B
1— N/N°' - G/N"' = G/N -1
Clearly, N, /N°~! is contained in the center of G /N°~1. The _quotient group
G/N is cyclic. Tt follows that G/N°~! is abelian. Hence D(G) C N°~!, and
so the two subgroups do coincide. B
By definition, K is the subfield of H' corresponding to D(G), and so we

have
Gal(H'/K) = N°~!
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We have shown before that K = HF" and so we also have
Gal(H'/K) = ker(Gal(H'/F') — Gal(H/F)) = ker(Rp/r)

Since Artg: /g : Clpr — N is a G-equivariant isomorphism, the commutative
diagram (4) then implies that the kernel of the norm map Ng//p : Clpr — Clp
is precisely CI%,', as asserted. [ |

Now we turn to the important case where F'/F is a p-extension. The
following result is a consequence of propositions 1.1.1 and 1.1.3 and will be a
first and quite useful step for the results in the next chapter. Its proof pro-
vides a simple illustration of some of the ideas which play a role in studying
the behavior of ideal class groups in Z,-extensions. It asserts that, under
certain stringent assumptions, Ap # 1 <= Ap # 1.

Proposition 1.1.4. Let p be a prime. Suppose that F'/F is a Galois exten-
sion and that G = Gal(F'/F) is a cyclic p-group. Assume also that exactly
one prime of F is ramified in F'/F and that this prime is totally ramified.
Then p divides the class number of F' if and only if p divides the class number
of F.

Proof. Proposition 1.1.1 implies that hr divides hgz. This makes one part
of the above proposition obvious: If p divides hg, then p divides hp. To
prove the other part, we study the norm map Np//p : Apr — Ap. We know
that this map is surjective by corollary 1.1.2. Proposition 1.1.3 determines
its kernel because Ap is a direct summand of Clg as a Z[G]-module. That
kernel is A%, !, where o again denotes a generator for G. Therefore we obtain
an isomorphism

Apr /Afw_l — Ap (6)

The other part of the proposition is easily deduced from (6). Assume
that hps is divisible by p. Then the p-group G is acting on the nontrivial
p-group A and therefore the subgroup of elements fixed by the action of G
will also be nontrivial. That is, if we consider ¢ — 1 as the endomorphism of
Ap defined by mapping a € Ap to a® ! = o(a)a™', then its kernel will be
nontrivial. It follows that the image A% ' of that endomorphism is a proper
subgroup of Ap. Hence, (6) implies that Ar must be nontrivial. Therefore,
hr is indeed divisible by p. |

Remark 1.1.5. Our proof of the above proposition uses the cyclicity of G.
However, it suffices to assume that G is a p-group. This follows easily from
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the case where F'/F is cyclic of degree p, using the fact that the composition
factors for a finite p-group are cyclic of order p. The ramification assump-
tion for F'/F implies that the same assumption holds for each intermediate
extension. However, one can also give the following direct proof.

Suppose that F'/F is a p-extension in which exactly one prime is ramified.
We assume that this prime is totally ramified in F'/F. The assertion that
p|hr = p|hp is again obvious from corollary 1.1.2, and so we just consider
the converse. We will show that if Ap # 1, then Ap # 1. Let L' denote
the p-Hilbert class field of F'. Clearly, L'/F is Galois, and Gal(L'/F) is a
p-group. Now assume that A # 1 and so [L' : F'] > 1. Let P be the
unique ramified prime in F'/F, let @ denote any prime of L' lying above
P, and let Iy denote the inertia subgroup of Gal(L'/F) for @), which is
determined by P up to conjugacy. Since e(Q/P) = [F': F| < [L': F|, Iy
is a proper subgroup of Gal(L'/F). Thus there exists a maximal subgroup
M of Gal(L'/F) which contains Ig. Maximal subgroups of a p-group have
index p and are normal. The nontrivial inertia subgroups of Gal(L'/F') are
conjugate to Iy and hence also contained in M. Therefore, the fixed field
(L')™ is an unramified extension of F' and Gal((L')™/F) = Z/pZ. This
proves that Ap # 1.

Remark 1.1.6. Suppose that p = 2 and that the assumptions in proposition
1.1.4 are satisfied. If [F' : F| = 2, then the unique prime v of F' which is
ramified in the extension F'/F could be an infinite prime, which would then
be totally ramified. In that case, if v’ denotes the prime of F' lying above v,
then the hypothesis means that F, = R, F), = C, and that F" is a quadratic
extension of F' which is unramified at all other primes of F', finite or infinite.
If one assumes only that exactly one finite prime of F is ramified in F'/F, and
that this prime is totally ramified, then the argument can easily be adapted to
prove the analogous statement for the “strict” class numbers of F' and F”, i.e.
that they are either both even or both odd. Recall that the strict class group
CI5f" of a number field F is the quotient group Fr/ 73;?, where P}?’ denotes the
group of principal fractional ideals which are generated by a totally positive
element of F. (An element o € F is totally positive if its image under
every embedding F — R is positive.) If H*" denotes the maximal abelian
extension of F' unramified at all the finite primes of F', then one can use the
corresponding Artin isomorphism Artger/p : CI3" — Gal(H** /F') to prove
the analogues of 1.1.1 - 1.1.4.

Remark 1.1.7. One can extract some information about the structure of
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Apr in the situation of proposition 1.1.4. As an illustration, let us assume that
F'/F is cyclic of degree p and that |Ar| = p, in addition to the ramification
assumption. For brevity, let 7 = 0—1, considered as an endomorphism of Ap.
According to (6), Apr/A%, will then be cyclic of order p. Let |Ap| = p™,
where m > 1. Then one can easily show that each of the subquotients
A7, /AT will also be cyclic of order p for 0 < j < m — 1 and that A%, is
trivial. One can regard 7 as an element of the group ring for G over Z or
over F,. In F,[G], one can easily verify that 77 = 0. Hence, in Z[G], we have
7 € pZ|G]. 1t follows that A%, C A%,. This implies that

dime (AFI [p]) = dimpp (AF’ /Ap ,) S p-

One possibility is that dimg, (AF/[p]) = 1. Thus Ap = Z/p™Z. The
automorphism group of Ap is then isomorphic to (Z/p™Z)*. Thus o(a) = a°
for all @ € Apr, where s is an integer not divisible by p. The order of s modulo
p™ must be 1 or p. Thus s> =1 (mod p™). Now we have

—1
= Ap = Ap

which means that either m = 1 (and so G acts trivially on Az) or m > 1
and p||(s — 1). Thus, if m > 1 and p is odd, then it follows that p?||(s? — 1)
and therefore m = 2. Hence, for odd p, we must have m < 2. This kind of
argument gives no information if p = 2. Indeed, it is conceivable that A is
cyclic of order 2™, for any m > 1, and that o(a) = a™' for a € Ap.

Another possibility is that Ap is an elementary abelian p-group. Then
m = dimg, (Apr) and we have 1 < m < p. The endomorphism 7 is a nilpotent
linear mapping on the F,-vector space Ap. Suppose that ¢’ is in Ags, but
not in A7%,. Then it is clear that ¢’ generates Ap as a module over the group
ring F,[G]. One then has an isomorphism

Ap ZF[G]/ (™)

of F,[G]-modules.

One gets a better picture of the possibilities by considering A as a
module over the group ring Z,[G]. Choosing ¢ € Ap as above, Ap is
generated by ¢, (¢/)7, (c’)72, ... as a group and hence ¢ is a generator for Ap
as a Z,[G]-module. That is, Ap is a cyclic Z,[G]-module. Therefore, we
have Apr = Z,[G]/I, where I is an ideal in Z,[G]. The requirement that
[Ap : AT.] = p just imposes a simple condition on I, namely that the image
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of I in Z,[G]/(7)Z,[|G] = Z, has index p. There are actually infinitely many
such ideals and, although one can get strong restrictions on the structure of
Ap from this point of view, one cannot bound the index of I. Thus, even
under the stringent assumptions we have made about Ap and F'/F, there
would seem to be no bound on |Ag| in general.

1.2 The map Jp/p.
The map Jp/r is induced from the natural homomorphism
Jrr: Fr — Fr

defined in section 1. It is obvious that Jp p(Pr) C Pr. We obtain a
homomorphism from Clgr to Clg: as follows. If ¢ € Clr and I is an ideal in
¢, define Jp/ i (c) to be the ideal class in Clp represented by Jpr/p(I). Since
Jrp(Pr) C P, the map Jpp is well-defined. The map Jp//p is easily
seen to be injective, but Jp//r can have a nontrivial kernel and this can be
quite difficult to study.

The kernel of Jg/r has been studied rather extensively in the case where
F'/F is an unramified abelian extension (i.e., F' C H, where H denotes the
Hilbert class field of F'). Here are a few of the known results:

1. If F'/F is a cyclic unramified extension of degree p, then ker(Jp:/p) is
nontrivial.
3. If F'/F is any abelian, unramified extension, then |ker(Jp: p)| is divisible
by [F': F.
The first result is known as “Hilbert’s Theorem 94.” We will prove this below.
The second is the famous “Principal Ideal Theorem.” As one consequence,
it is easy to show (using proposition 1.2.1 below) that if L is the p-Hilbert
class field of F, then ker(J; ) = Ap, the p-primary subgroup of Clr. The
third result is a generalization of both (1) and (2) proved in 1992 by Suzuki.
There are no really general results for the case where F'/F is ramified.
Later in this section we will give some interesting examples of ramified cyclic
extensions F'/F of degree p such that ker(Jg r) is nontrivial.

Except for proposition 1.2.1, all the results in this section will concern a
finite Galois extension F'/F. We will always let G = Gal(F'/F). Our first
two results are quite simple, based just on the definitions.
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Proposition 1.2.1. Let n = [F': F|. Then

(NF’/F (e} JFI/F)(C) = Cn
for all ¢ € Clp. Consequently, if c € ker(Jp ), then the order of c divides
n. In particular, if (hp,n) =1, then Jp r is injective.

Proof. The proposition follows immediately from the identity
Neyp(Trp(I)) =17 (7)

which holds for all I € Fp. It suffices to verify this identity if I is a prime
ideal P of F'. But, in that case, using (2), the identity amounts to the familiar

fact that
S"e(P'P)f(P/P)=n

P!|P

where the sum runs over all the prime ideals P’ of F’ lying above P, e¢(P'/P)
denotes the corresponding ramification index, and f(P’/P) is the residue
field degree defined before. Alternatively, one can easily verify the identity
if I € Pr. It then follows for any I since Fr is torsion-free and the index
[Fr : Pr] is finite. [ ]

Proposition 1.2.2. Suppose that F'/F is a finite Galois extension. Con-
sider the mapping Ng : Clpr — Clpr defined by Ng(c') = [[,eq o(c'). Then
JF’/F © NF’/F = Ng (8)

In particular, if F'NH = F, then im(Jp/r) = im(Ng).
Proof. Suppose that I' € Fp» and let I = Np//p(I"). Then we have
10p =[] o(I') (9)

oceG

It suffices to verify (9) if I’ is a prime ideal P’ of F’, which is straightforward.
Alternatively, one can first consider the case where I' € Pp. Suppose that

I' = o/Opr. Then
Nryp(a) =[] o(o)
oceG

and the identity (9) then follows from (3). One can prove (9) for any I' € Fp
by using the facts that Fp is torsion-free and that Ppg has finite index.
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Therefore, if ¢ denotes the class of I' in Clg, then it follows that the
images of ¢’ under the maps Jp//p 0o Npr)p and Ng are the same, namely just
the class of IOp in Clg. Finally, if F' N H = F, then proposition 1.1.1
shows that Np//p(Clpr) = Clp. It then follows that Jp/p(Clp) = Ng(Clg)
as stated. |

If F'/F is a Galois extension, then ker(Jp/ r) is somehow related to the
way G = Gal(F'/F) acts on the unit group Oy, of F'. This comes from the
following observation: Suppose that ¢ € ker(.Jp/ ) and that I is an ideal in
c. That is, I € Fr and it generates a principal fractional ideal in F'. Let o/
be a generator for I’ = IOp. The ideal I' is invariant under the action of G
and so it is clear that the map

¢: G— Oy,

defined by ¢(g) = g(a’)/a' defines a 1-cocycle on G with values in Oj,. Its
cocycle class [@] is determined by ¢, the map ¢ — [#] is a homomorphism,
and if [¢] is trivial, then it is easy to see that I € Pr and hence c is trivial.
Thus, in this way, one defines an injective homomorphism

ker(JF//F) — HI(FI/F, 0;/)

However, principal ideals I' which are invariant under the action of G may
also arise as products of ramified primes. Such ideals also define a cocycle
class in H'(F'/F, O0},), exactly as above. These observations are behind the
following useful result. To simplify the notation, we will identify Pr and Fr
with their images under the injective homomorphism Jrr/p.

Proposition 1.2.3. Suppose that F'/F is a finite Galois extension. We
have an exact sequence

Furthermore, we have isomorphisms
t
PS/Pp = H'(F'/F,0%), Fr/Fr= || 2/e2
i=1

where t denotes the number of primes of F which are ramified in F'/F and
€1, ...,e; denote the corresponding ramification indices.
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Proof. The exact sequence results by applying the snake lemma to the fol-
lowing commutative diagram

1 > Pr s Fr )CZF > 1

] [ (w0)

1 y PS y Fg —— OIS,

The first two vertical maps are injective, and so one obtains an injective map:
ker(Jp/p) — Pg/Pr. Explicitly, this map can be defined as follows: If an
ideal I of F' becomes principal in F', IOp = (), say, then its ideal class
(which is in ker(Jp/r)) is mapped to the coset of () in Pg /Pp.

Consider the exact sequence 1 — Oy, — F'* — Pp — 1, where the map
F'™™ — Pp is defined by mapping an element of F'* to the principal ideal
it generates. The maps are G-equivariant and so one obtains the following
exact sequence of Galois cohomology groups (mostly H%’s).

1— Of — F* — P% — HY(F'/F,05) — 1

To justify the 1 at the end, we use Hilbert’s theorem 90 which states that
HY(F'/F,(F')¥) is trivial. The isomorphism P% /Pr & H'(F'/F, O},) fol-
lows immediately because the image of F* in Pg, is Jp/r(Pr) (which we are
denoting by Pr). This isomorphism is just as mentioned before: If (¢/) € P,
then one maps it to the class of the 1-cocycle g — g(a')/c/.

It remains to show that FS /Fp is isomorphic to [['_, Z/e;Z. To see this,
let I' be any fractional ideal of F'. Then I' € F§, if and only if the prime
ideal factorization of I’ satisfies the following condition: primes which are
conjugate under the action of G' occur with the same exponent. This means

that I can be represented uniquely as a product (with integer exponents) of

the ideals
Qr=1]] P
P'|P
Note that Jp/p(P) = PO = QF , where ep denotes the ramification index

of P in F'/F. Thus, we can regard F% as the free abelian group generated
by the ideals @p, and Fr then corresponds to the subgroup generated by the
ideals Q5. It is therefore clear that the quotient group is indeed isomorphic
to [I._, Z/e:Z. n

As we will now show, Dirichlet’s unit theorem has some implications
concerning the cohomology group H*(F'/F, 0F,). We will assume that F'/F
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is a cyclic extension. One can regard Oy, as a Z[G]-module. Its structure is
difficult to study. However, the vector space

VO O;v/ ®Z Q

X =
yal

can be regarded as a Q[G]-module and its structure can be completely deter-
mined. In particular, this will allow us to determine the “Herbrand quotient”
which is defined by

W(F'/F,O5) = [H*(F'[F,Op)|/|H'(F'/F, OF)]

The next result shows that, under certain assumptions, this ratiois 1/[F" : F.

Proposition 1.2.4. Suppose that F'/F is a cyclic extension of degree n. If
n is even, assume that the real primes of F' are unramified in F'/F. Then

H'(F'[F,0%)| = n|H*(F'|F,0},)]

There is a surjective homomorphism Oy [(OF)" — H*(F'/F,0%,). In par-
ticular, if F'/F has prime degree p, then

1 < dimg,(H' (F'/F,05)) <s+1

where s = dimg, (O /(OF)P).

Proof. The proof depends on properties of the Herbrand quotient which we
now recall. We assume that G is a finite cyclic group which acts on a finitely
generated, abelian group L. Thus, L is a finitely generated Z[G]-module.
Then the cohomology groups H*(G, L) for ¢ > 1 are finite. The Herbrand
quotient h(G, L) = |H*(G, L)|/|H*(G, L)| has the following properties:

(1) If L is finite, then h(G, L) = 1.

(2) Suppose that 0 — L — L — Ly — 0 is an ezact sequence of finitely
generated Z|G|-modules. Then h(G, L) = h(G, L1)h(G, Ls).

Consider the Q-vector space V = L ®z Q, which is a representation space
over G over Q of dimension d = rankz(L). One can regard L/L, as a Z-
lattice in V' which is invariant under the action of G. One deduces from (1)
and (2) that h(G, L) depends only on the isomorphism class of V/, not on
the choice of the G-invariant Z-lattice L. This observation together with the
following lemma will make it easy to compute h(F'/F, O},).

16



Lemma 1.2.5. Suppose that F'/F satisfies the assumptions in the above
proposition. Let W denote the reqular representation for G over Q, let
W, = WY, which is the trivial representation (of dimension 1), and let

Wy, =W/W,. Let r = rankz(Of). Then

~ T r+1
Vo . x W]

X =
FI
as representation spaces for G.

Proof. One fact that we will use is that a cyclic group of order m has a unique
faithful, irreducible representation defined over Q. Its dimension is ¢(m). As
a consequence of this, one can easily see that if GG is a finite cyclic group,
then a representation space for G over Q is determined (up to isomorphism)
by the quantities dimq(V#), where H varies over all the subgroups of G.
Consider V = Vo;,- If H is any subgroup of G, let E = F')2. Then
dimq(V*) is equal to the rank of the group of units of E since Oy = (O5)¥,
and so O} ® Q 2 V. Let r; denote the number of real primes of F', ry the
number of complex primes of F. Then r = r; +r9 — 1. The real primes of F’
are unramified in F'/F, and hence in E/F. This is obvious if n is odd and

is true by assumption if n is even. Thus, if m = [E : F], then
dimg(VH#) =mri +mro —1=7r+ (m—1)(r +1)

On the other hand, we have dimg (W) =1 and dimg(W}) = m—1. Hence,
(Wr x Wit H also has dimension 7+ (m —1)(r+1), which implies the stated
isomorphism. [ |

The above lemma is valid without the assumption that G is cyclic. If G
is an arbitrary finite group G, then it is still true that a representation space
V for G over Q is determined by the quantities dimg(V#). This follows
from the fact that the isomorphism class of V' is determined by its character
which, in turn, is determined just by its restrictions to all cyclic subgroups
of G. Those restrictions are determined by the dimg(V*#)’s. It suffices to
know these quantities for all cyclic subgroups H. The proof then proceeds
exactly as above.

Returning to the proof of proposition 1.2.4, we can compute h(F'/F, O%,)
by considering any G-invariant Z-lattice in V. According to lemma 1.2.5, we
can choose such a lattice L so that

L=Lhx LT
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where L, = Z, with a trivial action of GG, and L; = I, the augmentation
ideal in the group ring Z[G]. The trivial homomorphism G — {1} defines
a ring homomorphism Z[G] — Z and I is defined to be the kernel of that
homomorphism. Now

H'(G,Z)=0, H*G,Z)~7Z/nZ
and so h(G, E,) = n. It is obvious that h(G, Z[G]) = 1. The exact sequence
0—I¢c—Z[Gl—Z—0

shows that h(G, E,)h(G, E1) = 1, and so we have h(G, E;) = 1/n. This can
also be verified directly.

These observations imply that h(F'/F,Oy,) = n"/n"t' = 1/n, which is
precisely the first statement in the proposition. For the second part, note
that

H2(F'[F,05) 2 OF [N £(05)

and (Of)" C Npyp(Of) C Of.. To prove the final statement, note that if
n = p is prime, then both H'(F'/F,O},) and H*(F'/F,0},) have exponent
p, and so their orders determine their dimensions as F,-vector spaces. Thus,
h(F'/F,0%) = p implies that dimp, (H'(F'/F,O},)) is bounded above by
dimg, (H?(F'/F,0},)) + 1, which in turn is bounded above by s+ 1. W

Remark 1.2.6. Suppose that F'/F is any cyclic extension of degree p,
where p is an odd prime. Proposition 1.2.1 implies that if ¢ € ker(Jp//p),
then ¢ = 1¢y,, and so ker(Jp//r) is an Fj-vector space. Propositions 1.2.3
and 1.2.4 give the following inequality:

dime (ker(JF//F)) S s+1

where s is as in proposition 1.2.4. Explicitly, we have s = r if p, ¢ F and
s =r+1if y, C F. Thus, we have a simple bound on |ker(Jp/r)| just in
terms of the rank r of the unit group of F'.

Now suppose that p = 2, i.e., that F'/F is any quadratic extension. The
inequality for dimg, (ker(Jp//r)) given above is still valid. It can even be
improved if some of the infinite primes of F' are ramified in F'/F. Suppose
that t., infinite primes of F' are ramified in F'/F. In lemma 1.2.5, one then
has V 22 W x Wyt ~*< and so the Herbrand quotient for the G-module O},
turns out to be

h(F’/F, O;,) — 27"/27"—1—1—1&00 — 2too—1
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Thus,
dimp, (ker(JF,/F)) < dimp, (HI(F'/F, (9;5,)) <s+1—ty

Note that if p = 2, then s = r + 1 = r; + ry. If F is totally real and F”
is totally complex, then t,, = 1 and ro = 0, in which case one finds that
dimp, (Hl(F’/F, (’);5,)) <1.

We now discuss other implications of the above propositions in various
special cases.

Remark 1.2.7. Assume that F'/F is an unramified Galois extension. Then
proposition 1.2.3 implies that ker(Jp/p) = H'(F'/F,Oy,). If we assume in
addition that F'/F is a cyclic extension, then proposition 1.2.4 implies that
ker(Jp/p) has order divisible by n = [F' : F|, and hence is nontrivial if
n > 1. Hilbert’s theorem 94 is a consequence. This argument is essentially
the same as Hilbert’s original proof.

Remark 1.2.8. Consider a Galois extension F'/F of degree n and a prime
p such that p f n. As before, we let Ap = Clp[p™], A = Clm[p>®]. We
will consider the maps Np//r and Jp//p just on those subgroups. Proposition
1.2.1 implies that the composite map
J g Ny
Ap Z Ap ZH Ap
is the isomorphism a — a" for a € Ap. Therefore, Jp/r is injective and

Jp p(Ap) is a direct factor in the Z[G]-module A isomorphic to Ap. More
precisely, we have

AF' = JF'/F(AF) X ker(NF’/F : AF' — AF)

as Z|G]-modules. Now G acts trivially on the first factor Jp/ p(Ap). For
the second factor, we have ker(NF:/F A — AF) = ker(NG cAp — AF/),
which we denote by M. It is clear that M satisfies M“ =1, My = 1. Hence
we have

Ap = AS,, (Ap)g & Ap

where the first isomorphism is induced by Jp/,r and the second is induced

Remark 1.2.9. Assume that F'/F is a cyclic p-extension and that exactly
one prime of F' is ramified in F'/F (which we will assume to be a finite
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prime if p = 2). Let o be a generator of G = Gal(F'/F). According to (6)
in the proof of proposition 1.1.4, if we regard 7 = ¢ — 1 as an endomorphism
of A, then coker(r) = Ap. Now ker(r) = A% has the same order as
coker(7). Thus, under the above assumptions, Ap and A% have the same
orders. Therefore, if Jp/,r happens to be injective, then we must have AG, =
Jrr(AF).

Under the same assumptions, one can instead apply proposition 1.2.3 to
prove that equality. We have ¢ = 1 and therefore

dimg, (H'(F'/F,0},)) — dimg, (ker(Jp/ 7)) =0 or 1

If we make the assumption that Jg p is injective, then H'(F'/F, Oy,) would
be cyclic of order p, H2(F'/F, O},) would be trivial, and the map

would be surjective. The last statement means that F& = FrPS,. According
to a result to be proved in the next section (proposition 1.3.4), the vanishing
of H2(F'/F, Oy,) implies that every class in Cl¥, contains an ideal in Fg.
Thus, in a different way, we again see that Jp p(Ar) = A% under the
assumption that Jp//p is injective.

The above argument does not require class field theory and gives another
proof of part of proposition 1.1.4, namely the implication: p | g = p | hp.
For if p | hp, then A, will be nontrivial. However, ker(Jg r) C A and
so, if Ap is trivial, then Jg/p would be injective and hence A%, = Jp e (Ar)
would be trivial too. Therefore, it must be that p|hp.

Remark 1.2.10. This remark should be compared with remark 1.1.7. In
contrast, under certain assumptions, we will obtain a lower bound on A’,
instead of an upper bound. We will assume that F'/F is a cyclic extension
of degree p in which at least one prime of F' is ramified, that p|hr, and
that the map Jp/,r is injective. Proposition 1.2.2 would then imply that
Ng(Ap) = Ap. Now it is obvious that

ASp] C ker(NG|AF,)

and, since p|hr, it is clear that A% [p] # 1. Hence the map NG|A has a
yaU

nontrivial kernel. It follows that |Ag| > |Ap|. This growth could be either
“vertical” or “horizontal”. We will discuss two extreme cases. As in remark
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1.1.7, we will illustrate the idea by assuming that |Ar| = p. Let |Ap/| = p™.
As we’ve just explained, we have m > 2.

First assume that Ag is a cyclic group. Thus, Apm = Z/p™Z. If p is odd,
then the automorphism group of Az has only one subgroup of order p. The
action of G may be trivial or through that subgroup. In either case, one finds
that [Apr : Ng(Ap)] = p. Hence we must have m = 2 if p is odd. However,
for p = 2, we can’t prove anything more than the inequality m > 2.

Now assume that Ag is an elementary abelian p-group. Then one would
have dimg, (Ap) > p. To see this, we will use some elementary facts about
the group ring F,[G], where G is a cyclic group of order p. As before, we let
T = 0 — 1, where o is a generator of G. The ideal (7) of F,[G] is maximal
with residue field F,. We have 77 = 0. The distinct proper ideals of F,[G]
are (1), where 1 < i < p. It follows that

(P71 = F,[G]° = (Ng), where NG=Zg

geG

Thus, if M is an F,[G]-module such that dimg, (M) =i < p, then 7* annihi-
lates M and hence so does Ng. Thus, if Ng(M) # 0, then dimg, (M) > p.
We can just apply this fact to M = Ap. Our assumptions imply that
[Na(Apr)| = p.

Remark 1.2.11. We will describe two interesting examples where F'/F is
a ramified cyclic extension of degree p and Jg//r has a nontrivial kernel, one
rather subtle, the other rather straightforward. We take F' = Q(u,) and
assume that p||hp. It is known that the divisibility p|hr holds for infinitely
many primes p (the so-called “irregular primes). The exact divisibility p||hp
probably holds for infinitely many p’s, but this is not known. The first
irregular prime is p = 37 which does indeed satisfy the assumption. The first
prime for which p?|hr is p = 157. Recall that p is totally ramified in F/Q.
Let P denote the unique prime ideal of F' lying over p.

Ezample 1. Consider F' = F(¢/p), an extension of F' of degree p which is
ramified just at P. By proposition 1.1.1, we know that p|hg. For all primes
p < 1000 satisfying the assumption that p||hp, it turns out that p? { hm. We
cannot explain this here. It is a consequence of a rather difficult calculation
due to McCallum and Sharifi. Actually, it seems reasonable to believe that
this same statement will be true for any prime p satisfying p||hr. And so,
let us assume that we have |Ap/| = |Ap| = p in the rest of this remark. The
map Ngyp : Ap — Ap, which is certainly surjective, would then be an
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isomorphism. As pointed out in remark 1.2.10, it follows that Jg r has a
non-trivial kernel. In fact, it is clear that ker(.Jp /) = Ap in this example.

Ezxample 2. This is a much simpler example. Let [ be a nonprincipal ideal
whose class ¢ € Clp has order p. Then I? = («), where a € F*. Now
we let F' = F(¥/a). Let I' = Jpyp(I). Then I' = ¢/aOp since both
ideals have the same p-th power. Hence ¢ € ker(Jm/r). We again have
ker(.Jp//r) = Ap. Note that the field F” just defined is a cyclic extension of
F' of degree p, but is not uniquely determined by the class ¢, or even by the
ideal I. For example, one can choose a different generator an for the ideal
I where n € O5. Under our assumptions, F' has only one unramified, cyclic
extension of degree p, namely the p-Hilbert class field L of F', and so it is
clear that we can obtain a ramified extension F'/F in this way. One sees
easily that the only prime that can be ramified is P. We will return to this
kind of example in section 4, showing that one can arrange for F' = F(¥/«)
to be Galois over Q. Of course, it is easy to verify that L is Galois over Q.
As we will then see, the Galois groups Gal(F’/Q) and Gal(L/Q) will have
different structures, making it obvious that F’ # L.

The final results in this section concern an important special class of
fields.

Definition 1.2.12. An algebraic extension F' of Q is called a CM-field if F' is
totally complex and contains a totally real subfield Fy such that [F : F,] = 2.

The simplest examples of CM-fields are complex, abelian extensions of Q.
For example, let m > 3 and let (,, denote a primitive m-th root of unity.
Then F = Q((,,) is a CM-field and F; = Q((,, + ¢,,}) is its maximal totally
real subfield. The letters CM stand for “complex multiplication,” referring
to the fact that the endomorphism ring of an abelian variety with complex
multiplication is an order in a CM field. In particular, the endomorphism ring
of an elliptic curve F is either just Z or an order in an imaginary quadratic
field. In the latter case, we say that F has complex multiplication.

Let A = Gal(F/F,), a group of order 2. Thus, A = {1,4}, where §
denotes complex conjugation. (To be more precise, § is the automorphism
of F' obtained by choosing any embedding F' — C and restricting complex
conjugation to the image of F.) The group A has two characters: the trivial
character ¢y, and the nontrivial character ¢;. Let € denote either of these
two characters. Suppose that A is an abelian group and that A acts on
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A. We let A denote the maximal subgroup of A on which A acts by the
character e. That is, A0 = A% and AV is the kernel of the endomorphism
Na = 1+ 6. If we assume that A is finite and has odd order, then it is
easy to see that we have the direct product decomposition A = Alc0) x Ale1)
This is also true just under the assumption that A is a torsion group and has
odd exponent. In general, it is clear that A1) N Al©) = A[2]2 and this will
be nontrivial precisely when A[2] is nontrivial. Also, it is easy to see that
2A C Alo) 4 Ale),

Suppose that F'/F is a finite Galois extension and that both F' and F’
are CM-fields. Then one can show that F’ /F, is Galois and that F' = FF,.
Thus Gal(F'/F") can be identified with A = Gal(F/F) and then we have

Gal(F'/F,) 2 A x G

Thus, both A and G act on the groups Clw, O}, P, and Fp, and
the actions commute with each other. There is also an action of A on
H'(F'/F,0%). All of the maps and isomorphisms in proposition 1.2.3 are
A-equivariant.

One useful consequence of this is the following result.

Proposition 1.2.13. Suppose that F'/F is a finite Galois extension, that
both F and F' are CM-fields, and that n = [F' : F| is odd. Let ug denote
the group of roots of unity in F'. Then

H{(F'JF,03)) = HI(F'|F, ju)
for i > 0. If n is even, then there is a homomorphism
H'(F'/F, ) — H(F'/F, 0%

whose kernel and cokernel are of exponent 2.

Proof. Suppose that A is any abelian group which has an action of the
group A X G, where G is a finite group and A has order 2. Let ¢ be one
of the two characters of A, and € the other. For any ¢ > 0, A acts on the
cohomology group H*(G, A). This is induced by the action of A on G by
inner automorphisms, which is trivial, and by the action of A on A. Clearly,
A is a G-invariant subgroup of A. It is also clear that A acts on H'(G, A®))
by the character e. Therefore, we have a map

HY(G, A9 — HI(G, A)©. (11)
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This map is obviously an isomorphism when ¢ = 0. For ¢ > 1, the kernel is a
quotient of H* (G, A/A) and the cokernel is a subgroup of H*(G, A/A(®).
Now A acts on A/A( by the character €. Therefore, A acts on the kernel and
cokernel of (11) by both € and €' and therefore those groups have exponent
2. But H(G, A®) and H'(G, A) are also killed by |G| if i > 1 and hence
(11) will be an isomorphism if G has odd order.

Now take A = Oy,. By assumption, G = Gal(F'/F') has odd order. Note
that

(O3 = ker(Npr/py + O — Op) = ppr

The first equality is clear by definition. The second follows from the fact that
O}, and O;Sr have the same rank. The statements in the proposition follow

immediately. |

The above proposition allows us to prove that ker(Jg /) C Aﬁ?) under
certain hypotheses.

Proposition 1.2.14. Suppose that F'/F is a finite p-extension, where p is
an odd prime, and that both F' and F' are CM-fields. Suppose that either (i)
F does not contain p, or (it) F' = F(uym) for some integer m. Then the
map (e1) (e1)

ARV — AL

induced by Jgr r is injective. Thus, ker(JF,/F) C Agfo).

Note that Agﬁ(’) = Ap, and that the final conclusion in the proposition implies
that ker(JF//F) = ker(JF_I’_/F+)

Proof. First note that the both the map ker(Jp r) — PS%/Pr and the
isomorphism P& /Pr = H'(F'/F,0},) are A-equivariant. The first map
is injective. Therefore, by proposition 1.2.13, it is enough to show that
H'(F'/F,um) = 1. In case (i), the p-primary subgroup of ur = u% is
trivial. Since G is a p-group, it follows that the p-primary subgroup of pup is
trivial, and hence so is H'(F"/F, uz). In case (ii), we can assume that the p-
primary subgroup of pp is p,m. The assumption means that G acts faithfully
on this group. The proposition is then a consequence of the following lemma.

Lemma 1.2.15. Let p be an odd prime. Suppose that G and A are cyclic
p-groups and that G acts faithfully on A. Then HY(G,A) = 1. for all i > 1.
The statement 1is true for p = 2 if G is a cyclic 2-group of order at least 4.
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Proof. Since G is cyclic, the cohomology is periodic. It is enough to verify the
statement for 4 = 1,2. Since A is finite, the Herbrand quotient is trivial, and
so it is enough to consider s = 1. Suppose that |G| = p" and that |A| = p™.
We can identify A with Z/p™Z and Aut(A) with (Z/p™Z)*, which we regard
as a quotient group of Z;. That is, any automorphism of A can be realized
as multiplication by a p-adic unit. Let o be a generator of G. Suppose that
o acts on A as multiplication by s € Zy. Note that s = 1 (mod pZ,) if p
is odd and s> = 1 (mod 8Z,) if p = 2. In either case, s is not a root of
unity. The norm map Ng on A is multiplication by ®(s), where ®(z) is the
cyclotomic polynomial 1+ z + ... +2P"~!. If 7 denotes the endomorphism of
A defined by o — 1, then 7 acts on A as multiplication by s — 1.

Let a = ord,(®(s)) and b = ord,(s — 1), where ord, denotes the p-adic
valuation, normalized so that ord,(p) = 1. We can assume that n > 1 if
p is odd. By assumption, n > 2 if p = 2. The lemma (for i = 1) asserts
that ker(Ng) = im(7) and this is equivalent to the equality a + b = m. But
®(x)(xr — 1) = 27" — 1, and so one must just verify that

ord,(s”" —1) =m
This is true because G acts faithfully on A, which implies that
ord,(s”" — 1) > m, ordy (s —1) < m

But one sees easily that ord,(s”" — 1) = ord,(s*" —1)+1forn > 1if pis
odd and for n > 2 if p = 2. Tt follows that ord,(s*" — 1) =m [
Remark 1.2.15. We have stated the lemma to include p = 2. In that case,
the argument shows that the kernel of the map Agfl) — Ag,f,l) is of exponent
2. Thus, A acts on that kernel by ¢; too.

1.3 Genus theory

Let F'/F be an arbitrary cyclic extension and let o be a generator of G =
Gal(F'/F). The group Clg /C15," is sometimes called the “genus group” for
F'/F (or the group of “genera”). We will denote it by G r. The proof of
proposition 1.1.3 shows that Gp/p = Gal(K/F'), where K is the maximal
abelian extension of F' contained in the Hilbert class field H' of F'. The
field K is often referred to as the “genus field for F'/F.” Note that if one
assumes that exactly one prime of F' is ramified in F'/F and that this prime
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is totally ramified, then propositions 1.1.1 and 1.1.3 imply that Gp//p = Clp.
In general, the norm map induces a homomorphism Gp/p — Clp. We
denote its kernel by Ql(f,)/ - Under the assumption that there exists at least
one totally ramified prime for F'/F, we have an exact sequence

1 — G — Gpyp — Clp — 1

Furthermore, one sees easily that every element of Qﬁ,o,)/ # has order dividing
[F': F]. Hence if F'/F is a p-extension, then gg’)/F is a p-group.

The reader may be familiar with genus theory for quadratic fields, which
has its roots in the theory of binary quadratic forms developed by Gauss and
others at the beginning of the 19-th century. If F’ is a quadratic extension
of Q and o is the nontrivial automorphism of F’, then one sees easily that
o(c) = c¢ ! for ¢ € Clp:. Thus, Gprjq = Clp: /Cl3,. Its structure is described
in the following proposition.

Proposition 1.3.1. Suppose that [F' : Q] = 2. Let t denote the number of
finite primes which are ramified in F'/Q.
1. If F' is an imaginary quadratic field, then Gpr g = (Z/2Z)".

2. Suppose that F' is a real quadratic field.
If—l € NFI/Q(F,X), then QF//Q = (Z/QZ)t_l
]f—l ¢ NFI/Q(F’X), then QF//Q = (Z/QZ)t_2

Remark 1.3.2. The two cases which occur in part (2) of this proposition
can be distinguished by using the following fact for a real quadratic field F’.

Fact. We have —1 € Np/q(F'*) if and only if every odd prime ¢ ramified
in F'/Q satisfies £ =1 (mod 4).

This is a consequence of “Hasse’s Norm Theorem” which states that if F'/F
is a cyclic extension of number fields and if « € F* is a local norm at
all primes of F, then « is a global norm for the extension F'/F. How-
ever, if a € Oy, there seems to be no simple criterion for predicting when
o € Npyr(OF ). In particular, one cannot predict when —1 € Npr/q(Of)
(i.e., when H?(F'/F,05,) = 0). A sufficient condition is ¢ = 1. For then,
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proposition 1.2.3 implies that dimp, (Hl(F'/F, (’)X,)) < 1. Proposition 1.2.4
implies that H'(F'/F,OF,) = Z/2Z and that indeed H*(F'/F,Oy,) = 0.

We will prove proposition 1.3.1 later, deducing it from propositions 1.3.4
and 1.3.5. The analogous result for cyclic extensions of Q of odd prime degree
is somewhat simpler and we will prove this first. We will give two proofs to
illustrate two different approaches to genus theory.

Proposition 1.3.3. Suppose that F' is a cyclic extension of Q of degree
p, where p is an odd prime. Let t denote the number of primes which are
ramified in F'/Q. Then

gF’/Q =~ (Z/pZ)t_1

Proof. Let K be the genus field for F'/Q. Suppose that ¢q,...,¢; are the
primes which are ramified in F'/Q. If ¢ is any one of these primes, let
I, denote the corresponding inertia subgroup of Gal(K/Q). It is clear that
I,NGal(K/F') =1 and hence that I, must be cyclic of order p. It is also clear
that Gal(K/Q) is generated by Iy, ..., Is,. This implies that Gal(K/F') =
(Z/pZ)* for some u <t — 1.

To see that u =t — 1, one explicitly constructs the field K. Using either
some elementary facts about ramification theory or local class field theory,
one can verify that if £ is any one of the primes ramified in F’/Q, then either
£=por{=1 (mod p). In both cases, there is a unique cyclic extension of
Q of degree p in which only the prime ¢ is ramified: a subfield of Q(p,2) if
¢ = p, a subfield of Q(u,) if £ =1 (mod p). For each ¢;, 1 < i < ¢, let K;
denote the field just described.

The Kronecker-Weber theorem (which states that every finite abelian
extension of Q is contained Q(u,) for some m) implies that F' C K;...K;.
Note also that the inertia subgroup I; of Gal(K;...K;/Q) for any one of the
¢;’s is of order p and that I; N Gal(K;...K;/F") is trivial. This implies that
K,..K; C K. But it is easy to see that Gal(K;...K;/F') = (Z/pZ)".
Comparing this with the inequality u < ¢ —1, it follows that indeed u =t —1
and that the field K coincides with the compositum K;...K;. [ |

A second proof for proposition 1.3.3 can be given by studying the sub-
group of Clg generated by the classes of the primes Aq, ..., \; of F' lying
above /q,....4;. For 1 < i < t, let ¢; denote the class of \;. Each of these
classes has order 1 or p and is invariant under the action of G. One shows
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that this subgroup is precisely Cl%, and is isomorphic to (Z/pZ)'*. This
can be proved directly, but we will justify it later as an easy consequence of
proposition 1.3.5. Consider the endomorphism 7 = ¢ — 1 of Clz, where o is
a generator of Gal(F'/Q). Then ker(r) = CIg, and coker(r) = Gpr/q have
the same order. Since 7 annihilates Gr//q, Ng acts on that group simply as
multiplication by p. But Ng also annihilates Grr/q and so that group is an
elementary abelian p-groups and therefore is indeed isomorphic to (Z/pZ)*!.

Returning to cyclic extensions F’ of an arbitrary base field F', the sit-
uation is somewhat complicated by the fact that O can be infinite. The
genus group Gr/p = (Clp)g has the same order as (Clp)% = CIE,, the
subgroup of G-invariant ideal classes. One obtains information about Clpg
by studying either of these groups. Both approaches will be useful in later
chapters (where we apply “genus theory” to towers of cyclic extensions). Our
arguments will take the second approach, studying the subgroup CI%,. To

be more precise, we will study the possibly smaller subgroup C’ZES] consisting
of ideal classes which contain a G-invariant ideal. Obviously, we have

Cli) = FG /PG

and so Clg,/C'lEg] = coker(Fg — CI,), which is the subject of the next
proposition.

Proposition 1.3.4. Suppose that F'/F is a finite cyclic extension. Then
there is an isomorphism

coker(}"g, — Clg/) = (O; ﬂNFI/F(F,X))/NFI/F(O;/)

In particular, if H*(F'/F,0p) = Op/Npp(OF) = 1, then every class in
C1%, contains a G-invariant ideal.

Proof. Consider the exact sequence
1= P = Fpr — Clpr — 1
This induces the following exact sequence of cohomology groups
FS — Cl% — HY(F'/F,Pp)) — HY(F'/F, Fp)

However, H'(F'/F,Fm) = 0. To see this, let Fr p denote the group of
fraction ideals of F”’ generated by the primes lying above P, where P is any
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prime ideal of F'. Note that Fp p is invariant under the action of G' and that
Fr is isomorphic to a direct sum of these subgroups, For each P, one has an
isomorphism Fpr p = Ind%(Z), where D is the decomposition subgroup of G
for any one of the prime ideals of F' lying above P and Z is given a trivial
action of D. Then by Shapiro’s lemma, one has

HY(F'/F, Fp p) = HY(D,Z) = Hom(D,Z) = 0

The assertion that H'(F'/F, Fr) = 0 follows from this.

Therefore, coker(Fg — Cl%,) =2 H'(F'/F,Pr). Using the injectivity of
the map Jp//r : Pr — Pp and the assumption that G is cyclic, generated
by o, we see that

H'(F'/F,Pp:) = ker(Np/p : Ppr — Pr)/Pai
We also have
ker (Np/r : P — Pr)) = {(a) € Pp | Npp(a) € OF}
and
Pt ={(") | ae F*}={(a) € Pw | Npr(a) € Npyr(Op)}
Hence, it is clear that N p defines an isomorphism
H'(F'/F,Pp) = (05 N Npyp(F™)) [Npyr(O5),
proving the proposition. [ |

It is sufficient to concentrate on the p-primary subgroups of the ideal class
groups, where p is a fixed prime. As before, we will let Ar and Ap denote
the p-primary subgroups of Clr and Clg, respectively. According to remark
1.2.8, the groups (A )g and A$, are both isomorphic to Ag if p{ [F' : F].
This is valid for an arbitrary Galois extension and ramification plays no role.
The isomorphisms are quite simple, given by the maps Np//p and Jpr/p. We
will concentrate in the rest of this section on the case where F'/F is a cyclic
extension whose degree is a power of p, first considering the case of degree p.

Proposition 1.3.5. Suppose that F'/F is a cyclic extension of degree p.
Then »
. ]
t—s—1 < dlme(gF,/F) < t—u
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where t is the number of distinct prime ideals of F' which are ramified in
F'/F, s = dimg, (O3 /(OF)F), and u = min(t,1).

Proof. We will use the exact sequence in proposition 1.2.3. Note that G acts
trivially on all the groups occurring there, that N annihilates them and acts
simply as multiplication by p. Hence those groups are all vector spaces over
F,. The image of the map

is C’lgg] /Jpp(Clr). Thus we have the following relationship between orders
of groups
(CL |- iy (Cle)| ™ = p - [HY(F'[F, 05)| ™" - [ker(Jp )|

Obviously, |CLg/| = |ker(Jgr/p)| - |Jprr(Clp)|. Together with proposition
1.2.4 (assuming, for p = 2, that the hypothesis there for the infinite primes
is satisfied), we then obtain the following formula

CIRl| = p'™ - |Cle| - |[H*(F'/F, 05!
On the other hand, proposition 1.3.4 shows that
H(F'[F,0)| = p" - |CIf, [CLi|
where p’ = [OF : Op N Np p(F'*)]. Thus, we obtain the formula
Ol =p' ™" - |Clp|

Therefore, \g}”)/ p| =p"717". Since v > 0, one immediately obtains the upper

bound on dimp, (g};’)/F). To obtain the lower bound, we use the fact that
|H?(F'/F,05,)| is divisible by p’. That implies that v < s according to
proposition 1.2.4.

If p = 2, the assumptions in proposition 1.2.4 may fail to be satisfied.
There may also be some infinite primes of F' ramified in F,,. One then
has to slightly modify the above calculation. If ¢,, denotes the number
of such primes, then according to a remark 1.2.6, the Herbrand quotient
h(F'/F,O},) = 2t="1. Hence, in the above argument, we get

|Clg/| — pt—(l—too)—'u . |Clp| — pt—}-too—l—v
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One then has the lower bound ¢+, —s—1 on the p-rank of CI$,, which again
implies the stated result. Note that ¢ + ¢, is the total number of ramified
primes in the extension F'/F. [

We return now to the special cases mentioned at the beginning of this
section, where we take F' = Q. The facts that hq = 1 and the unit group
Z* has order 2 simplify things considerably.

First we complete the alternative proof of proposition 1.3.3. Thus, assume
that F” is a cyclic extension of Q of degree p, where p is an odd prime. Obvi-
ously, we have H2(F'/F, O},) = 0, and so proposition 1.3.4 shows that C1%, is
generated by the classes containing ramified primes. Thus CI§, = (Z/pZ)"
for some u < t, where ¢ denotes the number of ramified primes in F'/Q.
But the classes of these ramified primes are not independent. One obtains
essentially one nontrivial relationship because Pg /Pq & H'(F'/F,O},) is
a group of order p, as follows from proposition 1.2.3 and the vanishing of
H?*(F'/F,0%,). Hence u =1t — 1.

Thus we see that CI$, 2 (Z/pZ)'~". This implies that Gp//q = Clp /CI%, !
has order equal to p'~'. Now if we regard Clp as a Z[G]-module, it is clear
that Ng € Ann(Clgr). Also, Ng acts as multiplication by p on Grr/q. There-
fore, Gpr/q has exponent p and must be indeed be isomorphic to (Z/pZ)*~.

We now prove proposition 1.3.1. Assume first that F' is imaginary
quadratic. Then N g(a) > 0 for all @ € F'*, and so proposition 1.3.4
implies that CI§, is again generated by the classes of the ramified primes.
Also, there is essentially just a single nontrivial relation between those classes
because H'(F'/F,O}.,) = Z/2Z, which is easily verified directly since O3, is
just finite. Hence C1%, = (Z/2Z)".

If F' is a real quadratic field and —1 & N g(F'*), then the classes
of the ramified primes generate CI%,, just as in the case of an imaginary
quadratic field. But this time H'(F'/F,0F,) = (Z/2Z)* by proposition
1.2.3. Therefore, there will be two independent relations between those ideal
classes, and so CI§, = (Z/2Z)" 2. Note that we must have t > 2, as we
pointed out earlier.

If -1 € Np/q(O})), then H*(F'/F,O},) = 0 and the argument is the
same as in the case where F'/Q is cyclic of odd prime degree. But if
—1 € Npjq(F"™), but & N /q(Oj), then the classes of the ramified primes
generate a subgroup of index 2 in CI%,. Also, H*(F'/F,0%,) = Z/2Z and
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H'(F'/F,05,) & (Z/2Z)*. Thus, this subgroup is isomorphic to (Z/2Z)" 2.
It follows that CI$, = (Z/2Z)" .

In all these cases, C1g, = Clp[2] and Gpr/q = Clyr/CIZ, are elementary
abelian 2-groups of the same order, and so must be isomorphic, proving
proposition 1.3.1 |

Proposition 1.3.4 has some useful consequences if F' and F' are CM-fields.

Corollary 1.3.6. Suppose that F'/F is a finite p-extension, where p is an
odd prime, and that both F' and F' are CM-fields. Let €, be the nontrivial
character of A = Gal(F'/F.) = Gal(F/F,). Suppose that either (i) F does
not contain i, or (i) F' = F(uym) for some integer m. Then

H(F')F,03)) = H(F'/F, ) = 1

and every class in (A;f,l))a contains a G-invariant ideal.

Proof. The argument is similar to that for proposition 1.2.14. One uses
proposition 1.2.13 for 7 = 2 instead of # = 1. The isomorphism in proposition
1.3.4 is A-equivariant and hence preserves the e¢;-components of the groups
in question. In case (i), H?(F'/F, ur') obviously vanishes. In case (1), one
can apply lemma 1.2.15 to see that that group vanishes. |

Corollary 1.3.7. Suppose that the assumptions in corollary 1.3.6 are satis-
fied. Let [F': F| = p™. Consider the following set of primes of F:
S ={v | v splits in F/F; and v is ramified in F' /F.}

For each v in this set, let p* denote its ramification index in F' /Fy. Then

(AG [ Tpye(AFY) = [ ] 2/p™ 2

vES

In particular, if every prime of F lying in S is totally ramified in F' /F,,

then (A;f,l))G contains a subgroup isomorphic to (Z/p"Z)".

Proof. We will apply proposition 1.2.3. The homomorphisms and isomor-
phisms in that proposition are all A-equivariant. Since G = Gal(F'/F)
is a p-group, all the groups occurring there are actually finite p-groups.
Since p is odd, the exactness of the sequence and the two isomorphisms
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are still valid if we take the e;-components of the groups. Note also that
since C1G, /Jp/r(Clp) is a p-group, it is isomorphic to A% /Jpp(Ar). The
e;-component of that group is (Ag,f}))G/JF//F(Ag,fI)). Corollary 1.3.6 implies
that the map

(Feh/ Fe) @) — (AT)C Ty p (A

is surjective. In fact, it is an isomorphism because H?(F'/F,Oy)) = 1.
Finally, the definition of S implies that for every v € S, there are two primes
of F lying above v which are permuted by A. They both have ramification
index p® in F'/F. Using the final isomorphism in proposition 1.2.3, we

obtain
(F/Fe) ) = ][ 2/p™2
veS
and so the stated isomorphism in the corollary follows. The particular case
is immediate. |

1.4 The reflection principle

Let p be a prime. Suppose that F'is a number field which contains p,. As
before, let L denote the p-Hilbert class field of F'. The idea to be pursued
in this section is that a cyclic unramified extension K of F' of degree p is
related to the ideal class group of F' in two different ways. One comes from
class field theory, the other from Kummer theory. Briefly,

1. Class field theory shows that there is a canonical surjective homomorphism
Cly — Gal(K/F). This arises as the composition of the Artin isomorphism
Clp[p™] — Gal(L/F) with the restriction map Gal(L/F) — Gal(K/F).
Thus Gal(K/F) can be identified with a certain quotient group of Clp[p™]
of order p.

2. Kummer theory shows that K = F(¥#/«), where o € F*. Since K/F is
unramified, it is clear that «Or = IP, where I € Fr. Let ¢ denote the class
of I in Clp. Then ¢ has order 1 or p. It is easy to see that the subgroup
of Clp generated by c is uniquely determined by the extension K/F. This
follows from the fact that the subgroup of F*/(F*)P generated by the coset
a(F*)? is determined by K.

The class ¢ defined in (2) can be trivial. This would be true if and only if
K = F(y/n), where n € Op. Note also that if o« € F* is such that aOp = I?,
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then the Kummer extension F(¥#/a)/F can only be ramified at primes of F’
dividing p, but is not necessarily unramified.

Suppose that A is a subset of F'* containing (F*)?. Kummer theory gives
an isomorphism

ka: AJ(F*)P —s Hom (Gal(F(VA)/F), 1) (12)

Here we let F'(v/A) denote the extension of F' generated by {¢/a | a € A}.
The map 4 is easy to define. For each oo € A, let o/ € F({/A) satisfy
o')? = a. Then one defines a cocyle ¢ with values in p, by ¢(g9) = g(¢/)//
for all g € Gal(F({/A)/F). Tt is easy to show that the cocyle class [¢] is
determined by the coset of a in A/(F*)P. The Kummer isomorphism &4 is
defined by mapping that coset to [¢]. Injectivity is straightforward to verify.
Surjectivity is a consequence of Hilbert’s theorem 90.

Suppose that A is a group of automorphisms of F' and that A is invariant
under the action of A. The extension F({/A) is then a Galois extension
of the fixed field F'2. It follows that A acts (by inner automorphisms) on
Gal(F(/A)/F). Now A also acts on p, which is given by a homomor-
phism (or character) w : A — F. Hence one has a natural action of A
on Hom(Gal(F(/A)/F), ip). One can then verify that the map k4 is A-
equivariant. In particular, suppose that A/(F*)? is cyclic. The action of
A on that group is given by a character ¢ : A — F. The action of A on

Gal(F(%/A)/F) must then be given by the character ¢ = wip~".

There is a theorem of Kummer concerning the class numbers of the CM-
field F' = Q(u,) and its maximal real subfield F'y. We will denote the class
number of F, by h}, often call the “second factor” in hg. In fact, proposition
1.1.1 implies that h}|hr. The quotient hr/h}. is called the “first factor” and
is denoted by hj. By using class number formulas, Kummer showed that if
p|h}, then p|hn. As our first illustration of the reflection principle, we will
prove the following more general statement. It concerns a CM-field F' and
we will use the same notation h7.

Proposition 1.4.1. Suppose that F is a CM-field containing 1, where p s
an odd prime. Let k be the largest integer such that py C F. Assume that
F(ppe+1)/F is ramified for at least one prime of F. If p|hf, then p|hy.

Since F'/F, is ramified at the infinite primes of F', we know that h}|hr and
so hp is an integer. One can also state the conclusion this way: p|hr if and

only if p|hz.
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Proof. Let A = Gal(F/F,) and let § denote its nontrivial element. As in
section 1.2, we let €y, €; denote the two characters of A. In the notation
defined above, we have ¢; = w. Since p is odd, we have a direct product
decomposition

Clp[p™®] = Clp[p®] ) x Clp[p™]« (13)

Remark 1.2.8 implies that Clp[p™®](©) 2 Clp, [p>°] which has order h%pl, the

power of p dividing h}.. Hence the order of Clp [poo](“) is equal to the power of
p dividing hj. Thus, we must show that Clx[p>®]0) # 1 = Clp[p>]©) #£ 1.

Assume that Clx[p>®](® # 1 . Hence there exists an unramified, cyclic
extension of F of degree p. Let K be the compositum of that field and
F. Thus, K/F is an unramified, cyclic extension of degree p, and K/F, is
abelian (in fact, cyclic) of degree 2p. We have K = F(¥/«) for some a € F*.
As mentioned above, « determines an ideal I satisfying I? = («) and the
corresponding ideal class ¢ € Clp[p].

Let A = Gal(F/F,) and let § denote its nontrivial element. As in section
1.2, we let €, €; denote the two characters of A. In the notation defined
above, we have ¢, = w. Taking A to be the subgroup of F* generated by
o and (F*)P?, so that K = F(¥/A), note that A acts on Gal(K/F) by e.
Therefore, by (12), it follows that A acts on the cyclic group A/(F*)P by
€1- This means that 6(a) = a~!4?, where 8 € F*. Therefore, 6(I) = [71(5)
and hence 6(c) = ¢c™!. That is, ¢ € Clp[p]®!) in the notation of section 2. We
must prove that ¢ # 1.

If ¢ = 1, then we would have I = (), where v € F*. Thus, a = Pn,
where n € OF. We then see that §(n) = n~'vP, where v € Q. Now we nake
the following observation: For either character € of A, the obvious map

(05) — (05/(05))"

is surjective. This is easily verified using the facts that |A| = 2 and that p is
odd. As a consequence, we see that n = (&P, where £ € OF and §(¢) = (.
This means that Ng/r, (() = 1 and hence ( is a root of unity in F. However,

K = F(¢/a) = F(g/) = F(/9)

and since this extension is nontrivial, it must be F'(u,x+1), a contradiction
to our assumption since K/F is unramified. Thus, ¢ # 1 and so Clz[p](®) is
indeed nontrivial. [ |
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The argument just given shows more. One can adapt it to obtain the follow-
ing inequality
dimg, (Clp[p]) < dimp, (Clp[p]") (14)

under the assumptions of the proposition. Proposition 1.4.2 below will be a
refinement of this inequality.

Consider the following situation. Suppose that F' is any number field
containing y, and let A be a group of automorphisms of F such that p ¢ |A|.
Let ¢ be any irreducible character of A over Q,, by which we mean the
character of an irreducible representation p : A — Autq,(V,,), where V,, is a
finite-dimensional vector space over Q,. Let d, = dimgq,(V,), the degree of
the character .

Onme of the irreducible characters of A is w, giving the action of A on p,.
This description defines a homomorphism A — F, but the reduction map
Z; — F has a canonical splitting identifying F ¥ with the group of p,_; of
(p — 1)-st roots of unity in ZX. Thus, we can identify w with a character of
A with values in Z7, the character of a 1-dimensional representation space
V,. We can make such an identification whenever we have a homomorphism
A—F.

Let ¥ be the character of A corresponding to the representation space

Vy = Hom(V,,, V),

which is easily seen to be irreducible over Q,. Of course, we also have
V, = Hom(Vy, V,,). We refer to ¢ as the w-dual of ¢. Note that ¢ and 9
have the same degree. If they are 1-dimensional, then we have the simple
relationship gy = w.

We will let Irra(Q,) denote the set of irreducible characters of A over
Q,. If o € Irra(Q,), the idempotent for ¢ in the group ring Q,[A] is defined
by

1 _
%= TA| Z p(6)7'6 (15)
Note that e, € Z,[A] since (p,|A]) = 1. The group ring Z,[A] is a direct
product of the ideals generated by the e,’s for ¢ € Irra (Q,).

Suppose that U is any Z,[A]-module. Then we have the following decom-
position as a direct product of Z,[A]-submodules:

v= [ uw¥ (16)

wEIrra(Qyp)
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where U¥) = e,U. If ¢ is 1-dimensional, then one also has the following
definition:

U =e,U={acU]|ba)=p()aforall § € A} (17)

We refer to (16) as the A-decomposition of U and to the submodule U as
the p-component of U.

In particular, suppose that U is an elementary abelian p-group. We
can regard U as a representation space for A over F,. Suppose that it is
irreducible. Then U = U for a unique ¢ € Irra(Q,). Conversely, if
¢ € Irra(Qp), one can find a Zy-lattice T, C V,, which is A-invariant. Then
U = T,/pT, is irreducible and satisfies U = U¥). We denote this space by
W,. One has dimg,(W,) = d,. It is not hard to see that this construction
Vi, ~» W, defines a 1-1 correspondence between the sets of irreducible rep-
resentations for A over Q, and over F,,. Also, if V' is any finite-dimensional
representation space for A and T is a A-invariant Z,-lattice in V', then T'/pT
is isomorphic to a direct sum of the W,’s, V' is isomorphic to a direct sum of
the V,,’s, and the corresponding multiplicities are equal.

The following result is the main theorem of this section. It is an illus-
tration of the reflection principle. The structure of O /(Of)P as a repre-
sentation space for A over F, plays a role, specifically the F,-dimension of
the p-component for an irreducible character ¢. As we will discuss later, the
multiplicity of W, in O} /(Of)? can be determined, in principle, and hence
so can the dimension of (O} /(OF)P)).

Proposition 1.4.2. Suppose that A is a group of automorphisms of a num-
ber field F' and that p is a prime not dividing |A|. Assume that p, C F.
Suppose that ¢ is an irreducible character for A over Q, and that ) is the
w-dual of ¢. Then

dimg, (Clp[p]®) < dimg, (Clp[p]?) + dimg, (O /(0F)F)¥)

Proof. Let E = FA. Then A = Gal(F/FE). Consider the t-component
Clp[p™]™®) in the A-decomposition of Clr[p>]. The F,-dimensions of Clx[p]®)
and Clp[p®]™¥) /pClp[p>]® are equal. Denote this dimension by ry. The
Artin map for L/F then determines an extension Ky /F such that K, C L,
K,/ E is a Galois extension, and Gal(Ky/E) & Clg[p]®) as F,-representation
spaces for A. Each is isomorphic to a direct sum of ry/dy copies of Wy.
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Now Ky, = F(3/A,) for a certain subgroup A, of F* which contains
(F*)? and is A-invariant. The F,-representation space A,/(F*)? has di-
mension r,, and is a direct sum of ry/d,, copies of W,,. This follows from (12)
and is the reason we use the subscript ¢. The fact that K, /F is unramified
implies that if o € A,, then aOp = I? for some fractional ideal I of F. Let
¢ denote the class of I. Of course, if @ € (F*)?, then ¢ = 1. Thus, we can
define in this way a homomorphism

Ap/(F7)P — Clrp] (18)

which is easily seen to be A-equivariant. Thus the image of (18) is a subgroup
of Clr[p]*¥) and hence its F,-dimension is bounded above by dimg, (Clr[p])*)).

The kernel of (18) is of the form B,/(F*)P, where B, is some subgroup
of A,. Suppose that « € B,. Then ¢ = 1 and I = (y), where v € F*.
Therefore, o = 7?1, where n € Ox. This implies that B, /(F*)? is contained
in the image of the map

(0505 — (F* /(7)) (19)

and hence dimg, (B,/(F*)?) < dimg, ((O5/(0F)?)®)). The inequality in
the proposition now follows. |

To deduce the inequality (14) from proposition 1.4.2, one needs just one

additional observation. Just take ) = €, ¢ = €;. The group ((’);/((9;)”)(61)
is cyclic and is generated by the coset of a primitive p*-th root of unity (.
However, since F({/C) is assumed to be ramified, the image of the coset of ¢
under the map (19) isn’t contained in A, and so we get the slightly better
inequality (14).

Another consequence is a theorem proved in the early 1930s, due to
Scholz, which is for the case p = 3.

Proposition 1.4.3. Let d > 1 be a squarefree integer. Then

Proof. In this case, we consider the biquadratic field F = Q(v/d,v/—3d),
a CM-field with maximal real subfield F, = Q(v/d). The first inequality
follows from proposition 1.4.1. To prove the second inequality, we consider

38



A = Gal(F/Q), a group with four characters. The nontrivial characters
are ¥, ¢, and w. They factor through the quotient groups of A corre-
sponding to the three quadratic fields B, = Q(v—-3d), E, = Fy, and
E, = Q(us), respectively. We denote the trivial character by €. Consider
the A-decomposition of Clp[3%]:

Clp[3%] = Clp[3%]W) x Clp[3%]%) x Clp[3®]“) x Cly[3%])

One can use remark 1.2.8 to identify each of these components. First of all,
Clp[3%°](<0) = Clg[3%°], which is obviously trivial. Then, similarly, we have

Clp[3*|%) = Clg,[3°], Clp[3*]%) 2 Clf,[3%], Clp[3®]®) = Clp,[3%].

The w-component is also trivial. Proposition 1.4.3 gives an inequality for the
3-ranks of the other two A-components. The unit group Oj. has a very simple
structure, namely p13 and the fundamental unit of F, generate a subgroup of
index a power of 2. It follows that dimg, ((OF/(05)*)®)) = 1. One obtains

dimg, (Cl[3]™) < dimp, (Clx[3]®)) + 1

and the second inequality in the proposition then follows. [ |

As we mentioned earlier, one can evaluate dimg, ((OF/(O5)?)¥)) in prin-
ciple. That dimension is determined by the representation space Vo; =

Of ®z Q, for A and the torsion subgroup up of Op. For the contribution
from pp, note that pp/uh is an Fy-vector space of dimension 1 and A acts
by w. Its contribution to the dimension is 1 if ¢ = w, and 0 otherwise.
Now Tox = (O /ur) ®z Zy is a A-invariant Zy-lattice in Vi« and therefore
the multiplicity of W, in To; /pTO; is the same as the multiplicity of V,
in Vix. Denote that multiplicity by m(p(VO;). Then the F,-dimension of
(05 /(0F)P) @) is equal to my(Vox)dy if ¢ # w, and my, (Vox )dy+1if ¢ = w.

In principle, the isomorphism class of V,x, and hence the multiplicities of
each of the V,,’s in that representation space for A, can always be determined.
One could take a Galois extension F’ of Q containing F. Then A is a
subquotient of A’ = Gal(F'/Q) and Vox = OGSII(F’/ ) as representation
spaces for A. The action of A on that subspace can be studied in terms of
the representation space Vog, for Gal(F'/Q). Therefore, it seems sufficient

to consider a finite Galois extension of Q and so we will simply assume that
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F/Q is Galois. The following theorem is rather well-known. After recalling
the proof, we will describe how to determined the multiplicity of V,, in Vo;-

Proposition 1.4.4. Suppose that F' is a finite Galois extension of Q and
let A = Gal(F/Q). Let v be an infinite prime of F' and let A, denote the
decomposition subgroup of A for v. Suppose that €y is the trivial character
of A, and g s the trivial character of G. Let Vo; = O0f ®z Q. Then

Vox @ Vi, & Indﬁv (€0)

as representations spaces for A.

Proof. The isomorphism will be proved by showing that the two represen-
tations of A have the same character. Both representations can be realized
over Q, but the character is determined by a realization over any field. The
argument depends on the well-known proof of Dirichlet’s unit theorem. The
completions F, of F' at the infinite primes v are either all isomorphic to R
or to C. In either case, one defines a log map from F,* onto R. One then
identifies O /pup with a Z-lattice in a certain subspace of [, R of codi-
mension 1. This map is A-equivariant. The R-vector space HU|OOR is just
the permutation representation determined by the action of A on the set
of infinite primes of F. This is isomorphic to IndX (e), considered as an
R-representation space for A. Thus, one has an injective map

05 ®z R — Ind2 (e)

and the cokernel is just the trivial representation of A over R. The character
of the representation is thus determined. As we mentioned, this is sufficient
to prove the stated isomorphism. |

Obviously m%(VO;) = 0. If ¢ # g, then m(p(VO;) is just the multi-

plicity of ¢ in Indﬁv (€0). Now V, ®q, Qp may be reducible, a direct sum of
absolutely irreducible representations spaces, each occurring with a certain
multiplicity. Suppose that £ is the character of one of the direct summands,
a representation space Vg for A over Qp, and let s denote the corresponding
multiplicity. The quantity s¢ is the Schur index for £ over Q, and actually
depends only on ¢ and not on the choice of £. All the characters £ occurring
in ¢ are conjugate over Q,. If mg (Indﬁv (60)) denotes the multiplicity of V
in Ind% (o), then my,(Vx) = mg (Indﬁv (€0))/s¢, assuming that ¢ # ¢@q.

X
F
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One can determine my (Indﬁv (60)) by using the Frobenius reciprocity law.
Let de = dimap(Vg). Note that A, has order 1 or 2. Let d{ and d; denote the
multiplicities of ¢y and ¢, (if A, has order 2), respectively, when we regard
Ve as a representation space for A,. Thus, d¢ = d; + d; . According to the
Frobenius reciprocity law, the multiplicity of £ in Indﬁv(eo) coincides with
the multiplicity of € in £|a,. That is, we have m¢(Ind} (ep)) = dy .

If F is totally real, then d} = d¢. If F' is a CM-field, then any irreducible
character ¢ is either totally even or totally odd, i.e., either d = d¢ or de = dg.
In the important special case where A is abelian, and ¢ is an irreducible
character for A over Q,, then each £ occurring in ¢ is 1-dimensional and
occurs with multiplicity 1. In that case, we have m(p)(Vox) = 1 or 0,
depending on whether ¢ is even or odd.

We now consider the field F = Q(u,) and A = Gal(F/Q). The irre-
ducible characters of A over F,, are the powers w’, 0 <i < p—2.

Proposition 1.4.5. Suppose that p is an odd prime, that 2 <1, 7 <p—2,
that i is odd, and that i +j =1 (mod p — 1). Then

dimg, (Clx[p“") < dimg, (Clp[p)“") < dimg, (Clp[p]“") + 1.

Also, the w° and w! components of Clg[p] are trivial.

Proof. First of all, note that i + j = 1 (mod p — 1) implies that w'w’ = w.
Suppose that 4 is odd, 1 < i < p—2, and let v = w/, ¢ = w'. Then
u, = 01if 4 > 1, u, = 1if 4 = 1. But when 7% = 1, one can observe that
F(u,2)/F is a ramified extension. Thus, in all cases, we get the inequality
dlmF (CZF[ ](oﬂ ) S dlme(ClF[p](w’))

To get the second inequality, take ¢ = w', ¢ = w’. The structure of
O ®z Q, is rather simple. Each nontrivial even character of A occurs with
multiplicity 1. That is, u, = 1if j # 0, u, = 0 if ] = 0. We get the second

inequality as stated. If 7 = 0, note that ClF[p] = Cl%. Remark 1.2.8
identifies this group with ClQ[p] which is trivial. Hence Cl F[ ]@" is trivial
too. |

We will return frequently to the field F' = Q(u,) later in this book.
It will be one of our most important examples. Proposition 1.4.5 already
touches on one interesting question: what can one say about the dimensions
of the various components in the A-decomposition of Clg[p| ? There is an
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important criterion for the nontriviality of the w’-component when i is odd,
the Herbrand-Ribet theorem. It involves the Bernoulli numbers B,, which
are defined by the following power series expansion

The Bernoulli numbers are nonzero rational numbers for even m > 0. It is
known that B,, is p-integral if m is not divisible by p — 1. We will simply
write p| B, when p divides the numerator of B,,.

Herbrand-Ribet Theorem. Suppose that p is an odd prime. Assume that
1 and j are integers in the range 2 < 1, j < p — 2, that © is odd, and that
i+j=1 (modp—1). Let F = Q(up). Then

Clp[p]“) £1 < p|B;

We will discuss the proof of this theorem later. It is a refinement of Kummer’s
famous criterion for irregularity:

Kummer’s Criterion. The class number of F' = Q(u,) is divisible by p if
and only if p|B; for at least one even j in the range 2 < j < p — 2.

To explain the connection with the Herbrand-Ribet theorem, suppose first
that p|hp. Then CZF[p](“’z) # 1 for at least one 7 in the range 0 < i <p — 2.
According to proposition 1.4.5, we know that 7 # 0 or 1 and that 7 can be
taken to be odd. Herbrand proved that p| B; where j = p—1, an even integer
in the range 2 < j < p—2. Ribet proved that, conversely, if p| B, for an even
j in the stated range, then C’lp[p](‘"i) #1fori=p—j.

As an example, let p = 37, the first irregular prime. Then 37|Bjg, but
37 { B, for the other even values of j, 2 < j < 34. The Herbrand-Ribet
theorem then asserts that Clp[37]“") # 1 and that the w’-component is
trivial for the other odd values of 7. For an even character w’, proposition
1.4.5 implies that Cl[37]“") = 0 except possibly when j = 32. It turns out
that Clp[37]“") = 0 too. This is so because pt he, .

In general, it seems reasonable to conjecture that Clp[poo](“’i) is a cyclic
group, or equivalently, that dimp, (Cl r[p] (“’l)) =1, for all odd ¢’s. A sufficient

condition for this to be so is that Clg|[p] (@) = 0 for all even j’s, as proposition

42



1.4.5 implies. There is no known example where an even component in
Clr[p] is nontrivial. It may never happen, an assertion often referred to as
Vandiver’s conjecture. We can state it in an equivalent form as follows:

Vandiver’s Conjecture. Let F' = Q(u,). Thenpthp, .

This conjecture has been verified for all p < 16,000,000. For all of these
primes, it turns out that the nontrivial components Clp[p>®]“") are all cyclic
of order p.

A useful consequence of Vandiver’s conjecture concerns the structure of
Ap = Clg[p™] as a Z,[A]-module. It follows immediately from the above
remarks.

Proposition 1.4.6. Suppose that F' = Q(u,). Let A = Gal(F/Q). Assume
that h is not divisible by p. . Then Ap is cyclic when considered as a Z,[A]-
module. That is, Ap = Zy[A]/I, where I is a certain ideal in Z,[A].

We will have a lot to say about this ideal [ in later chapters.

We now consider an important variation on proposition 1.4.2, a more
precise illustration of the reflection principle. Suppose that F'is a number
field, p is a prime, and the hypotheses in proposition 1.4.2 are satisfied. Let
M denote the compositum of all abelian, p-extensions of I’ which are ramified
only at primes if F' above p. Let X = Gal(M/F). Note that the p-Hilbert
class field L of F'is contained in M. Also, M is obviously a Galois extension
of F2 and so A acts on X. The next result concerns the A-decomposition
of X/X?. Let S, denotes the set of primes of F' lying above p and let Opg,
denote the ring (’)F[%]. The group of S,-units of F, which is defined to be

(9;, Sy will play a role. Also, we let A’ denote the p-ideal class group of that
ring. This is isomorphic to Ar/Bp, where By is the subgroup of ideal classes
in Ar which contain a product of primes in S,. Note that A acts on both
Ors, and Af.

Proposition 1.4.7. Suppose that the assumptions in proposition 1.4.2 are
satisfied. Then

dimp, ((X/X?)") = dimp, (Ax[p]”) + dime, ((0Fs,/ (055, ))®)

Proof. We first make the following observation. Suppose a@ € F*. Then
F(¥/«a) C M if and only if plord,(«) for all finite primes v of F' such that
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v ¢ Sp. This last condition means that aOr g, = I?, where I is a fractional
ideal for Op 5, . Let A C F'™* denote the set of such o’s. Thus the compositum
of all cyclic extensions of F' of degree p and unramified outside S, is F'(¥/A).
We have

X/X? = Gal(F(VA)/F) = Hom(A/(F* )", )

These isomorphisms are A-equivariant.
Now we also have the following exact sequence

1— 0% /(055 )P 13 AJ(FX)P -2 Allp] — 1

where the map f is induced by the inclusion O;,s,, — F* and the map ¢
is defined as follows. If o € A, then write aOps, = I” as above. Let c be
the class of I in the class group for Opg,. Clearly, c € A%[p]. We define
g(a(F ><)p) = c¢. The fact that g is a well-defined, surjective homomorphism
is easily verified. Also, a represents a coset in the kernel of ¢ if and only if
o = [Pn, where n € O;,s,,a which proves the exactness.

The maps f and g are obviously A-equivariant and the exact sequence
splits because p{ |A|. We have isomorphisms

(X/XP)®) = Hom(A/(F*)?, 1)) = Hom(A/(F*)")'¥), up)
Now A/(F*))® 2 (03 /(055 7)) x AL[p]¥). Proposition 1.4.6 then

follows. u

Returning to the case where F' = Q(u,) and A = Gal(F/Q), we have the
following result. The field M and the Galois group X are as defined above.

Corollary 1.4.8. Under the assumptions of proposition 1.4.5, we have
dimp, ((X/X7))) = dimg, (Clp[p)©"),

dim, ((/X7))) = dimg, (Cle[p] ) +1.
Also, dimg, ((X/X?)“)) = dimg, ((X/X?)“)) = 1.

Proof. This follows easily from proposition 1.4.7. One just notes that
since the prime of F' lying above p is principal, we have Ap =2 A%. Also,
dimp, ((O;,SP/(OI?’SP)”)(“’)) = 1if ¢ = w’/ where j is even or if j = 1. This
dimension is 0 otherwise. |
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As an illustration, assume that hg’) = pin corollary 1.4.8. Thus, Clz[p]“")
is nontrivial for exactly one 7. That value of + must be odd. If L denotes
the p-Hilbert class field of F', then L/Q is Galois, Gal(L/F) is cyclic or or-
der p, and A = Gal(F/Q) acts on Gal(L/F) by the character w’. Now the
corresponding j is even and w/w’ = w. The character w’ is the only non-
trivial, even character of A for which (X/pX)®") is nontrivial. Furthermore,
(X/pX)“) is cyclic of order p. Thus, there is a unique subfield N of M
such that N/Q is Galois, Gal(N/F) is cyclic or order p, and A = Gal(F/Q)
acts on Gal(N/F) by the character w’. Also, N = F(¥/a), where « is in the
group A defined in the proof of proposition 1.4.7. The coset of o inA/(F*)P

is contained in (A/(F*)?) “") 1t follows that the fractional ideal () for Op
is of the form I? where [ is a non-principal ideal of Fr. This explains a
remark that we made before concerning example 2 in Remark 1.2.11.

If we apply a version of Nakayama’s lemma (lemma 1.5.3 to be proved
later), we can say that w’ is the only nontrivial, even character for which
X @) is nontrivial. Furthermore, since (X/pX )@ is eyclic of order p, lemma
1.5.3 implies that X“") is either a finite cyclic p-group or isomorphic to Zy,.
Although it is quite nontrivial to prove, it turns out that X CORT finite, a
consequence of a proposition to be proved in chapter 3.

1.5 Unramified Galois Cohomology

Let F' be a number field and let p be a prime. We will introduce an object in
this section which can be regarded as a generalization of Clr[p™] (or, to be
more precise, the Pontryagin dual of that group). Let H be the Hilbert class
field of F'. The Pontryagin dual of Gal(H/F) is Hom(Gal(H/F),Q/Z). This
can be viewed as a subgroup of the Galois cohomology group H'(Gr, Q/Z),
where we are letting G act trivially on Q/Z. To be precise,

H'(Gp,Q/Z) = Hom(Gr, Q/Z) = Hom(Gal(F*/F), Q/Z)

A homomorphism ¢ : Gal(F®/F) — Q/Z factors through Gal(H/F) if and
only if the restrictions of ¢ to the inertia subgroups of Gal(F®/F) corre-
sponding to all the primes of F' are trivial. We denote this subgroup by
H! (Gr,Q/Z). Tt can be identified with the Pontryagin dual of Clr by
using the Artin isomorphism Artyp.

We always assume that cocycles or homomorphisms are continuous. The
topology on Q/Z is discrete and so “continuous” means “locally constant.”
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Since the topology on any Galois group G is compact, cocycles or homomor-
phisms from G to a discrete group such as Q/Z will have only finitely many
values and will factor through a quotient group G/N where N is an open,
normal subgroup of G.

The p-primary subgroup of Q/Z is isomorphic to Q,/Z,, where Z, de-
notes the p-adic integers and Q, denotes the fraction field of Z,. Assume
that the action of Gy on Q,/Z, is trivial. The p-primary subgroup of
H} (Gp,Q/Z) can then be identified with H.  (Gr,Q,/Z,). This is iso-
morphic to Hom(Gal(L/F), Q,/Z,), where L denotes the p-Hilbert class field
of F'. We will study a natural generalization, where we replace the trivial
Galois module Q,/Z, by any group D = (Q,/Z,)% which has a continuous
action of Gr. We consider D as having the discrete topology. Note that the
Pontryagin dual Hom(D, Q,/Z,) of D is isomorphic to Z¢, a free Z,-module
of rank d. We express this fact by saying that D is a cofree Z,-module and
that its Zy-corank is d.

Given such a D, the subgroup D[p"] (for any n > 0) is isomorphic to
(Z/p"Z)? as a group and has a certain action of Gp. That action corresponds
to a homomorphism Gp — GL4(Z/p"Z). We can regard D as the direct
limit of these finite Galois modules. We define the “Tate-module” T for D
to be the inverse limit:

T = lim Dlp']

where the map D[p™] — D[p"| for m > n > 0 is multiplication by p™".
Then T is a free Z,-module of rank d which has a continuous Z,-linear action
of Gr. That action is given by a homomorphism pp : Gp — GL4(Z,). We
can also define a vector space V = T ®z, Q,. This is a topological vector
space over Q, of dimension d, and so has the topology of Qg. One then has
a continuous, Q,-linear action of Gy on V.

If we start instead with such a finite-dimensional Q,-representation space
V for G, it is not hard to prove (using continuity and the compactness of
Gr) that V contains a free Z,-module T of rank d = dimg, (V') which is
Gp-invariant. One could then take D = V/T as the corresponding discrete
G p-module.

In general, suppose that R is a commutative ring and that we have a
homomorphism p: Gp — GL4(R). The kernel will a normal subgroup N

of G and the fixed field ol will be a certain Galois extension of F' which we
refer to as the “the extension cut out by p”. For example, if pp is as described
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above, then we can take R = Z,. We denote the extension cut out by pp by
F(D). Thus, Gal(F(D)/F) is isomorphic to a subgroup of GL4(Z,), namely
im(pp). Now pp is a continuous map, Gal(F(D)/F) is compact, and hence
im(pp) is a closed subgroup of GL4(Z,). Such a subgroup is known to be a p-
adic Lie group and so one could say that F'(D)/F is a “p-adic Lie extension”.
Of course, it can be an infinite extension. For any n > 0, we can consider the
represention of Gg on D[p"|, where we take R = Z/p"Z. This is the reduction
modulo p” of pp. The field cut out by this representation is a finite extension
of F', denoted by F(D[p"]). Note that F'(D) = {J,~, F(D[p"]). We will use
the notation Ram(D) for the set of primes of F' which are ramified in the
extension F(D)/F. Thus, if v is a prime of F', then v € Ram(D) if and only
if the image of the inertia subgroup of G for a prime of F lying above v is
nontrivial. We will say that D is finitely ramified if Ram(D) is a finite set.

Consider the Galois cohomology group H'(Gp, D). The subgroup of
H(Gr, D) that is referred to in the title of this section can be defined roughly
as the group of “everywhere unramified cocycle classes” and will be denoted
by H.,..(F,D). We will make this definition more precise.

For every prime v of F', finite or infinite, we have the natural embedding
F — F,, where F, denotes the v-adic completion of F'. This can be extended
to an embedding of F < F,. The choice of this embedding will not be im-
portant. We then have the natural restriction maps G, — G arising from
the above embeddings. Let I, denote the inertia subgroup of Gp,. Thus
Ip, = Gal(F,/F*"), where F*"" denotes the maximal unramified extension
of F,,. We get homomorphisms

H'(Gp,D) — H'(Gp,, D) — H'(Ir,, D)
for every v. From here on, we will use the customary notation
H'(F,*), H'(F,,*), and H'(E"", x)

instead of H'(Gp,*), H'(Gp,,*) and H'(Ip,, D), where * is any Galois
module.

The “unramified Galois cohomology group” for D over F' is defined by

unr

H,,(F,D)=ker(H'(F,D) — [ [ H'(F}"", D)).

where v runs over all the primes of F' in the product. That is, if ¢ : Gp — D
is a 1-cocycle, then its class [¢] is in Hy,,,(F, D) if and only if [@|,, ] is trivial

unr
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in H'(If,, D) for all v € U. In particular, if S is empty, then U consists of
all primes of F' and we denote that group simply by H. (F, D).

unr

It is not true in general that H_, (F, D) is finite. We will discuss several

unr
examples later to illutrate this. However, we have the following finiteness

result.

Proposition 1.5.1. Assume that D is finitely ramified. Then H., (F, D)|p]
s finite.

Proof. The argument involves various simple applications of fundamental
theorems of group cohomology. This proof will be an opportunity to intro-
duce such applications carefully. Later arguments of this kind will be less
detailed. The proof will be given in three parts.

The map H'(F,D[p"]) — H!(F,D)[p"]. First of all, we have an exact
sequence 0 — D[p"] - D — D — 0 for any n > 0. The map D — D is
given by z — p"x for x € D. The kernel of this map is D[p"| and map is
surjective because D is a divisible group. For any ¢ > 1, we then have the
following part of the corresponding cohomology exact sequence

H'=Y(F, D) X H'-\(F, D) — H'(F, D[p")) — H'(F, D) 2> H'(F, D)

Consequently, the map H!(F, D[p"]) — H'(F, D)[p"] must be surjective.
Furthermore, we have

ker(H'(F, D[p"]) — H'(F,D)) < H"'(F,D)/p"H"'(F, D) (20)

If we take ¢ = 1, then H(F,D) = DCF is a Z,-submodule of D. The
Pontryagin dual D of D is isomorphic to Z¢; the Pontryagin dual of D% is

a quotient of D. Hence it follows that H(F, D) = (Q,/Z,)¢ x C, where C
is finite and 0 < e < d. The subgroup (Q,/Z,)¢ is the maximal divisible
subgroup H°(F, D)4, of H°(F,D) and the corresponding quotient group
HY(F, D)/H°(F, D)4, is isomorphic to C. It follows that

HO(FaD)di’U - anO(FaD) gHO(FaD)

for all n and that p"H°(F, D) = H°(F, D)y, if n is sufficiently large. To
summarize, if n > 0, then the map

H'(F, D[p"]) — H'(F, D)[p"] (21)
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is surjective, has finite kernel, and the order of the kernel is bounded inde-
pendently of n.

The map H...(F,D[p"]) — H_. _(F,D)[p"]. We can use the subscript unr

even for finite Galois modules. Consider the map
H,,, (F, D[p"]) — Hypp(F, D)[p"] (22)
We already know that the kernel is finite and of bounded order since that is

true for the kernel of (21). Now we consider the cokernel. We will denote
the images of the following “global-to-local” maps

H'(F,Dp")) — [ [H'(Fy™,Dp")),  H'(F,D) — [[H'(Fy™,D)

by G'(F, D[p"]) and G'(F, D), respectively. By definition, H. (F, D[p"])
and H! (F,D) are the kernels of those maps. We then have the following
commutative diagram with exact rows. The vertical maps are induced by

the inclusion D[p"] C D.

00— Hém(FI Dp"]) — HI(F’lD[an — GI(F,lD[p"]) —=0 (23)
an Bn Tn
0 —= H,,,,(F, D)[p"] — H'(F, D)[p"] —= G'(F, D)[p"]

Note that we can’t say that the last map in the second row is surjective.
Now the order of ker(a,) is bounded by the order of ker(5,). For studying
coker(a,), we apply the snake lemma, obtaining the following useful exact
sequence.

ker(7,) — coker(ay,) — coker(5,) (24)

But coker(3,) = 0, as pointed out in part 1. We can study ker(y,) factor-
by-factor on the entire direct products (over v) which contain G'(F, D[p"])
and G'(F, D).

Suppose that v is any prime of F. Consider the map

Yot H'(F)™, Dp"]) — H' (K™, D)

An identical argument to the one for (21), applied to F*"" instead of F,
shows that
[ker(ynp)| < [HY(F}™, D) : H(F}™, D) i)
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and hence is finite and bounded. Also, if v € Ram(D), then I, acts trivially
on D, H'(F* D) = D, a divisible group, and hence the index is then
1. That is, |ker(yn,)| = 1 if v ¢ Ram(D). Since D is assumed to be
finitely ramified, we can conclude that ker(+y,) is finite and of bounded order.
Therefore, (24) implies that coker(c,) is finite and has bounded order.

Finiteness of H...(F, D[p]). To finish the proof, we will take n = 1. It obvi-
ously now suffices to prove that H..(F, D[p]) is finite. Let F' = F(D[p]), a

finite Galois extension of F. Let G = Gal(F'/F'). Then we have the following
exact sequence, the first few terms of the inflation-restriction sequence.

0 — H'(F'/F, Dlp]) — H'(F, Dlp])) — H'(F", D[p])"

Since both G and D[p| are finite, obviously so is H'(F'/F,D[p]). The
image of H. .(F,D[p]) under the restriction map is clearly contained in

H! (F',D[p]). The kernel is finite and therefore it is enough to prove
the finiteness of H. .(F', D[p]). Now G acts trivially on D[p]. Hence
H'(F', D[p]) = Hom (G, D[p]) and

H,,.(F', D[p] = Hom(Gal(L'/F"), D[p]),
where L' is the p-Hilbert class field of F’. The finiteness of H. .(F, D[p])
follows from the fact that Gal(L'/F") = Clp/[p™], which is finite. [

We will refer back to various steps in this proof from time to time. Here
is an important corollary.

Corollary 1.5.2. Assume that D is finitely ramified. Then H), . (F, D) is a
cofinitely generated Z,-module. Consequently, H,..(F, D)4y = (Qp/Zy)" for
somer >0 and H. (F,D)/H. (F, D), is finite.

unr
Note that H_ .(F, D) will be isomorphic to the direct sum of its maximal

divisible subgroup and the corresponding finite quotient group.

Proof. Since H.,.(F,D) is a p-primary abelian group, it is a Z,-module.

Consider its Pontryagin dual X = Hom(H_,,(F, D), Q,/Z,). We must show
that X is a finitely generated Z,-module. This implies that X = Z7 @& X,
and that X, is finite. The final part of the corollary will then follow. The
Pontryagin dual of H.  (F,D)[p] is X/pX and so proposition 1.5.1 implies
the finiteness of that group. Furthermore, X is the Pontryagin dual of a
discrete Z,-module and hence will be a compact Z,-module. The following

lemma then completes the proof.
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Lemma 1.5.3. (Nakayama’s lemma for compact Z,-modules.) Sup-
pose that X is a compact Z,-module. Let x1,...,z4 be in X. Let T1,..., %4
denote their images in X/pX. Then x1,...,x4 is a generating set for X as
a Z,-module if and only if Ty, ..., T4 is a generating set for X/pX as a vector
space over ¥, = Z,,/pZ,.

Proof. One direction is obvious. For the other direction, where we assume
that z1,...,Z, generate X/pX, one can give a quick proof that zi,...,z4
generate X by using the compactness of Z,. It is easy to verify this if X is
finite, which we leave to the reader. In general, we have X = @Xn, where
X, = X/p"X. One uses the compactness of X to verify that. Note that
our assumption implies that X/pX is finite. It follows easily that that X,
is finite for all n. finite. The maps 7, : X — X, are surjective. Hence the
induced maps X/pX — X,,/pX, are also surjective. It follows from the finite
case that the images of z1, ..., 24 under the map 7, must generate X,. Let
Y be the Z,-submodule submodule of X generated by zi,...,z4. Since Y is
the image of Zg under a continuous map, it is compact and therefore closed.
But 7, (Y) = X,,. This is true for all n and so it follows that Y is also dense
in X. Hence Y = X, as claimed. |

Remark 1.5.4. One can examine the first two parts of the proof of propo-
sition 1.5.1 to determine when the map H.  (F,D[p"]) — H.,.(F, D)[p"]
is injective and/or surjective. For injectivity, it would suffice that D" be
divisible. Of course, this could be true simply because D = (0. For sur-
jectivity, it would suffice that D7 be divisible for all primes v. For then,
ker(yn,) = 0 for all such v and therefore ker(y,) = 0. Now if v ¢ Ram(D),
then D7 = D which is a divisible group. However, it could easily happen
that D' fails to be divisible for some v € Ram(D). Even if that happens,

it is still possible that ker(v,) = 0.

Remark 1.5.5. We will also consider the following object. Suppose that
S is a finite set of primes of F. Let U denote the complement of S. Then
define

H};_,,,(F, D) =ker(H'(F,D) — [ #'(F™, D)).

veU

If S is empty, then this group is H, .(F, D). The proof of proposition 1.5.1

unr

and its corollary can be applied to this group. One finds that the map

Hl

Ufunr(Fﬂ D[p]) — Hllff F’ D)[p]

unr (
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has finite kernel and cokernel. In fact, if one choose S so that Ram(D) C S,
then the cokernel is trivial. Now one can still prove that H} ,.(F, D[p]) is
finite. As in the above proof, one can let F' = F(D[p]). Let S’ be the set
of primes of F’ lying above the primes in S. Let U’ denote its complement.
Then the image of HY,_ . (F, D[p]) under the restriction map is contained
in Hj ,,..(F', D[p]), which is a subgroup of Hom(Gp, D[p]). If ¢ is in
that subgroup, then ¢' factors through Gal(K'/F'), where K' is a cyclic
extension of F’ of degree p which is ramified only at primes in S’. The
discriminant of such extensions K'/Q is easily seen to be bounded. One can
then use Hermite’s theorem (which states that there are only finitely many
extensions of Q with a given discriminant) to see that only finitely many
such extensions K’ exist. Thus, H}, . (F’, D[p]) is finite and therefore so

is HY_ e (F, DIp]). It follows that Hf_,,..(F, D)[p] is finite and therefore
H}_ e (F, D) is a cofinitely generated Z,-module.

Here is an important special case. Suppose that S contains Ram(D). Let
Fs denote the maximal extension of F' unramified outside of S. Thus, the
action of G on D factors through the quotient group Gal(Fs/F'). The inertia
subgroups of G'r for primes lying above v € U are all contained in G, and
generate a dense subgroup of that group. Furthermore, if ¢ € H},_,,..(F, D),
then ¢|GFS is a homomorphism which is trivial on every inertia subgroup,
and is therefore trivial. More precisely, it is clear that
HL

U—unr

(F,D) =ker(H'(F,D) — H'(Fs,D)) 2 H'(Fs/F, D),

the last isomorphism following from the inflation-restriction sequence. Con-
sequently, it follows that H'(Fs/F, D) is a cofinitely generated Z,-module.

Remark 1.5.6. One can define a generalization of the Pontryagin dual of
the ideal class group Clg by letting p vary. Consider a compatible system
of p-adic representations V = {V,} of Gr. Thus, (i) each V), is a Q,-vector
space of common dimension d, (ii) the action of G on V, factors through
Gal(Fsug,/F), where S is a fixed finite set of primes of F', and (iii) if v is a
prime of F, v ¢ S, and p is a prime such that v { p, then the characteristic
polynomial for the Frobenius automorphisms for v acting on V, has coefhi-
cients in Q and is independent of the choice of p. For each prime p, choose
a Galois-invariant Z,-lattice 7, C V,,. Then one can consider the Galois-
module Dy = @, V,/T,, which is isomorphic to (Q/Z)? as a group. One can
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then define H] (F,Dy) in the obvious way. One clearly has

unr FDV @ unr F‘/P/TP)

Obviously, H.,.(F,Dy) is finite if and only if H,, ,.(F,V,/T,) is finite for all p
and trivial for all but finitely many p. One can say little in general about the
finiteness of this group. However, in remark 1.5.10, we will give an example
where H,,. (F,V,/T,) is infinite for all primes p. It is also possible for this
group to be finite for all p and nontrivial for an infinite set of p, as we will
point out in remark 1. 6 5 In the special case where each V) is the trivial
representation of G, F,Dy) is the Pontryagin dual of C’ZF and so is

finite.

un'r (

The following result concerns Galois theory for H. (-, D). By this we

mean that it shows a relationship between an object associated with F' and
the G-invariant subobject of an object associated to F'. One example is the
simple fact that Oy = (0F,)%. However, Galois theory for the unramified
cohomology groups is more subtle.

Proposition 1.5.7. Let F'/F be a finite Galois extension. Then the kernel

and cokernel of the restriction map

H! (F,D) — H} (F' D)

unr unT

are finite. If p4 [F': F|, then the above restriction map is an isomorphism.

Proof. Let n = |G|. First we show that if C' is a Z]|G]-module such that C[n]
and C/nC are both finite, then H(G, C) is finite for any 4 > 1. Multiplica-
tion by n gives us two obvious exact sequences

0—C[n] - C—nC —0, 0—-nC—C—C/nC—0

The following exact sequences are part of the corresponding cohomology
sequences.

H'(G,C[n]) — HY(G,C) — H'(G,nC),
H"(G,C/nC) — HY(G,nC) — H'(G,0C)

Our assumption about C implies that H*(G, C[n]) and H*"'(G,C/nC) are
both finite. The composite map

HY(G,C) — H'(G,nC) — H'(G,0)

23



is just multiplication by n on H*(G,C). Both maps have finite kernels and
therefore H'(G, C)[n] is finite. But H*(G, C) is annihilated by |G| = n and
therefore H*(G,C) itself is indeed finite. Note also that if C[n] = 0 and
nC = C, then the argument shows that H(G,C) = 0.

The following exact sequence is part of the inflation-restriction sequence:

0 — HY(F'/F,D(F')) — H'(F,D) — H'(F', D)¢ —s H*(F'/F, D(F"))

where we let D(F') = D% = H°(F’, D). Any subgroup C of D is a cofinitely
generated Z,-module. It is clear that C[n] and C'//nC will be finite. Applying
the remark at the beginning of the proof to C = D(F"), it follows that
H'(F'/F,D(F")) and H*(F'/F, D(F")) are both finite. Also, if p { n, then
both these groups vanish.

Consider the following commutative diagram

0——H!

unr

(F, D) H'(F, D) GYF,D)——=0  (25)

laF//F le’/F l/CF’/F

0 — H,,,(F', D)¥ —= H'(F',D)¢ — G'(F", D)®
The finiteness of ker(bp/,r) implies the finiteness of ker(ap/,r). If p { n,
then clearly ker(bp//r) = 0. As for the cokernel, the snake lemma gives the

following exact sequence
ker(cpr /) — coker(ap/p) — coker(bp/p) (26)

Now coker(bg/r) is finite and is trivial if p { n. To prove the finiteness, or
triviality, of coker(as,r), it suffices to prove the finiteness, or triviality, of
ker(cpr/r).

As in the proof of proposition 1.5.1, we study ker(cg,r) factor-by-factor.
Suppose v is any prime of F' and v’ is a prime of F’ lying above v. Consider
the restriction map

Col Jy Hl(IFv,D)—>H1(IFv,,D) (27)

The kernel is H'(I,,, D"'), where I,;;, = I, /Ir,, a group which can be
identified with the inertia subgroup of G for the prime v’. The kernel of ¢/,
for every v. Furthermore, if v is unramified in F'/F, then I, = Ip, and
hence ker(c,,) is obviously trivial. Therefore, indeed, ker(cp/,r) is finite.
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Also, if p { n, then p { |I,s/,| for all v, the kernels of the maps (27) are all
trivial, and hence ker(cs//r) = 0 in that case, as stated. [ |

Let us now assume that the action of Gg on V factors through a finite
quotient group A of Gr. We will refer to such a V' as an Artin representation
space. Let D = V/T, where T is a Galois-invariant Z,-lattice as before. In
this case, we have the following result.

Corollary 1.5.8. Suppose that V is an Artin representation space. Then
H! (F, D) is finite.

unTr

Proof. Let F' = F(D), the field cut out by pp, which will be a finite Galois
extension of F. By proposition 1.5.7, it suffices to show that H, (F', D).
But G acts trivially on D and hence

H! (F',D)= Hom(Gal(L'/F'"), D)

unr

where L' is the p-Hilbert class field of F’. This group is obviously finite. W

Returning to the trivial Galois module D = Q,/Z,, one can translate
some of the results from the earlier sections rather easily. Consider corollary
1.1.2. The surjectivity of the map Ng//p : Apr — Ap corresponds to the
surjectivity of the map Rp)p : Gal(L'/F') — Gal(L/F) which, in turn, is
equivalent to the injectivity of the map

H&m‘(F7 QP/ZP) — H'lin'r(Fl’ QP/ZP)

Now using the Artin isomorphism Artp m : A — Gal(L'/F'), one has
isomorphisms

Hllmr(Fla Qp/zp)G = Home(Apr, Qp/Zp) = Hom((Ar')a, Qp/Zp)
If F'/F is cyclic, then (Ap)¢ is the genus group Gp//r and so we have
gF’/F = Hinr(Fla Qp/zp)G'

If F'/F satisfies the assumptions of proposition 1.1.3, then the assertion
about ker(Ng//p) in that proposition means that the map

Hinr(F: QP/ZP) — H;?’LT(FI’ QP/ZP)G
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is surjective. More generally, one can regard genus theory as an assertion
about the cokernel of that map. For, by definition, if F'/F is a cyclic exten-
sion, we have

—

gé'ol)/F & coker (Hinr(Fa Qp/ZP) — H&nr(Fl’ QP/ZP)G)'

In general, one can study coker (H,,.(F, D) — H,,, (F', D)%) by using (26).
This involves studying the kernels of the local restriction maps (27), which
is usually rather straightforward, and the image of the global-to-local map

G'(F, D), which is usually a more subtle question.

Next we return to the situation considered in section 1.4. That is, we
assume that we have a finite group A of automorphisms of F' and that the
order of A is prime to p. Let E = F®. Suppose that ¢ is an irreducible
character of A over Q,. Thus, V,, is an Artin representation space for G and
the action of G factors through Gal(F/FE). We denote the corresponding
D by D,. We then have the following result.

Proposition 1.5.9. Under the above assumptions, there is a canonical iso0-
morphism
H, (E,D,) = HomA(ClF[poo](W)a Dy)

unr

In particular, if d, = 1, then H,, (E, D,) is isomorphic to the Pontryagin
dual of Clp[p™®]®).

Proof. We apply proposition 1.5.7 to the Galois extension F/E. We then
have an isomorphism

(E,D,) — H,

ar/g : H&nr unr(F’ DQO)A'

We also have a canonical isomorphism
Arty/p 2 Cl[p™] = Gal(L/F)

This isomorphism commutes with the natural actions of A on CI[p*°] and
on Gal(L/F) (with A acting on on Gal(L/F) by inner automorphisms as
usual). We can identify H,, (F, D,) with Hom(Gal(L/F), D,) and then we
obtain the isomorphisms

H! (F,D,)* = Homa(Gal(L/F),D,) = Homa (Cl[p™], D,)

unr
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It is clear that a A-equivariant homomorphism Cl[p®] — D, must factor
through the ¢-component of Cl[p™] and this gives the isomorphism in the
proposition.

In the special case where ¢ is 1-dimensional, we have

Homa (Clp[p™]“), D,) = Hom(Clp[p™]¥), D,,)

which is isomorphic to the Pontryagin dual of Clr[p™]¥) because D, is iso-
morphic to Q,/Z, as a group. [ |

Remark 1.5.10. One can also consider the group of “locally trivial cocycle
classes.” The precise definition is
Hl

triv

(F,D) =ker(H'(F,D) —» [ [ H'(F,, D))

Obviously, H;.,, (F, D) is a subgroup of H}  (F, D). The two groups can cer-
tainly differ. For example, let D = Q,,/Z,, with a trivial action of Gr. Then
H&nr(Fa QP/ZP) = Hom(Gal(L/F), QP/ZP) and Htlri'u (F7 QP/ZP) Corresponds
to the subgroup of homomorphisms f : Gal(L/F) — Q,/Z, which are trivial
on every decomposition subgroup of Gal(L/F'). Obviously, Clr is generated
by the ideal classes of the prime ideals P of F' and so Gal(H/F) is generated
by the Frobenius automorphisms op for those prime ideals. Consequently,
the same thing is true for Gal(L/F). Hence if f(op) = 0 for all P, then
f=0. Thus, H},,(F,Q,/Z,) = 0.

We will now give an example from the theory of elliptic curves to illustrate
the possibility that H;.,, (F, D) can be infinite. Of course, it would then follow
that H! (F, D) is infinite. Suppose that FE is an elliptic curve defined over
F. Let p be a prime. For n > 0, let E[p"] denote the elements of E(Q)
of order dividing p®. As a group, E[p"] = (Z/p"Z)? and there is a natural

action of G on this group. We will consider

D =B = | Flp']

which is the p-primary subgroup of E(Q).

A famous theorem of Mordell and Weil asserts that the group of F-
rational points F(F) is a finitely generated abelian group. Let r denote
its rank. Consider the Kummer homomorphism

k: B(F)®z (Q,/Z,) — H(Gr, E[p™])
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Note that E(F) ®z (Qp/Z,) = (Qp/Z,)". The definition of x, which we
will now give, is an imitation of classical Kummer theory. (One finds a
brief discussion of that in the next section.) Let @« = a ® (1/p" + Z,) €
E(F)®z(Qp/Z,), where a € E(F). Let b € E(Q) be chosen so that p"b = a.
Define a map o : Gy — E[p™] by o(g) = g(b) — b for all g € Gp. Then o is
a 1-cocycle and we define () to be the class [o] in H!(F, E[p™]) of 0. It is
not hard to verify that x is injective.

Suppose that v is any prime of F. Consider the local Kummer homomor-
phism

Ky 2 B(Fy) ®z (Qp/Zp) — H'(F,, E[p™))

This is defined just as above and is again an injective map. We then have a
commutative diagram

E(F) Xz (Qp/zp) — E(Fv) ®z (Qp/zp)

ln lnv (28)

HY(F,E[p®)) —— H\(F,, E[p™])

The top horizontal map is induced by the inclusion E(F) C E(F,). The
bottom horizontal map is induced by the restriction map Gy, — G (corre-
sponding to a fixed embedding F — F,.

Now it turns out that E(F,)®z(Q,/Z,) = 0if v { p. This is a consequence
of the following fact:

Let 0 be an arbitrary prime. Suppose that F, is a finite extension of Qg and
that E is an elliptic curve defined over F,. Then E(F,) = Z} X E(F,)tors,
where n = [Fy : Q.

If £ # p, then Z,®z (Q,/Z,) = 0. Since E(F),)iors is finite, its tensor product
with Q,/Z, is also trivial. However, Z, @z (Q,/Z,) = Q,/Z,, and so we
have
E(F,) ®2 (Qp/Zy) = (Qp/Z,) ™Y
if v | p. It is then clear from diagram (28) that the kernel of the map
E(F) ®z (Qy/Zy) —>HE ) ®z (Qp/Zy)
vlp
is a subgroup of H/..,(Q, E[p™]). But this kernel is obviously infinite if
r> Y [F:Q)] = [F:Q]

vlp
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This can certainly happen. For example, one could take F' = Q and E to be
an elliptic curve whose Mordell-Weil group has rank > 2. If r is that rank,
then H},;,(Q, E[p™]) contains a subgroup isomorphic to (Q,/Z,)" .

This is an example that we alluded to at the end of remark 1.5.6. We can
associate a compatible system ) of p-adic representations with E by defining
Vo(E) = T,(E) ®z, Qp, where T,(E) is the p-adic Tate-module for E. Then
D =V,(E)/T,(E) & E[p>®] and Dy 2 E(Q);ors- The above discussion shows

that H! (F,Dy) contains a subgroup isomorphic to (Q/Z)"~!.

unr

1.6 Powers of the cyclotomic character.

Let pipeo = |J,,50 Hp» denote the group of p-power roots of unity in Q. The
extension F'(up~)/F is an infinite Galois extension and one can define a
continuous homomorphism

¥ Gal(F (i) [ F) = Z;

in the following way. Let g € Gal(F(up)/F'). For every n > 0, there exists
an integer u,, such that g(¢) = (% for all ¢ € u,~. This integer u,, is uniquely
determined modulo p™ and is not divisible by p. The definition implies that
Upt1 = U (mod p™) and hence that {u,} converges to a certain p-adic unit
u. We then have g(¢) = ¢* for all { € ppe. Define x(g) = u. The stated
properties of y are easily verified. One refers to x as the “p-power cyclotomic
character,” regarding it often as a character of Gy which factors through the
quotient group Gal(F(pye)/F).

The character x gives the action of Gg on T' = lim p», which is a free
Z,-module of rank 1. The Gr-module T" with this action is often denoted by
Z,(1). It is a Galois-invariant Z,-lattice in the vector space V =T ®z, Q,,
which is often denoted by Q,(1). The quotient V/T is isomorphic to fiyee.

In this section, we want to discuss one-dimensional representations of G
over Q, arising from powers of x. In particular, we will consider the powers
X", where n € Z, but it turns out to be important to consider a more general
class of representations. The prime p will be assumed to be odd in most of
the results. We will discuss p = 2 at the very end.

Consider an arbitrary continuous homomorphism

¥ Gal(F (=) [ F) = Z;
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Then ¢ defines a 1-dimensional representation space V' for Gal(F(ppe)/F).
Equivalently, we can regard V' as a representation space for Gg, where the
action factors through the restriction map Gy — Gal(F(up~)/F). Any Z,-
lattice T' will be Gp-invariant and D = V/T will be isomorphic to Q,/Z,
as a group, but with the action of G given by the character . We will
denote this D by D, in the rest of this section. If ) has finite order, then
corollary 1.5.8 asserts that H,, (F,Dy) is finite. As we will discuss in the

unr

next chapter, it is possible for H,. (F,Dy) to be infinite if ¢ has infinite
order, but this can only happen for finitely many choices of .

Since we are assuming that p is odd, we have a direct product decompo-
sition

Z; = pp1 % (14 pZp)

Corresponding to this decomposition, we will write x = w(x), where w is a
character of order p — 1, the composition of x with projection to the factor
tp—1, and (x) is the composition of x with projection to the factor 1 + pZ,.

Assume that y is surjective. That is, we assume that y defines an isomor-
phism Gal(F(up=)/F) 2 Z. Then it is not hard to see that an arbitrary 1

can be uniquely expressed in the form
¥ = w(x)’

where 0 <7 < p—2and s € Z,. Thus, in a sense, one can regard 1) as a
power of y. It is actually a limit of integral powers of y. To explain what we
mean, note that the group Hom(Gal(F (ppe)/F), Z) has a natural topology
on it, the compact-open topology. It is rather simple to describe in this case
because Gal(F'(uy)/F') is compact and contains a dense, cyclic subgroup.
If g, is a topological generator for Gal(F'(uy~)/F'), then there is a bijection

Hom (Gal(F (pp=)/F), Z)) — Z,

defined by sending ¢ to 1¥(g,). The compact-open topology then coincides
with the topology transferred from Zy. To see that {x" | n € Z} is a dense
subgroup of Hom(Gal(F (py)/F), Z)), consider 1) = w'(x)®. One can take
a sequence of integers ny such that (i) ny =i (mod p — 1) for all k£ and (%)
ng — sin Z, as k — oo. Then x™ — 1 in the compact-open topology on
Hom (Gal(F (ppe )/ F), Z).

For a fixed 7, the following proposition describes a kind of continuity for
the behavior of H. .(F,D,) as s varies over Z,. In addition to the above

unr
assumption about x, we impose a mild ramification assumption.
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Proposition 1.6.1. Assume that p is odd, that x is an isomorphism, and
that every prime of F' lying above p is totally ramified in F(u,)/F. Suppose
that i is fived, that 1 < i < p — 2, and that ¢ = W(x)* for some s € Z,.
Then

H.,,(F,Dy)p] =

unr

F, Dy[p*))

for any k > 1. Assume that sy, sy € Z, salisfy s; = sy (mod p*~'). Let
Y1 =w(X)", o =w(x)”. Then Him(F Dy,)[p*] = H,p, (F, Dy, )[p*].

Proof. First note that G acts on Dy [p] by the character w*. The assumptions
imply that this character is nontrivial. Hence H°(F, D,) = 0. Also, if v is
any prime of F' lying above p, then the assumptions imply that | I, 18
nontrivial. Therefore, the action of I, on Dy[p| is nontrivial and hence we
have H(F*"" Dy) = 0. If v is an infinite prime, then H°(F,, Dy) = 0 if 4
is odd and H°(F,, Dy) = Dy if i is even. If v is any other prime of F', then
v is unramified in F'(fpe)/F and hence Ip, acts trivially on D,,. Therefore,
HO(F¥™ D) = Dy. Thus, for all primes v of F';, H'(F*"", Dy) is a divisible
group. The first part of the proposition then follows from remark 1.5.4,
taking n = k. The conditions which imply injectivity and surjectivity are
satisfied.
If s; = sy (mod p* 1), then u® = u

Therefore, for any g € G, we have (x)*'(g)

that
D'lﬁl [pk] = D1ﬁ2 [pk]

as (Z/p*Z)-modules with an action of Gr. The second part of the proposition
then follows from the first part. |

unr(

(mod p*) for all u € 1 + pZ,.
= (x)*2(g) (mod p*). Tt follows

In the above proposition, one can take £ = 1, s; arbitrary and sy = 0.
Then v, = w’, the character of an Artin representation. Consequently, we
have the following result.

Corollary 1.6.2. Under the assumptions of proposition 1.6.1, we have
H} (F,Dy)[p] = F,D,:)p|. Thus, dimg, (H., (F,Dy)[p]) depends

unr unr
only on 1.

un’r (

Now suppose that ¢ = x", where n € Z. The following corollary follows
immediately from proposition 1.6.1.

Corollary 1.6.3. Under the assumptions of proposition 1.6.1, we have

H,ppy(F, Dy ) [p*] 2 Hyppp (F, Dy ) [p"]

unr
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k—l)

if n1,ne € Z satisfy the congruence ny = ny (mod (p — 1)p and are not

divisible by p — 1.

The case where 1) = (x)®, which is excluded in proposition 1.6.1 and the
above corollaries, is actually quite interesting to consider. There can be a dis-
continuity at s = 0. If ¢ = v, which corresponds to s = 0, then H., .(F, Dy,)

unr

is the Pontryagin dual of Clp[p*™]. It turns out that H, . .(F, Dy) is finite for

s close to 0 in Z,, but, in certain cases, its order will be unbounded as s — 0.
In certain other cases, its order will be bounded, but larger than hgf).

We will assume that s # 0. Let F,, = F/(Dy) denote the field cut out by
1. Obviously, F, is a subfield of F'(u,) and Gal(F/F') = im(¢p) which is
isomorphic to Z,. We will let I' denote Gal(F/F). One often refers to Fy,
as the cyclotomic Z,-extension of F'. We will have more to say about it at
the beginning of chapter 2. For simplicity, we will assume that the primes
of F lying over p are all totally ramified in F,/F. It is clear that all other
non-archimedian primes are unramified since the same is true for F'(p,e)/F.
Applying the snake lemma to (23) gives us the following extension of (24),
where we use the same notation for the maps and take D = D,:

ker(53,) — ker(vy,) — coker(a,,) —> coker(8,,) (29)

in the notation of those diagrams. We have coker(f,) = 0, as explained in
the first part of the proof of proposition 1.5.1. (See (21).)

Since s # 0, H°(F, D,;) will be a finite cyclic group. Let p* denote its
order. Note that u > 1. If ord,(s) = k > 0, then u = k + 1. It follows from
(20) that ker(53,) will be cyclic and its order will be p™"(™%)If n = u, then
one can describe this kernel very simply. In that case, G acts trivially on
Dy[p"™], H'(F, Dy[p"]) = Hom(Gr, Dy[p"]), and a 1-cocycle ¢ is in ker(S,)
if and only if ¢ is the coboundary of an element of D[p®"]. Since the action
of Gy on D[p*] factors through I' = Gal(Fi,/F), any ¢ € ker(3,) will also
factor through I" and hence through T'/T?". We will denote the fixed field for
['?" by F,, a cyclic extension of F' of degree p”. Thus, it follows that

ker(f3,) = Hom(Gal(F,,/F'), Dy[p"]) (30)

if n = ord,(s) + 1. It remains to study ker(v,) and the image of the map
ker(53,) — ker(7,) in (29). That image is cyclic and not difficult to study.
As we will see, it is possible for ker(7,) to be non-cyclic. If that is so,
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then coker(ay,) would obviously be nontrivial and that would imply that
H’linT'(F’ DT/’) # O'

Since 1 is unramified for all v 1 p, it follows from the second part of the
proof of proposition 1.5.1 that ker(vy,,) = 0 for such v. But for any v|p,
we are assuming that the inertia subgroup of Gal(F/F) is the entire group
and hence H°(F*"" Dy) = H°(F,Dy) will have order p*. In fact, just as
explained above, if n = ord,(s) + 1, then ker(v,,) will be cyclic of order
p". Suppose that there are ¢ primes of F' lying over p. Then ker(v,) could
potentially have ¢ cyclic factors of order at least p™. However, the actual size

of ker(,) depends on the intersection

im(H'(Fs, /F, Dylp"]) = [ [ H'(Fy™, D)) ([ ker ()

v[p vlp

where S, denotes the set of primes of F' lying above p. We will consider two
extreme cases in the following result.

Proposition 1.6.4. Assume that p is an odd prime and that all primes in
Sy are totally ramified in Fo/F. Let ¢ = (x)°, where s € Z,, s # 0.

(i) If |Sy| =1 and n = ordy(s) + 1, then coker(a,) = 0. In particular, if
b =1, then HL, (F,Dy) = 0.

unr

(ii) If p splits completely in F/Q and n = ord,(s) + 1, then
Hom(Gal(Fs,/F), Dy[p"]) /Hom(Gal(Fy/F), Dy[p"]) = H,,,(F, Dy)[p"]

In particular, if F' has a nontrivial cyclic p-extension which is ramified in S,
and not contained in Fy, then H., .(F, Dy) # 0.

Proof. If there is just one prime v € S,, then the map ker(3,) — ker(vy,) is
surjective. This follows from the facts mentioned above: both ker(5,) and
ker(vy,,) have order p", the map is injective since v is totally ramified in
F,/F. Hence, in case (i), coker(a,,) = 0 and we have an isomorphism

Hyp(F, Dy)[p"] & Hyp, (F, Dy[p"])

for n = ord,(s) + 1. In particular, if we make the assumption that p { hp,
then for any s € Z,, it follows that H,., (F, Dy)[p"] = 0 for some n > 1 and
hence H,,. (F,Dy) = 0.

unr
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Now assume that p splits completely in F/Q. Then F, = Q, for all
v € S,. We will then show that the map

H'(F,, Dy[p"]) — H'(F;™, Dy) (31)

is trivial for n as stated. To see this, note that an element ¢ € H*(F,, Dy [p"])
is just a homomorphism of order dividing p™ and factors through a cyclic ex-
tension of F,. Now both F*"" and F, () contain unique cyclic extension
of F, of degree p". The intersection of those two extensions is F;, since one is
an unramified extension, the other totally ramified. Their compositum con-
tains any cyclic extension of F), of degree dividing p™. This follows from local
class field theory since F*/(FX)P = (Z/p™/Z)?. Tt follows that ¢ = ¢ p<¥e,
where ¢*"" and ¢%¢ are elements of H'(F,, Dy[p"]) which factor through
Gal(F"")/F,) and Gal(F,(jp~)/F,), respectively. They are both homomor-
phisms of order dividing p™. The earlier argument describing ker(3,) applies
without change to F;,. It follows that

ker(H'(F,, Dy[p"]) — H'(F,, Dy))

contains ¢®¢. On the other hand, ¢“™" is clearly in the kernel of the restriction
map H'(F,, Dy) — H'(F!"", Dy). It follows that the image of ¢ under the
map (31) is indeed trivial, as stated.

Now the inflation map identifies Hom(Gal(Fs,/F'), Dy[p"]) with a cer-
tain subgroup of H'(F, Dy[p"]) = Hom(GF, Dy[p"]). Under the assumption
that v splits completely in F'/Q, (31) implies that its image under £, is con-
tained in H.  (F, Dy)[p"]. Conversely, since ker(y,,) is trivial for all v { p, if
¢ € Hom(Gp, Dy[p"]) and B,(¢) € H.,.(F, Dy)[p"], then ¢ factors through
Gal(Fs,/F). It follows that

Ba(Hom(Gal(Fs,/F), Dy[p"])) = Hypy(F, Dy)[p"]
Thus part (i) of the proposition now follows from (30). [ |

As an example, suppose that F' is an imaginary quadratic field and that
p splits in F'. Then, it turns out that for any n > 1, Fs, contains a subfield
M, such that Gal(M,/F) = (Z/p"Z)?. Tt is not difficult to prove this using
class field theory. Since the unit group of F' is finite, the structure of ray
class groups is relatively easy to study. Therefore, proposition 1.6.4 implies
that if s # 0, but s =0 (mod p™~ '), then H,, (F, D)) contains a subgroup

unr
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of order p". Thus, the order of Hy, (F, D) will be unbounded as s — 0
in Z,. We have not justified the assertion that this group is finite if s is

sufficiently close to 0. That will become easy to verify in chapter 2.

A topic which we will discuss in detail in chapter 3 concerns the special
case where ¢ = Y, the p-power cyclotomic character itself. Classical Kummer
theory gives the following important isomorphism:

k1 F* @z (Qp/Zy) — Hl(FaNp"")

The map is easily defined. Let o = a ® (1/p" + Z,) € F* ®z (Qp/Z,),
where a € F*. Let b be a p™th root of ¢ in Q". Define 0 : Gg — jipes
by o(g) = ¢g(b)/b for all g € Gr. Then o is a 1-cocycle and we define k(«)
to be the class [o] in H'(F, pp=) of o. It is not hard to verify that  is
injective. The surjectivity is a consequence of Hilbert’s theorem 90, the fact
that HY(F, Q") = 1, and will also be left to the reader.

Note that H'(F, py~) is a very big group. Indeed, it is not hard to
show that F'* @z (Qp/Z,) is a direct sum of a countable number of copies
of Q,/Z,. On the other hand, there is considerable reason to believe the
following important conjecture:

Leopoldt’s Conjecture. H. (F,u,=) is a finite group.

unr

The usual way to formulate this conjecture involves the image of the unit
group of F'in the direct product of the completions of F' at the primes above
p. The connection with the units of F" arises from Kummer theory. If a € O,
and n > 1, then one can consider the cocycle class in H'(F, p,) associated
to b = »/a. This cocycle class is unramified at all primes of F' not dividing p.
Whether or not it is unramified at a prime v dividing p is related (although
not quite equivalent) to whether or not F,( »/a)/F, is a ramified extension.
Leopoldt’s conjecture essentially amounts to the assertion that only finitely
many of these cocycle classes are unramified at all v|p.

Suppose now that F' = Q, p is an odd prime, and ¢ = x" for some n € Z
such that n Z 0 (mod p — 1). The assumptions in proposition 1.6.1 and its
corollaries are satisfied. These groups are trivial if p is a regular prime. To
see this, it is enough to verify that H.,,(Q, Dyx)[p] = 0. Choose i so that
n=1 (modp—1), 1 <i<p-—2. According to corollary 1.6.2, it suffices
to show that H. (Q,D,:) = 0. But this is true according to proposition
1.5.8 since, by assumption, Clq,,[p®]“") = 0. If n =0 (mod p — 1), then
H.. .(Q,D,n)[p] = 0. This follows from part (i) of proposition 1.6.4.
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If p is an irregular prime, then C’lQ(Hp)[p"o](“’i) # 0 for at least one odd
value of ¢. Thus, for any such i, it follows that H. (Q, D) # 0 for any
integer n =i (mod p — 1). In a later chapter, we will prove that the group
H. (Q,D,n) is finite for all odd, negative values of n. The order of this
group turns out to be closely related to values of the Riemann zeta function
¢(s). Recall that ((s) can be analytically continued to the complex plane
(with a simple pole at s = 1). Its functional equation forces ((n) = 0 when n
is a negative, even integer. It is known that {(n) is a nonzero, rational number
if n is negative and odd, closely related to one of the Bernoulli numbers. To
be precise, if we write n = 1 — m, where m is positive and even, then

By,
¢(n) = o
It is useful to state the congruences
B, B,
m=me#0 (modp—1) = —=—""2 (mod pZ,)
mq mo

which are known as the Kummer congruences. We have expressed them as
congruences modulo pZ, since the quantities By, /m are p-integral, and hence
in Z,, for m # 0 (mod p — 1). Note that for 0 < m < p, By, is divisible by p
precisely when B,,/m is divisible by p. Thus, the Herbrand-Ribet theorem
can be stated as follows:

Ifn is an odd, negative integer, then H., . (Q, Dyn) # 0 if and only if p divides
the numerator of ((n).

The following much more precise result is a consequence of a theorem of
Mazur and Wiles to be discussed in a later chapter. It is an illustration
of the close connection between values of L-functions and certain objects
defined by Galois cohomology.

Theorem. Suppose that p is an odd prime, that n is an odd, negative integer,
and that n #1 (mod p —1). Then the order of H,,.(Q, Dy») is equal to the
power of p dividing ((n).

In chapter 2, we will show that the groups H,, (Q, Dy») can be studied by
an analogue of proposition 1.5.7 for the infinite Galois extension Q(t,)/Q.
It turns out that the kernel and cokernel are actually trivial. This fact will
allow us to relate the structure of the finite groups H,.,. (Q, Dy»), for all n,

66



to the structure of the Galois group of a certain extension of Q(yp~), the
analogue of the p-Hilbert class field.

For n =1 (mod p — 1), one has H., (Q, Dyx)[p] = H.,,.(Q,D,)[p] =0
and hence H.. .(Q,D,») = 0. However, assuming n is also negative, the
denominator of ((n) is then divisible by p. To be precise, suppose that
n =1—m where m > 0 and m = 0 (mod p — 1), then the Clausen-von

Staudt theorem states ord,(B,,) = —1. Thus,
ord,(¢(n)) = —1 — ord,(m)

and so the power of p dividing the denominator of ((n) is unbounded. In
fact, restricting to negative n =1 (mod p — 1), as n — 1 p-adically, we have
ord, (C (n)) — —o00. This corresponds to a property of the Kubota-Leopoldt
p-adic L-function L,(w’, s), namely that this function has a pole at s = 1.

In light of the above theorem and the continuity properties described in
corollary 1.6.3, it is natural to ask whether analogous continuity properties
hold for the powers of p dividing the values of ((s) at negative integers. A
refinement of the Kummer congruences stated earlier provides an even more

precise result. Define
1
Gols) = (1 - };)C(S),
which is just the function defined by the Euler product for ((s) with the Euler
factor for p removed, analytically continued to the complex plane (except
s = 1). Thus, if n is a negative, odd integer, then (,(n) = (1 — p™)((n),
which is nonzero and divisible by the same poswer of p as ((n). Assume that
k > 1. The refined Kummer congruences, stated in terms of values of (,(s),

are

k—l)

m=ny (mod (p— 1P = Gm)=Gna) (mod p'Z,)

where it is assume that n;, ny, are odd, negative integers and nj,ny # 1
(mod p —1).

Remark 1.6.5. We return to the discussion in remark 1.5.6. Suppose that
n € Z is fixed. We will consider the compatible system V = {V,} where, for
each prime p, V, is 1-dimensional and Gq acts by x", where  is the p-power
cyclotomic character. The Mazur-Wiles theorem implies that if n is odd and
negative, then the finite group H_.,,.(Q, Dy=) is trivial for all but finitely many
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primes p. It follows that H. (Q,Dy) is finite. This can actually be proved
just using Herbrand’s half of the Herbrand-Ribet theorem, the assertion that
if 0 < m < p, m is even, and p1{ By, then H. (Q, D i-n) = 0. In fact, it is
not necessary to assume that m < p. Since B, # 0, only finitely many primes
p can divide B,,. Hence, if n = 1 — m, it follows that H,,  (Q, Dy») = 0 if
pt B

The situation is quite different for positive, odd values of n. First of all,
apart from the cases discussed above, it is not even known that H,,.(Q, Dy»)

is finite, although this is expected to be so. Furthermore, we have

H&nr(Qa DX")[p] = Hinr(Q: Dwn)[p]

and, if p > n, the Herbrand-Ribet theorem implies that this group is nontriv-
ial if and only if p| B,_,. However, it seems reasonable to conjecture that this
occurs for an infinite, although very sparse, set of primes p. For example,
take n = 3. It turns out that p|B,_5 for p = 16843 and for p = 2124679.
For even values of n, positive or negative, Vandiver’s conjecture implies that
H} (Q,Dyn) =0 for all p.
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2 Z,-extensions and ideal class groups.

This chapter will present the theorems of Iwasawa concerning the growth of
Clp,[p™], where F,, varies over the layers in a Z,-extension of a number field
F'. The main theorem was proved by Iwasawa in the mid 1950s and concerns
the growth of the orders of these groups. However, we will also prove results
of Iwasawa concerning their group structure. A key ingredient in the proof
is to consider the inverse limit

X = Xp./r = Im Cly, [p)

as a module over the formal power series ring A = Z,[[T’]]. The inverse limit
X is defined by the norm maps N, /g, for m > n > 0. It turns out to be
a finitely generated, torsion A-module. We will be able to partially describe
the structure of such modules, enough for a proof of the theorem. Finally,
in the last section, we discuss the special case where F' = Q(u,) for an odd
prime p and Fi, = Q(pp~). Then F/F is a Zy-extension. The n-th layer is
F,, = Q(upn+1). There is a lot that we can say about the various invariants
and modules introduced in this chapter, a topic which will be continued in
later chapters. We will also discuss the relationship between Xp_,r and
the unramified cohomology groups associated to powers of the cyclotomic
character, continuing the topic of section 1.6.

2.1 Introductory remarks about Z,-extensions.

The theorem of Iwasawa alluded to above concerns a certain type of infinite
extension K of a number field F'. These infinite extensions were originally
referred to as “I'-extensions” by Iwasawa, but later he adopted the more
descriptive term “Z,-extensions.” Let p be a fixed prime. A Galois extension
K/F is called a Z,-extension if the topological group Gal(K/F) is isomorphic
to the additive group Z, of p-adic integers.

Except for the trivial subgroup, all the closed subgroups of Z, have finite
index. Such a closed subgroup is of the form p"Z, for some nonnegative
integer n and the corresponding quotient group is cyclic of order p™. Thus, if
K/F is a Z,-extension, the finite extensions of F' which are contained in K
form a tower F' = Fy C Fy C --- C F,, C --- of Galois extensions of F' such
that Gal(F,/F) = Z/p"Z for all n. Clearly K = J,-, Fy. If one chooses any
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Yo € Gal(K/F) such that ~,|r, is nontrivial, then the infinite cyclic subgroup
generated by 7, is dense in Gal(K/F'). We therefore say that Gal(K/F) is a
topologically cyclic group and that the element +, is a topological generator
of Gal(K/F). We will often use the notation Fy, for a Z,-extension of F.

Let F' be any number field and let p be a fixed prime. One important
example of a Z,-extension of F' is quite easy to construct. Let i, denote
the group of p-power roots of unity. The extension F'(uy~)/F is an infinite
Galois extension. At the beginning of section 1.6, we defined a continuous
homomorphism

X : Gal(F(pp=)/F) — Z,; .

This homomorphism is injective. Consequently, Gal(F'(jp)/F) is isomor-
phic to an infinite closed subgroup of Z;. Such a group has a finite torsion
subgroup and the corresponding quotient group will be isomorphic to Z,.
Therefore, F'(j1,0) contains a unique subfield Fy, such that Gal(Fo/F) = Z,,.
We refer to Fi, as the cyclotomic Zy-extension of F'. In particular, we will let
Qo denote the cyclotomic Z,-extension of Q. The cyclotomic Z,-extension
of an arbitrary number field F' is then F, = F Q.

It is easy to show that the primes of ' which are ramified in the cyclotomic
Z,-extension F,,/F are precisely the primes lying over p. For an arbitrary
Z,-extension, we have the following result.

Proposition 2.1.1. Suppose that Fyo/F' is a Zy-exstension. If v is a prime
of F which is ramified in the extension Fy/F, then v lies over p. At least
one such prime must be ramified in Fy/F.

Proof. Let I' = Gal(F/F). Let I, denote the inertia subgroup of Gal(F,,/F')
corresponding to a prime v of F. If v is ramified in F,/F, then I, is non-
trivial. Hence I, must be infinite. If v is an archimedian prime of F', then I,
would be of order 1 or 2, and so must be trivial. Consequently, archimedian
primes of F' split completely in F,/F. If v is nonarchimedian, but lies over [,
where | # p, then v is tamely ramified in F.,/F. It is known in general that if
v is tamely ramified in any abelian extension of F', then its ramification index
must divide N(v) —1, where N(v) denotes the cardinality of the residue field
for v. This can be proved either by using properties of ramification groups
or by using local class field theory. (See reference.) Thus, I, would be finite.
Therefore, I, must be trivial and v must be unramified in Fi,/F.

For the final assertion, we just remark that the maximal unramified,
abelian extension of F' (the Hilbert class field of F') has finite degree over F.
Thus, Fy/F must be ramified for at least one prime. [
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The existence and ramification properties of Z,-extensions of any number
field F" will be discussed in considerable detail in chapter 3. We will just make
a few remarks now. If we take F' = Q as the base field, then it is not hard
to prove that there is only one Z,-extension, the cyclotomic Z,-extension
Qs which was constructed above. To see this, one can use the Kronecker-
Weber theorem which asserts that the maximal abelian extension Q of Q
is generated by all the roots of unity. Proposition 2.1.1 then implies that
any Z,-extension of Q must be ramified only at p and therefore contained in
Q(pp,.), and so must be Q. The cyclotomic Z,-extension of an arbitrary
number field F'is Fy, = F Q.

If F' is a totally real number field, then it should again be true that the
cyclotomic Zy-extension is the only Z,-extension of F. This can be proved
if ' C Q%, but is an open question in general (a special case of “Leopoldt’s
Conjecture”). If F' is not totally real, then it turns out that there are infinitely
many distinct Zy-extensions of F'. We will discuss this matter in detail in
chapter 3. In particular, theorem 3.3 gives a quantitative statement about
the existence of Z,-extensions of an arbitrary number field F.

One of the main results to be proved in this chapter is the following
famous theorem of Iwasawa.

Iwasawa’s Growth Formula. Suppose that Foo = |J,,~q Fn s a Zy-extension

of a number field F'. Let h,, denote the class number of F,, and let AP = pe”
denote the largest power of p dividing h,. Then there exrists integers A\, u,
and v such that e, = An + up™ + v for all sufficiently large n.

Iwasawa’s growth formula will be proved in section 2.4, based largely on the
results of section 2.2 and 2.3. The integers A and p will be nonnegative. We
will refer to them as the Iwasawa invariants for Fi,/F, often denoting them
by AM(Fs/F) and u(Fy/F). Several interpretations of them will be given as
we proceed.

Proposition 1.1.4 implies one very simple special case of Iwasawa’s theo-
rem, namely the following useful result.

Proposition 2.1.2. Suppose that F is a number field and that p does not
divide the class number of F. Let Fy, = ,5q Fn be a Zy-extension of F
and suppose that only one prime of F is ramified in F/F. Then p does not
divide the class number of F,, for any n > 0. Therefore, Iwasawa’s growth
formula is valid with A = p=v = 0.

Proof. Suppose that I, denotes the inertia subgroup of Gal(F/F) for the
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one ramified prime v. It is clear that v must be totally ramified in F,/F.
Otherwise, FI* would be a nontrivial, unramified, cyclic p-extension of F,
contradictict the assumption that p t hp. Hence. for each n > 0, the hy-
potheses in proposition 1.1.4 are satisfied for the extension F),/F. Therefore,
the class number of F;, is not divisible by p. |

In particular, this result applies if F' has only one prime lying above p and
p1 hr. For example, p doesn’t divide the class number of Q,,, the n-th layer
in the cyclotomic Zy-extension Qu/Q. Also, if we take F' = Q(p,), where
p is any odd regular prime, then it follows that the class number of Q(fi,n)
will not be divisible by p for all n > 1. The class number of Q(ug») is 1 for
n < 2 and is odd for n > 2, again by proposition 2.1.2.

Now suppose that Fio = (U,so Fn is any Z,-extension of F. For every
n > 0, let L, denote the p-Hilbert class field of F,,. Let Lo, = U, > Ln-
Then L, is an abelian extension of Fi,. Let X = Gal(Lo/Fs). This group
will arise frequently in this book and will sometimes be denoted by Xp_/p.
We then have canonical isomorphisms of topological groups

X = limGal(L,/F,) = limA,

where the inverse limits are defined by the restriction and norm maps
Rp,/p, » Gal(Ly,/F,) — Gal(L,/F,), N, p, @ Am — Ay

for m > n > 0. The first isomorphism is just a consequence of the definition
of the Galois group for an infinite Galois extension. The second isomorphism
is defined by using the inverses of the Artin maps Art;, p, for n > 0. The
compatibility of the maps defining the two inverse limits then follows from
the commutative diagram (4) in the proof of proposition 1.1.1 for the fields
F=F,, F'=F,, m>n. The field Ly, could be described more directly as
the maximal, abelian pro-p extension of Fi, which is unramified at all primes
of Fi. The adjective "pro-p” refers to the fact that X = Gal(Lw/F) is a
projective limit of finite p-groups. The equivalence of this description and
the one above is not difficult to prove, and is left to the reader. We refer to
L, as the pro-p Hilbert class field of F.

Let 7, be a topological generator for I' = Gal(F,,/F). For any n > 0, v2"
is a topological generator for I', = ['*", the unique subgroup of I' of index
p". We have I';, = Gal(F/F,). Now L, is a Galois extension of F' and we
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therefore have an exact sequence
1> X —Gal(Lyw/F) >T —1

of topological groups. We can then define a continuous action of I' on X
by inner automorphisms as one normally does for group extensions. Thus,
if v € T', let 7 be an automorphism of L., such that 7|z, = . One then
defines

g7 =F2y (32)
for all x € X. Continuity means that the map I' x X — X defined by
(7,2) = 27 for all v € I" and = € X is continuous. It will be somewhat more
convenient to use an additive notation for X, and so we will now write vz
instead of 7. More generally, we can regard X as a module for the group
ring Z[I'] and will write 0z if § € Z[I'] and z € X. In particular, for any
n > 0, we will denote the element v*" — 1 in this group ring by w,. Then
wp corresponds to an element of X which could be written in multiplicative
notation as 7,7 z(9,*" ) 'z, a commutator in Gal(Ls/F},). In fact, we have
the following basic result.

Proposition 2.1.3. For eachn > 0, the commutator subgroup of Gal(Ly/ F},)
15 wpX . It is a closed subgroup.

Proof. Let G, = Gal(Ly/F,) and T',, = Gal(F/F,). We let D(G,) denote
the commutator subgroup of G,, (as an abstract group). The elements of
wpX are commutators in G, and so w, X C D(G,). Since X is compact and
multiplication by w,, is continuous, it follows that w, X is compact and hence
closed. It is clearly a normal subgroup of G,,.

To prove that D(G,) = w,X, it is enough to show that the quotient
Gn/wyX is abelian. Now yg" generates a dense, infinite cyclic subgroup I',
of I';,. There is a surjective homomorphism from G, to I',. The inverse
image of I'}, under that homomorphism is clearly abelian and dense in G,,.
It follows that (G, is indeed abelian. [ |

Remark 2.1.4. We have stated the above proposition for the extension
Ly /Fs- But the proof is obviously more general and would apply whenever
L., is an abelian, pro-p extension of F,, which is Galois over F. Under
that assumption, X = Gal(L/Fy) would again have a continuous action
of I'. Here is an interesting and important example. Let ¥ be any subset
of the primes of F'. Let ¥ be the set of primes of F, lying above those
in ¥. Define MZ to be the maximal, abelian, pro-p extension of F,, which
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is ramified only at the primes in ¥. It is easy to verify that M2 is Galois
over F' and so the analogue of proposition 2.1.3 would apply. The field L,
considered above is the special case where X is empty.

If 3 contains all the primes of F' lying above p, then we have F,, C MZ
according to proposition 2.1.1. For any n > 0, let ¥,, denote the primes of F,
lying above those in 3. Let M. denote the maximal, abelian, pro-p extension
of F,, which is ramified only at the primes in ¥,,. Then, M?> is the maximal
abelian extension of F,, contained in MZ. If we let X5 = Gal(M2 /F,,), then
we have

Gal(MZ/M)) = w, Xy,  Gal(M,/Fy) = Xy /w,Xx

for any n > 0.

As proposition 2.1.2 illustrates, various questions about Z,-extensions,
including the proof of the growth formula become simpler under the following
hypothesis about ramification.

RamHyp(1): Ezactly one prime of F is ramified in the Z,-extension F, /F
and this prime s totally ramified.

Under this hypothesis, proposition 2.1.2 already tells us that if p does not
divide the class number of F', then X = 0. The next proposition tells us that
X, together with the action of I' on it, determines the structure of all the
groups A, for n > 0.

Proposition 2.1.5. Suppose that RamHyp (1) is satisfied for the Z,-extension
Fy/F. Then, with the notation as above, we have canonical isomorphisms

X/waX = Gal(L,/F,) & A,

for all n > 0.

Proof. This is a straightforward variation on the proof of proposition 1.1.4.
Let v be the unique prime of F' which is ramified in Fi,/F. Let v,, denote the
unique prime of F), lying above v. Then v, is the only prime of F;, ramified
in the Z,-extension F/F, and it is totally ramified. Let K, denote the
maximal abelian extension of F;, contained in L.,. Proposition 2.1.3 implies
that we have the isomorphism

X/waX — Gal(K,/F)

induced by the restriction map =z — x|, for z € X.
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Let I, denote the inertia subgroup of Gal(K,/F,) for v,. It is clear
that L, is the subfield of K, fixed by I, and F, is the subfield fixed by
Gal(K,/Fy). Since these two subgroups of Gal(K,/F,) have trivial inter-
section, it follows that K, = L,F.. Since v, is totally ramified in F/F,,
we have L, N Fy = F, and therefore the restriction map

Gal(K,/F) — Gal(Ln/F,)

is indeed an isomorphism. The second isomorphism in the proposition is just
the inverse of the Artin map for the extension L, /K. [ |

The above proposition reduces the proof of Iwasawa’s formula for a Z,-
extension satisfying RamHyp(1) to proving an analogous formula for the
growth of the quotients X/w,X of X. We do this in the next two sections
where we begin the study of the structure and properties of ['-modules, a
topic that we will return to in Chapter 7. That study will also be the basis
for proving Iwasawa’s growth formula in general.

2.2 The structure of I'-modules.

We will refer to an abelian, pro-p group X which admits a continuous action
by the group I' as a I'-module. This means that there is a homomorphism
' —» Aut(X) such that the map I' x X — X defined by (y,z) — vz is
continuous. Here v € I', x € X, and vyx denotes the image of x under the
automorphism given by +.
Suppose that X is any abelian, pro-p group. Then, for some indexing set
I, we have
X =lim X;
% i

where Xj is a finite, abelian p-group for each index 7 € I. It is easy to make
X into a Z,-module. Each X; is a (Z/p"Z)-module for some t; > 0. The
canonical homomorphism Z, — Z/p“Z makes each X; into a Z,-module.
The projective limit X then inherits the structure of a Z,-module (since the
maps defining the projective limit will be Z,-modules homomorphisms). It
is a topological Z,-module in the sense that the map Z, x X — X defined
by (z,2) — zx (where z € Z, and z € X) is continuous. Conversely, it
is not hard to see that any compact, topological Z,-module is an abelian,
pro-p group. One way to prove this is to consider the Pontryagin dual S =
Hom(X, Q,/Z,), which is a discrete abelian group and also a topological
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Z,-module. One then sees that every element of S has finite, p-power order.
It follows from this that S is a direct limit of finite Z,-modules S; where 1
varies over some indexing set I.

Suppose now that X is an abelian, pro-p group which has a continuous
action of I'. As above, we have X = l'ng,-, where the X;’s are finite, abelian
p-groups and ¢ varies over an appropiate indexing set I. For each i € I, let
Y; = ker(X — X;). Thus, Y; is an open subgroup of X. An easy continuity
argument shows that v(Y;) = Y¥; for all v in some subgroup of finite index
in I'. This means that the orbit of Y; under the action of I' is finite. Hence
Y; contains an open subgroup which is ['-invariant. This implies that we can
assume without loss of generality that each Y; is already I'-invariant and so

X =lim X;,

where each X; is a finite, abelian p-group with a continuous action of I'. The
maps defining the projective limit are I'-homomorphisms.

It will be important for us to view X as a module over the ring A =
Z,[[T]], the formal power series ring over Z, in the variable 7. One sees
easily that A is a local ring, m = (p,T) is its maximal ideal, and A is com-
plete in its m-adic topology. Also A/m = F, and A/m’ is finite (of order
p/2) for any Let -, denote a topological generator for I', as in section
2.1. Roughly speaking, we will make X into a A-module by regarding 7" as
the endomorphism ~, — 1.

For each i € I, we have p% X; = 0 for some a; > 0. Also, 7, — 1 defines
an endomorphism of X; which has a nontrivial kernel if X; is nontrivial.
Consequently, (7, —1)X; is a proper subgroup of X; if X; # 0. It follows that
(Yo— 1)biXi = 0 for some b; > 0. Thus, we can regard X; as a module over the
finite ring Z,[T]/(p%, T"), where we let T act on X; as the endomorphism
v, — 1. However, we obviously have Z,[T]/(p%,T%) = Z,[[T]]/(p*%, T"), and
so we can regard X; as a A-module which is annihilated by the ideal (p%, T%).
Taking ¢; = a; + b;, it is obvious that m% C (p%,T%) and so each X; can be
regarded as a module over A/m'. Regarding the X;’s as A-modules, it is clear
that the maps defining the projective limit are A-module homomorphisms.
Thus X becomes a topological A-module. That is, the map A x X — X
defined by (6,x) — 0z for § € A, = € X is continuous.

Conversely, if X is any compact A-module, then X is also a compact Z,-
module and hence is an abelian, pro-p group. To make X into a I'-module,
note that I' can be identified as a topological group with a subgroup of A*
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by the continuous homomorphism v — (1 + T)* for all z € Z,. Here we
define

(1+T) = i ('j)Tz where ('j) = %li[l(z —j+1).

1=0

It is not difficult to prove that the coefficients of the above power series are
in Z,. the constant term is 1, and so the power series is indeed invertible
in A. Thus, X admits a continuous action of I' from which the A-module
structure on X arises by letting T" act as v, — 1, just as above. If X is finitely
generated as a A-module, then it is clear that X is compact and that the
quotients X/m"X are finite A-modules for all n > 0. In this case, we have

X = Jim X/m"X,

an inverse limit of a sequence of finite A-modules.

We proved a version of Nakayama’s lemma in chapter 1, lemma 1.5.3.
That proof works in a much more general context. Assume that R is a local
ring with maximal ideal m, that R is complete in its m-adic topology, and
that R/m' is finite for all ¢ > 0. In particular, ¥ = R/m is a finite field. Let
p be its characteristic. Now R = lim R/m’, where the finite rings R/m" have
the discrete topology, and so R is a compact, topological ring. Suppose that
X is a projective limit of finite, abelian groups X, and that each X, is a
module over the ring R/ m» for some ¢, > 0 (which implies that X,, must be
a p-group). We can then regard each X,, as an R-module. Assume that the
maps defining the projective limit are R-module homomorphisms. Then X
itself becomes an R-module and the map R x X — X defined by (r,z) — rz
is continuous. That is, X is a compact, topological R-module. Conversely,
any topological R-module X which is compact arises in the above way.

Proposition 2.2.1. Nakayama’s lemma for compact R-modules. Sup-
pose that R and X are as above. Let xq,...,xq be a subset of X. For
each i, 1 < i < d, let z; denote the image of x; under the natural map
X = X/mX. Then z1,...,x4 is a generating set for the R-module X if and

only if T1,...,%4 is a generating set for the k-vector space X/mX.
Proof. 1t is obvious that Z1,...,T4 generate the k-vector space X/mX if
Z1,...,%q generate the R-module X. Conversely, assume that zi,..., T4
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generate X/mX as a k-vector space. Let Y be the R-submodule of X gener-
ated by z1, ..., 4. Since Y is a continuous image of R? and R is compact, it
follows that Y is compact. Therefore Y is a closed R-submodule of X. It is
therefore enough to prove that Y is dense in X. This follows as before once
we establish the result in the case where X is finite.

If X is finite, then m'X = 0 for some ¢ > 0. We are assuming that the
image of Y under the canonical homomorphism X — X/mX is all of X/mX.
Thus, X =Y +mX. It follows that X = Y +m'X for all ¢ > 0. Taking
1=1t, we get Y = X. [

Corollary 2.2.2. Suppose that R and X are as above. Then
1. X =0 f and only if X = mX.

2. X is a finitely generated R-module if and only if X/mX is finite.

Proof. These statements follow immediately from Nakayama’s lemma. Of
course, statement 1 could be proved quite directly by again reducing to the
case where X is finite. Then, on the one hand, m*X = 0 for some ¢ > 0.
But, on the other hand, X = mX = X = m'X for all ¢ > 0. It follows that
X =0. [ |

We will be primarily interested in the special case where R is ring A
introduced earlier. Suitable candidates for X are provided by compact I'-
modules. In general, the examples of interest to us will be finitely generated
as A-modules.

The ring A is Noetherian and has Krull-dimension 2. The maximal ideal
m has height 2. One simple way to obtain prime ideals of height 1 is as
kernels of the evaluation homomorphisms. Suppose that o € Qp and has
absolute value < 1. If f(T) € A, then one can define f(a) € O = Z,[q]
since the power series obviously converges to some element of that ring.
The ring O is a subring of the ring of integers in Q,(c«)—a finite extension
of Q,. The map f(T) — f(«) defines a surjective ring homomorphism
A — O and its kernel is a prime ideal of height 1. If a and o' are two
such elements of Qp, then it is easy to see that the corresponding evaluation
homomorphisms have the same kernel if and only if @ and o/ are conjugate
over Q,. Therefore, infinitely many distinct prime ideals arise in this way. In
fact, it will become clear later that all but one of the prime ideals of height 1
in A arise in this way. The exception is the ideal (p). If f(T) =Y. a;T" € A,

define f(T) = Y. a;T% € F,[[T]], where a denotes the image of a € Z,
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under the homomorphism Z, — F,. Then the map A — F,[[T]] defined by
F(T) = F(T) is a surjective ring homomorphism with kernel (p). This makes
it clear that (p) is indeed a prime ideal of A.

Suppose that X is a finitely generated, torsion A-module. If I is any ideal

of A, we will use the notation
X[I={z€eX|ar=0 forallaecl}

Let Z = |J,,»o X[m"] which is a A-submodule of X. Since A is Noetherian,
Z must be finitely generated and so it follows that Z = X [m?] for some ¢ > 0
and that Z is finite. It is clear that any finite A-submodule of X is contained
in Z and so we refer to Z as the maximal, finite A-submodule of X.

Let Y = J,>o X [p"], which is just the Z,-torsion submodule of X. We
will denote Y simply by X;,.s in this chapter. Just as above, we see that
Y = X|[p'] for some ¢t > 0. We have Z C Y. The quotient X/Y is a
finitely generated, torsion A-module and is torsion-free as a Z,-module. If
f(T) = Y. a;T" is a nonzero element of A which annihilates X, then write
f(T) = p™g(T), where g(T) € A is not divisible by p. It is clear that
g(T) annihilates X/Y. If X/Y has d generators as a A-module, then it is
a quotient of the A-module U?, where U = A/(g(T)). The following lemma
gives the structure of U as a Z,-module.

Lemma 2.2.3. Suppose that g(T) = ooy bT" € A is not divisible by p. Let
I =min{i | b; € Z;}. ThenU = A/(g(T)) is a free Z,-module of rank l.

Proof. Let I = (¢(T)). It is clear that U = A/I is torsion-free as a Z,-module.
Otherwise, there would be an element h(7T) € A such that ph(T) € I, but
¢ pI). That is, ph(T) = g(T)j(T) where j(T') is not divisible by p. But this
is not possible since (p) is a prime ideal of A.

Now U/pU can be considered as an F,[[T']]-module and is isomorphic to
F,[[T]]/(9(T)), where, as earlier, g(T') = S b;T". Note that §(T) is a nonzero
element of F,[[T]] and (g(T)) = (T%). It is clear that U/pU has dimension [ as
an F,-vector space and so, by lemma 1.5.3 (Nakayama’s Lemma for compact
Z,-modules), it follows that U is a finitely generated Z,-module and that {
is the minimal number of generators. Since U is torsion-free, it must be free

of rank /. |
We summarize the above observations in the following proposition.

Proposition 2.2.4. Suppose that X is a finitely generated, torsion A-
module. Then there are uniquely determined A-submodules Z and Y of X
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with the following properties:
a. 7 is finite and X/Z has no nonzero, finite A-submodules.

b. Y is annihilated by a power of p and X/Y is a free Z,-module of finite
rank.

This proposition allows us to define certain important invariants associated

with X. The Z,-rank of X/Y is obviously equal to dimgq,(V'), where V is
the Q,-vector space X ®z, Q,. We define

AX) = rankg, (X/Y) = dimq, (V). (33)

Then X/Y = 7y as a Z,-module. Now Y = X[p'] for some ¢ > 0. (Even
if Y = 0, we will take ¢ > 0 in the following definitions.) For each i such that
0 < i < t, the A-module X [p‘]/X[p'~!] has exponent p and can be considered
as an Fy[[T]]-module. It will be finitely generated and thus has finite rank.
We define

t
p(X) =) ranke, iz (X [p']/ X [p"1). (34)
i=1
If X is finitely generated as a Z,-module, then p(X) = 0. To be precise, we
have

uw(X)=0<Y is finite < X[p] is finite & X/pX is finite

In this case, Y and Z coincide. On the other hand, it is also clear that
AMX) =0« p'X =0 for some t >0

We will refer to A(X) and p(X) as the Iwasawa invariants for the A-
module X. Another invariant which will play an important role will be a
polynomial fx(T) in Z,[T], which we refer to as the “characteristic polyno-
mial” of X. However, this polynomial depends not just on the structure of X
as a ['-module, but also on the choice of topological generator v, of I'. (In a
later chapter, we will remedy this by redefining the ring A in a more intrinsic
way, viewing it as the “completed group algebra for I' over Z,.”) The defi-
nition is fx(T) = p*®gx(T), where gx(T) is the monic polynomial whose
roots are precisely the eigenvalues of the linear operator 7" = 7, — 1 acting
on the Q,-vector space V' defined above. These eigenvalues are in Qp and
are counted according to their multiplicities so that gx (7T'), and hence fx (7)),
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has degree equal to A(X). Since T" acts on X topologically nilpotently, it is
not hard to see that the eigenvalues of T" have absolute value < 1. Therefore,
the nonleading coefficients of gx (7) are divisible by p.

It will be useful to have finer invariants to describe the structure of ¥ =
Xiors as a A-module. For each 7 > 1, define r; = rankg, (X [p’]/ X [p"]).
Assume that pu(X) > 0. This means that 4 > 0. Choose t so that r; > 0,
but r,,1 = 0. Note that ry > --- > r;. Let r = ri. The finer py-invariants
will be positive integers pi, ..., i, consisting of ry —ry 1's, 19 — r3 2's, ...,
and r; t's. With this definition, we have

pX) =D =3 (35)

As a simple illustration, suppose that X is a A-module and that Y = A/p™A,
where m > 0. We then have r = 1 and py = m. If Y = (A/pA)™, we then
have r =m and py = --- = p,,, = 1. In both cases, we have u(X) = m.

Let F/F be a Z,-extension and let Ly, be the pro-p Hilbert class field
of Fo. We will prove that X = Gal(Ly/Fy) is a finitely generated, torsion
A-module in section 2.5. The integers A and p occurring in Iwasawa’s formula
turn out to be precisely the Iwasawa invariants for X: A = A\(X), p = p(X).
The polynomial fx(7") will also be of special interest. In the case where
F/Q is an abelian extension and F,, is the cyclotomic Z,-extension of F,
its roots are related in a certain way to the zeros of the p-adic L-functions
defined by Kubota and Leopoldt. The precise relationship, which was first
conjectured by Iwasawa in 1969 and proved by Mazur and Wiles in 1979, will
be described in Chapter 8 together with a proof for the special case where
F = Q(pp). Closely related to this is a simple interpretation of the roots
of fx(T) in terms of the unramified cohomology groups discussed in section
1.6. That interpretation will be discussed in the final section of this chapter

If F/F satisfies RamHyp(1), then the assertion that X is a finitely
generated, torsion A-module is relatively easy to prove. In this case, we
already know that X/w,X is finite for all n. In particular, X/TX is finite.
The assertion that X is finitely generated then follows immediately from the
corollary to Nakayama’s lemma. The assertion that X is a torsion A-module
follows from the following result.

Proposition 2.2.5. Let X be a finitely generated A-module. Then the fol-
lowing statements are equivalent:
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a. There exists an element f(T) € m such that X/ f(T)X is finite.

b. X contains a torsion Z,-submodule Y such that X/Y is finitely gener-
ated as a Z,-module.

c. X is a torsion A-module.

Proof. We have already proved that (¢) = (b). The converse (b)=(c) is
rather easy. We can assume that X/Y is Z,-torsion free. Since A is Noethe-
rian, Y is also finitely generated and has bounded exponent. Therefore, it
is annihilated by p* for some a. As for X/Y, this is a free Z,-module of
finite rank and multiplication by 7" defines an endomorphism of that mod-
ule. If g(z) is the characteristic polynomial of this endomorphism, then g(7’)
annihilates X/Y. Thus the nonzero element p®g(7") is an annihilator of X,
proving (¢).

We also have (b) = (a). To see this, one can simply take ¢(T) =T — f,
where 8 € pZ, is not an eigenvalue of the endomorphism of X/Y given by
multiplication by 7. Then (7' — §)(X/Y) has finite index in X/Y. Suppose
that p'Y = 0. Then for each 7, 0 < 7 < ¢, Y[p']/Y[p*~!] can be considered
as a finitely generated F,[[T]]-module. the cokernel of multiplication by
T — 3 is clearly finite. It then follows that (7" — 8)Y has finite index in Y.
Consequently, by the snake lemma, one sees that (7' — )X has finite index
in X.

Finally, we prove that (a) = (c). If (a) holds and p divides f(T), then
X/pX is finite too. Hence, by Nakayama’s lemma for the ring Z,, it follows
that X is finitely generated over Z,. Hence (b) is true, and so (¢) follows in
this case. Thus, we can now assume that p doesn’t divide f(7). Then, by
lemma 2.2.3, A/(f(T)) is a free Z,-module and its Z,-rank | = deg(f(T)) is
positive. Let 7 = rank, (X). The following lemma then completes the proof
of proposition 2.2.5. It implies that r = 0 if X/(f(7"))X is finite. [

Lemma 2.2.6. Suppose that X is a finitely generated A-module and that
f(T) € A. Let r =ranky (X) and | = deg(f(T)). Then

rankz, (X/f(T)X) > rl. (36)

If X is a torsion-free A-module, then equality holds.

Proof. To prove (36), we can obviously replace X by the quotient module
X/ XA _tors- SO we can assume without loss of generality that X is a torsion-
free A-module. We can also clearly assume that f(7') is not divisible by p.
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Now X contains a A-submodule Y which is free of rank r over A. We have
the exact sequence
0—Y —-X—27—0

where Z is a finitely generated, torsion A-module. The snake lemma then
gives an exact sequence

0 — Z[f(T)] — Y/f(T)Y — X/f(T)X —s Z/f(T)Z — 0.

By lemma 2.2.6, Y/ f(T)Y is a free Z,-module of rank rl. Let U denote the
Z,-torsion submodule of Z. Then Z/U is a free Z,-module of finite rank.
This implies that Z[f(T')] and Z/ f(T) Z have the same (finite) Z,-rank. Thus
we see that rankz, (X/f(T)X) = rl. [

In a later chapter, we will discuss more precise results concerning the
structure of finitely generated A-modules. The results that we are proving
here and in the next section will suffice for the proof of Iwasawa’s growth
formula. Some of the later theorems (including a couple in this chapter)
involve the following standard ring-theoretic notion. Let R be a Noetherian,
local, integral domain. The Krull-dimension of R is then finite. We denote
it by dim(R). If P is any prime ideal of R, then we will denote its height by
ht(P). It is related to the Krull-dimension of R/P by the formula:

ht(P) 4+ dim(R/P) = dim(R).

Let X be a finitely generated R-module. For any x € X, let Ann(z) denote
its annihilator in R. The primes ideals of R which are associated to X form
the following set.

Assg(X) ={P | P = Ann(z) for somez € X}

This is a finite set. We will say that X is “pure of dimension d” if dim(R/P) =
d for every prime ideal P € Ass(X). Thus, X is pure if all the prime ideals in
Ass(X) have the same height h. The dimension will then be d = dim(R) — h.
In particular, a torsion-free R-module would be pure of dimension equal to
dim(R).

If we take R = A, then the Krull-dimension is 2. As explained earlier, A
has one prime ideal of height 2, the maximal ideal m = (p,T'), and infinitely
many prime ideals of height 1. A nonzero, finitely generated, torsion A-
module X is pure in the following two cases: (a) X is finite and hence pure
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of dimension 0, (b) X has no nonzero, finite A-submodules and hence is pure
of dimension 1.

We have been considering A-modules which are profinite and therefore
compact as topological groups. It is also quite useful to consider their Pon-
tryagin duals. Suppose that X is a pro-p abelian group (i.e. a compact
Z,-module). Let S = Hom(X,Q,/Z,). One verifies easily that S is a
p-primary abelian group and that the usual topology on it (the so-called
“compact-open” topology) is just the discrete topology. Also, if S is any
p-primary abelian group with the discrete topology, then we can regard it
as a direct limit of finite abelian p-groups. Therefore, its Pontryagin dual
X = Hom(S, Q,/Z,) is an abelian, pro-p group. We can regard both S and
X as Z,-modules.

If X is a finitely generated Z,-module, we will say that S is a cofinitely
generated Zy,-module. We then define corankz, (S) = rankz, (X), which we
refer to as the Zy-corank of S. Note that since the Pontryagin dual of Z, is
Q,/Z,, it follows that any cofinitely generated Z,-module S is isomorphic to
(Qp/Z,)! x T as a Z,-module, where T is finite and | = corankg, (S). Thus,
the maximal divisible subgroup Sy, of S is isomorphic to (Q,/Z,)! and has
finite index in S. If X is torsion-free as a Z,-module (finitely generated or
not), then S is divisible. The following result is a consequence of Nakayama’s
lemma for compact Z,-modules, but also can be proved directly.

Proposition 2.2.7. Suppose that S is a discrete, p-primary abelian group.
Then S is a cofinitely generated Z,-module if and only if S[p| is finite. If S
is divisible, then corankz (S) = dimg, (S[p]).

Suppose that S is a discrete, p-primary abelian group with a continuous
action of I'. We can translate our earlier results into equivalent statements
about S. Let X = Hom(S,Q,/Z,), which also admits a continuous action
of I'. (This is defined on Hom in the usual way, using the given action of
I" on S and the trivial action on Q,/Z,). Since S is also a Z,-module, it is
not hard to make S into a A-module directly (showing first that S is a direct
limit of finite [-invariant subgroups). Or one can equivalently transfer the
structure of X as a A-module to S. Just as above, we say that S is cofinitely
generated as a A-module if X is finitely generated as a A-module, cotorsion as
a A-module if X is a torsion A-module. We refer to rank, (X) as corank, (5).
If S is a cofinitely generated, torsion A-module, then we define A(S) to be
AX), p(S) to be p(X). It is useful to note that if X is torsion-free as a
A-module, then S is divisible as a A-module (i.e. S = S for every nonzero
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6 € A). Here are the most useful results.

Proposition 2.2.8. Suppose that S is a discrete, p-primary, abelian group
with a continuous action of I'. Regard S as a A-module. Then

1. S=0<= ST =0 <= S[m] =0.
2. S is a cofinitely generated A-module <= S|m| is finite .

3. S is a cofinitely generated, cotorsion A-module <= S|[0)] is finite for
some 0 € m.

Proposition 2.2.9. Suppose that S satisfies the assumptions in proposition
2.2.8. If S' is finite, then S is a cofinitely generated, cotorsion A-module.

Proposition 2.2.10. Suppose that S is a cofinitely generated, cotorsion
A-module. Then Sgw = (Qp/Zp) as a Zy-module, where X = X(S). The
quotient S/Sg4, has bounded exponent.

The proofs are rather easy, based on corollary 2.2.2 | propositions 2.2.4 and
2.2.5.

2.3 Growth theorems for quotients of I'-modules.

Now let X be a finitely generated, torsion A-module. It can of course happen
that X /w,X is infinite for some values of n. This corresponds to the possibil-
ity that some of the eigenvalues of 7, acting on the vector space V =X ®sz_p
are p"-th roots of unity. (Of course, the corresponding eigenvectors may be
in the vector space V' ®q, Qp obtained by extending scalars to the algebraic
closure Q,, of Q,.) The order of such roots of unity is certainly bounded. (To
see this, note that if p’ is the order of some such root of unity, then it is clear
that ¢(p) = p* — p'~' < A(X). This gives a bound on ¢.) In the ring A, we
can write w, = [[;_, ¢, where ¢; = w;/w;_1 for i > 0 and ¢y = wy = T. For
m >n > 0, define v, , = Hn<i<m ¢;, which we take to be 1 if m = n. Thus,
Wm = WpVmn,. Note that the roots of the polynomial ¢; are the numbers
¢ — 1, where ( is a primitive p’-th root of unity.

We fix an integer n, sufficiently large so that no p’-th root of unity is
an eigenvalue of 7, acting on V' for ¢ > n,. Then it is easy to verify that
X/ n, X is finite for all n > n,. We will prove the following proposition.
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Proposition 2.3.1. Let X be a finitely generated, torsion A-module. Choose
ne so that X /vy, ,, X is finite for alln > n,. Let A = AN(X), p = pu(X). Then
we have

‘X/Vn,noX‘ = p/\n—|—p,p"+u

for all n > 0, where v is some integer.

Proof. Suppose that we have an exact sequence of torsion A-modules
00— Xi —Xog—X35—0

We first show that the validity of the above theorem for X; and X3 implies
the validity for X,. It is easy to see that

A(X2) = A(X1) + A(X3), w(Xz) = p(X1) + p(Xs).

Choose n, sufficiently large so that the Xy /vy, ,, X5 is finite for all n > n,.
Then the same thing will be true for X; and Xj3. The snake lemma gives

0— Xl[l/n,no] — XQ[Vn,no] — X3[Vn,no] — Xl/Vn,noXl
— X?/Vn,noXQ — X3/Vn,noX3 — 0.

Note that each ¢; is in m and so v, € m! for t = n — n, + 1. Hence,
it is clear that if n > n,, then X;[v,, | = Z; for i« = 1,2,3, where Z;
denotes the maximal finite A-submodule of X;. Thus the terms in the first
half stabilize for n > 0, and therefore the image of the fourth arrow will have
order |Z1||Z3|/| Z2| = p®, say. This implies that

| X/ Vn o Xo| = [ X1/Vnn, X1|| X3/ Vnn, X3[p™*

for n > 0. It is then clear that proving proposition 3 for X = X; and
X = X3 implies it for X = Xs.

Based on this last remark and proposition 2.2.4, it is enough to consider
the following three special cases: (a) X is finite, (b) X has exponent p, and
(¢) X is a free Z,-module of finite rank.

Case (a): This is quite easy. If X is finite, then v, ,, annihilates X for
n >> n, and so X/vp,, X = X has constant order |X| for such n. The
proposition is valid since \(X) = u(X) = 0.

Case (b). If X has exponent p, then one can consider X as a finitely-
generated module over F,[[T]], which is a principal ideal domain. Therefore,
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X is isomorphic to F,[[T]]" x Z, where r > 0 and Z is the F,[[T]-torsion
submodule of X. Noting that F,[[T]]/(T?) is finite (of order p¢) for any
integer d > 0, it follows that Z is finite too. Thus it is enough to just
consider the special case X = F,[[T]]. We then have A\(X) =0, u(X) = 1.
Note that ¢; has degree p* — p*~'. Hence v,,,, has degree p* — b for n > n,,
where b is a constant. Also, v, ,, is not divisible by p in A. It follows that
X /Vpn, X has order p?"~° for n > n,, again verifying the proposition since
AMX)=0and pu(X)=1.

Case (c). Assume that X is a free Z,-module of rank /. Multiplication
by T defines a Z,-linear endomorphism of X. Let ai,...,q; denote the
cigenvalues (in Q,) of this endomorphism, counting multiplicity, which are
just the roots of the characteristic polynomial g(t) = det(tI — T'). It is clear
that 7" acts nilpotently on X/pX, an F,-vector space of dimension /. The
characteristic polynomial for the endomorphism T of X/pX is # and hence
g(t) = t' (mod pZ,[t]). This implies the important fact that |o;|, < 1 for
1< <1

Thus, if f(T) € A, then f(o;) € Q, is defined Furthermore, multi-
plication by f(7') defines an endomorphism of X which has eigenvalues
f(a1),..., f(ay). The determinant of this endomorphism is Hi’:1 f(ai). The
determinant of a matrix over Z, determines the order of the cokernel. To be
precise, if some «; is a root of f(7T), then X/f(T)X is infinite. Otherwise,
write []._, f(c) = p*u, where u € Zy. Then |X/f(T)X| = p®

We take f(T) = vnn, = [1,,<j<n @j- The roots of ¢;(T) are the numbers
¢ — 1, where ¢ varies over the primitive p’-th roots of unity (in Qp). Recall
that ord,(¢ —1) = 1/(p? — p’~1) for all such roots of unity. Let o be any one

of the a;’s. We have
i() = [[(e= (¢ —1)))
¢

where the product is over all the primitive p’-th roots of unity (. Our choice
of n, implies that a is not a root of ¢; for j > n,. Obviously, if j is sufficiently
large (say, j > nq), then ord,(¢ — 1) < ord,(«) for all @ € {oy,...,q}. The
number of factors in the product defining ¢;(«) is p/ — p’~!. Each of these
factors has valuation equal to ord,(¢ — 1) for j > ny. Thus, for such j, we
have

ord, (¢;(a)) =1

and so ord, (l/n,no (ai)) = n+ ¢; for n > ny, where ¢; € Z. It follows that
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| X /Vpn, X| = pT? for n > 0, where d € Z. Since A\(X) = and u(X) =0,
we have verifies the proposition for case (c).

As we already remarked, proposition 2.3.1 follows from these separate
calculations. |

It may be worthwhile to discuss one simple case of Proposition 2.3.1
explicitly. Assume that p is odd. Suppose that X = Z,. The action of I'
on X would then be given by a continuous homomorphism « : I' = 1 + pZ,,.
Thus k() = 1+ «, where a € pZ,. (In fact, « is the eigenvalue of 7' = v —1
acting on X.) We assume that the action of I" is nontrivial. That is, « # 0.
Suppose that ord,(a) = a. Then X/TX = X/aX is cyclic of order p*.
Now 1+ pZ, = Z, as a topological group and the image «(I') will be the
subgroup 1+ p®Z,, which is the unique subgroup of 1 + pZ, of index p*~'.
The image (T,) will be the unique subgroup of index p"*¢~!. That is,
ord,(k(y?") — 1) = p™*e. It follows that X/w,X is cyclic of order p"™. This
is true for all n > 0. Thus, in the notation of proposition 2.3.1, we have
A=XAX)=1,p=pu(X)=0, and v = a.

Another result which sometimes will be useful is the following proposition.
Any integer n, satisfying the property in proposition 2.3.1 will also have the
property that rankz, (X/w,X) = rankg, (X/w,, X) for all n > n,. The two
properties are equivalent. The following result concerns the growth of the
torsion subgroup of X/w,X.

Proposition 2.3.2. Suppose that X is a finitely generated, torsion A-
module. Choose n, as above. Let A\, = rankg, (X/w, X). Then, for n >0,

we have
|(X/wnX)t0rs| = p()‘_)‘O)n+upn+,,’

where A = N X), p= u(X), and v is some integer.
Proof. Let Y = w,, X. Then A\(Y) = A — A,. We have w,X = v,,,Y for
n > n,. Also, Y/, Y is finite for all such n. We have an exact sequence

0—=Y/vpnY — (X/wnX)tors = (X/Y )tors = 0

The result follows immediately by applying proposition 2.3.1 to Y. |

One further result concerns the order of quotients of the form X/(T-3) X,
where 8 € pZ,.

Proposition 2.3.3. Suppose that X is a finitely generated, torsion A-module
and that fx(8) #0. Then X/(T — B)X is finite. If X has no nonzero, finite
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A-submodules, then

ord, (|X/(T = H)X|) = ordy (£x(8)).
If fx(8) =0, then X/(T — B)X is infinite.

Proof. We can write fx(T) = p*X)gx (T), where gx (T is a monic polynomial
in 7. Thus, fx(8) = p*X)gx(B). It is clear from the proof of proposition
2.3.1 that X/(T — B)X is finite since § is not a root of gx (7). To calculate
the order of X/(T — )X, consider the exact sequence

0 —Y —>X—X/Y —0

where Y is the Z,-torsion submodule of X. Thus, Y = X[p'] for some
t > 0. We assume that X has no nonzero A-submodules. If one considers
the maps induced by multiplication by p*~' on X for ¢ > 1, then one sees
that X[p‘]/X[p* ] is isomorphic to a A-submodule of X and hence also has
no nonzero A-submodules. This means that each X[p]/X[p'1] is free as a
F,[[T]]-module. On the other hand, X/Y is a free Z,-module.

If one then applies the snake lemma as in the proof of proposition 2.3.1,
one can reduce the proof to the two cases where either X = F,[[T]] or X is
a free Z,-module of rank /. One has X/(T — )X =2 F, and p(X) = 11in
the first case. The proposition is valid in that case. In the second case, let
a1, ..., denote the roots of fx(T) = gx(T). It is clear that the index of
(T — )X in X is infinite if and only if § is equal to one of the o;’s. If we
assume that fx(8) # 0, then that index is finite and has the same valuation
as the determinant of the operator 7' — 8 on X, which is

H(ai - B) = +fx(B),

proving the formula in the proposition. |

We will now prove some results about the group-theoretic structure of the
quotients of X occurring in propositions 2.3.1 and 2.3.2, starting first with
the case where p(X) = 0.

Proposition 2.3.4. Let X be a finitely generated, torsion A-module. Choose
no s0 that X /vy, X is finite for all n > n,. Assume that u(X) = 0. Then,
for all n > 0, there is an isomorphism

A
X/vyp, X = H Z/p"¢Z x C,

1=1
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where cq,...,cy are certain integers and C is isomorphic to the maximal,
finite, A-submodule of X.

Proof. As a Z,-module, we have X = U x Z, where U = Z). Here Z is a
A-submodule of X, but U is just a Z,-submodule. Suppose that ¢ is chosen
so that p'Z = 0. Then p'U = p'X is a A-submodule of X, and has finite
index. Hence v, ,, X C p'U for n > n,. Note that

X/ X 2Uvpn, X X Z

as a Zy,-module. Note that v,, X is a free Z,-module of rank A. We will

show below that
Unt1mgX = DVnngX (37)

for n > ny, where n; is chosen in a certain way. Thus, for such n, if U/vy », X
is isomorphic to a direct product of cyclic groups of orders p®, ..., p**, then
U/vp+1n,X will be isomorphic to a direct product of cyclic groups of orders
p@tl . p®tl The proposition will then follow by induction.

First choose n,, > n, so that X' = v ,, X C p'U. Then I' acts continu-
ously on the quotient group X'/p?X’. Choose n; > n/, so that the subgroup
I'P"" acts trivially on this quotient. If i > n;, then ¢; = ?;3 77?7 acts
on X'/p?X' as multiplication by p. A simple application of Nakayama’s
lemma (for Z,-modules) implies that ¢; X' = pX'. Let n > ny. Then, taking
i =n + 1 and multiplying by v, ; , we obtain the identity (6). [ |

If A is any finite abelian group, its exponent is the smallest positive
integer m such that A[m] = A, or equivalently, the least common multiple
of the orders of elements in A. We will refer to dimg, (A[p]) as the p-rank of
A. The p-rank of A is also clearly equal to dimg,(A/pA).

Proposition 2.3.5. Let X be a finitely generated, torsion A-module. Choose
ne so that X/vy, ., X is finite for all n > n,.

1. If (X)) > 0, then the exponent of X /vy, X is equal to p"*™¢ for all
n > 0, where ¢ is some integer. If A(X) = 0, then the exponent of
X/Vnn, X is bounded and becomes constant for n > 0.

2. Let r = rankg,r(X[p]). Then the p-rank of X/v,,, X is equal to
rp™ + ¢ for n > 0, where ¢ is some constant.

Proof. The first statement follows immediately from proposition 2.3.4 if
1(X) = 0. Note also that the proof of that proposition shows the following
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(again under the assumption that p(X) = 0): Let x € X. Assume that
x ¢ Z, the maximal finite A-submodule of X. Then the image of x in
X/Vp n,X has order p"*¢ for all n > 0, where cis a certain integer (depending
on z). We will use this observation in the general case.

In general, let p' denote the exponent of Y = Xos. Then p'X is a free
Z,-module of rank A(X). The maximal finite A-submodule of X/p*X is of
the form X, /p'X for a uniquely determined A-submodule X, of X containing
p'X. Since p{ vy p,, it is clear that (X/X,)[Vy,,,] = 0. This implies that

Vn,noX NX,= Vn,noXo (38)

for any n > n,.

Let z € X. Assume that p'z # 0. Since A\(X) > 0, the image of z in
X /Vy 5, X has unbounded order as n — co. Now p'z € X, and its images
in X/vp,, X and in X,/vp ,, X, have the same order for n > n, according to
(38). This order is p"*¢ if n > 0, for some c. Thus, the order of the image of
z in X/vppn, X will be p"t<** for sufficiently large n. The stated result follows
immediately because X is finitely generated as a A-module. If zq,...,z4 is
a set of generators, then the exponent of X /v, ,, X will be the maximum of
the orders of the images of x4, ..., z4 in that quotient.

We now prove the second statement. One can equivalently define r as
rankg, 771(X/pX). This follows from the exact sequence

0= Xp-X—->X—->X/pX—>0

since the p-invariant is additive in exact sequences, and so p(X[p]) = u(X/pX).
Note that

(XU, X) [ P(X Vi, X) = X[ Vi, X +0X) = (X/pX) /30, (X/pX)

The stated result follows from proposition 2.3.1, since the order of a group
of exponent p determines its dimension over F,,. |

If u(X) > 0, then the actual structure of the quotients X /v, , X would
be somewhat more complicated. We will be content to state the following
result, omitting the proof. If one uses the structure theorem for A-modules
to be proved in Chapter 5, then the result is not hard to prove. We use
the following notation. Suppose that {A,} and {B,} are two sequences of
groups, defined for all n > n,, say. We will write {A,} ~ {B,} if there exists
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a sequence of group homomorphisms f, : A, — B, defined for n > n, such
that ker(f,) and coker(f,,) are finite and of bounded order as n varies.

Proposition 2.3.6. Let X be a finitely generated, torsion A-module. Choose
N S0 that X /vy n, X is finite for alln > n,. Let A = A(X) and p = pu(X). Let
Wi, ..., b be the finer p-invariants for X. Forn > n,, let A, = X/vpn, X
and let B, = (Z/p"Z)* x [[;_,(Z/p" Z)"". Then {An} = {B.}.

Note that the group B, in this proposition has order p**™#". It is also
worth pointing out that knowing the sequence of groups {A4,} (up to the
equivalence relation &) is sufficient to determine the invariants A(X), u(X),
ryand fiy, ...ty

2.4 Proof of Iwasawa’s growth formula

We will prove Iwasawa’s theorem in complete generality in this section. If
we assume RamHyp(1), then the result follows quickly from earlier results.
In this case, we know that X/w,X is finite for all n. As we have already
pointed out, Nakayama’s lemma and proposition 2.2.5 imply that X must
be a finitely generated, torsion A-module. Now the power of p dividing A,
is equal to |X/w,X| by proposition 2.1.5. The growth for these quantities
is then given by either proposition 2.3.1 or 2.3.2, and is just as described by
Iwasawa’s growth formula.

As a first step to the complete proof, we prove the following important
result.

Proposition 2.4.1. Suppose that Fio/F be a Z,-extension and let Lo, denote
its pro-p-Hilbert class field. Then X = Gal(Ly/Fx) is a finitely generated,
torsion A-module.

Proof. If a prime v of F' is ramified in the Z,-extension F,,/F, then the
corresponding inertia subgroup I, of Gal(F/F) has finite index in ' =
Gal(F/F). By proposition 1, there are only finitely many such v’s and
so the intersection of these inertia subgroups has finite index in I'. That is,
N, Lo = ', for some n, > 0. Every prime of F;,, which is ramified in Fio /F5,,
must be totally ramified. Let ¢ be the number of such primes.

Suppose that n > n,. Let K, denote the maximal abelian extension
of F,, contained in L. Thus, Gal(Ly/K,) = w,X. Let 1 be any prime
of F, ramified in F,/F,. There are ¢t such primes, which we denote by
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My - .., M. Since Lo, /Fy is unramified, only these primes are ramified in the
extension K,,/F,. The corresponding inertia subgroups of Gal(K,/F,) are
all isomorphic to Z, and they generate the subgroup Gal(K,/L,). Thus,
Gal(K,/L,) is a finitely generated Z,-module which has rank < ¢. It has
finite index in Gal(K,/F,) since L, /F, is a finite extension. Therefore,
Gal(K,/F,) is also a finitely generated Z,-module with the same rank.

It follows that X/w,X = Gal(K,/F) is finitely generated as a Z,-
module and has rank < ¢ — 1. Nakayama’s Lemma implies that X is finitely
generated as a A-module. On the other hand, lemma 2.2.6 implies that

rankz (X/w,X) > rp"

for all n, where r = rank, (X). It follows that » = 0. That is, X is torsion
as a A-module. [ |

As the above proof might suggest, it is not always true that the quotients
X/w,X are finite. In a later chapter we will give some examples of this
phenomenon and study it in some detail. However, as noted in proposition
2.3.1, if n, is sufficiently large, then the quotients X /v, , X will be finite
for all n > n,. In fact, as we will see in the proof of the next result, one
can take n, just as in the proof of proposition 2.4.1. It then turns out that
[Ly, : F,]/|1X/vpn,X| becomes constant for n > 0. These facts follow easily
from the following proposition, which is somewhat more precise. The proof
involves keeping careful track of the inertia subgroups of Gal(L,/F;,) for the
primes over p.

Proposition 2.4.2. Let F/F be a Z,-extension. Choose n, so that all
the primes of F,, which are ramified in F/F,, are totally ramified in that
extension. Let X = Gal(Loo/Fs) and Y = Gal(Ly /Ly, Fs). Then

X/vp Y = Gal(Ln/F,)

for all n > n,.

Proof. Let n > n,. Let L} denote the maximal unramified, extension of F,,
contained in L. Then L /F, is Galois. Obviously, L, C LX. But since
at least one prime of F), is totally ramified in F,/F,, we have L} [ Fy =
F,,. It therefore follows that Gal(L? /F,) = Gal(L} F/F), which is clearly
abelian. Thus, L} = L,.

Let G, = Gal(Ly/F,). Let H, be the smallest closed subgroup of G,
containing all the inertia subgroups of G,. The primes of F,, ramified in
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Ly /F, are the same as those ramified in F/F,, and we denote them by
M, ---,M. The number ¢ of such primes is independent of n because n > n,.
Each inertia subgroup for a prime of L., above one of the 7,’s is canonically
isomorphic to [, (by the restriction map). We have L} = LHr by definition
and therefore H,, = Gal(Lo/Ly).

Let Y, = H,(X. Then Y, = Gal(Lo/L,Fy). In particular, Y (as de-
fined in the proposition) is just Y;, . It is also clear that X /Y, = Gal(L,/F,).
So it remains just to prove that Y, = v, , Y, for all n > n,.

Let R denote the set of primes 7 of Ly, ramified in the extension L., /F,, .
For each n € R, let I, denote the corresponding inertia subgroup of G, .
Then, as we noted above, I, = I',, = Z,. For n > n,, the inertia subgroup
of G, for n will be I,, (| Gy. This will be the unique subgroup of I, of index
p" ", namely I?" where we put m = n — n, for brevity.

Choose a topological generator -, for I',,. For each n € R, let g, denote
the element of I, such that g,|p, = vn,. If 7, v € R, then g, and g,y are
in the same coset in G, /X and so y(n,n') = 9n9n71 is in X. Furthermore,
the definitions imply that Y is the smallest closed subgroup of X containing
all the y(n,n')’s, where we allow (n,7') to vary over R x R. Similarly, it
follows that Y,, is the smallest closed subgroup of X containing the elements
yn(n,m') = ggmg;pm for (n,7') € R x R, where m is as above.

The rest of this proof will be somewhat clearer if we switch to a mul-
tiplicative notation for Y. Thus, if y € Y and § € A, we will write 3’
in place of fy. We will now do a simple calculation in G,, to show that
y(n,n)mm = yu(n,n'). This implies that Y»me =Y, from which proposi-
tion 2.4.2 follows.

Let a = g, b = gy, y = ab™' = y(n,7), and v = v,,. Note that
Vnin, = Zf:o_l 7*. Also, since b|p, =y, we have b'yb™" = y" for 0 < i< p™.
Therefore,

p"—1
yrre = [ oyd " = )" b " =" b " = ya(n, 1)
1=0

as we stated above. [ |

The proof of Iwasawa’s growth formula can now be easily completed.
Since Y is a A-submodule of X and X/Y is finite, we have A\(Y) = A(X) and
w(Y) = p(X). Also,

P = |Gal(Ln/Fp)| = |X/Y[|Y/vnz,Y|
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for n > n, and so proposition 2.4.2 combined with proposition 2.3.1 (applied
to Y') establishes the growth formula with A = A(X), p = p(X).

Remark 2.4.3. Assume that RamHyp(1) holds for the Z,-extension F,/F.
One can then take n, = 0 in proposition 2.4.2 and so Y = Gal(Ls/LoFy)-
The Galois group G = Gal(Ly/F) now acts transitively on the set R occur-
ring in the proof of proposition 2.4.2. Thus, the inertia groups I,’s are
conjugate in G and the elements g, form a single conjugacy class of G.
Therefore, y(n,n') is a commutator in G. That is, Y C G'. On the other
hand, G/Y = Gal(LyF/F) is abelian. This implies that G' C Y. Hence
Y = G' = TX. Therefore, it follows that Y,, = v,, oY = w, X for all n > 0,
which is essentially the content of proposition 2.1.5.

There are a number of interesting and useful consequences of proposition
2.4.2 in addition to establishing the growth formula. To state some of these,
we introduce the following ramification hypothesis:

RamHyp(2): Every prime of F which is ramified in Fy/F is totally rami-
fied.

This simply means that we can take n, = 0. It will simplify the statement
of the following results. They could be applied to an arbitrary Z,-extension
just by replacing the base field F' by F,,.

Proposition 2.4.4. Suppose that RamHyp(2) is satisfied for the Z,-extension
Fo/F. Then X /v, X is finite for alln > 0. That is, fx(¢ —1) # 0 for all
¢ € ppoo, except possibly ¢ = 1.

Proof. The corresponding statement for Y = Gal(Ls/LoF) is part of

proposition 2.4.2. Since [X : Y] is finite, the first statement in the proposition
follows. The second statement then follows from a previous remark. |

Proposition 2.4.5. Suppose that RamHyp(2) is satisfied for the Z,-extension
Fy/F. Assume that p does not divide the class numbers of F and Fy. Then
p does not divide the class number of F,, for any n > 0.

Proof. The assumption implies that X =Y = 1v4,Y. Now 149 € m. There-
fore, Nakayama’s lemma implies that ¥¥ = 0. Hence X = 0 too. The
conclusion follows from this. [ |

Remark 2.4.6. If one just assumes that the power of p dividing the class
numbers of ' and F) are equal, in addition to RamHyp(2), then one has
Y = v Y. It again follows that ¥ = 0. That is, X is finite and the power
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of p dividing the class number of F,, is equal to |X| for all n > 0. Examples
exist where this actually happens.

If one combines propositions 2.3.4, 2.3.5, and 2.4.4, one obtains informa-
tion about the group-theoretic structure of the p-primary subgroup A, of
CF,, summarized in the following proposition. We let A = A\(X), u = p(X),
and r = I‘anka[[T]] (X[p])

Proposition 2.4.7. Let F/F be a Z,-extension. Then
a. The exponent of A, will be p"*¢ for n > 0, where ¢ is some integer.
b. The p-rank of A, will be rp™ + ¢, where ¢ is some integer.

c. If u=0, then A, = H;\:l Z/p"tSZ x C for n> 0, where ¢y, ...,cy are
certain integers and C s a certain finite group.

Proof. Using the notation of proposition 2.4.2, the results concern the struc-
ture of the quotients X /v, , Y for n > 0. We already have similar results
for the quotients Y/v,, , Y.

To prove part a, note that since X is a finitely generated A-module, it is
enough to consider the order of the image of z in X/v,,,, Y, where z is an
element of X which is not of finite order. For some ¢ > 0, we have p'z € Y.
As pointed out at the beginning of the proof of proposition 2.3.5, the image
of p'z in Y/v,,,,,Y has order p"*¢ for n > 0, where c is some integer. Thus,
the image of z in X /v, ,,,Y will have order p"**** and q follows.

For part b, note that (X/vpn,Y)/p(X/vpn,Y) is isomorphic to X /v, Y,
where X = X /pX and Y denotes the image of Y under the natural map
X > X . The result then follows from proposition 2.3.1 applied to the A-
module Y.

The proof of part ¢ is just a slight variation on the proof of proposition
2.3.4, using (37) for YV instead of X. [ |

Remark 2.4.8. The group C occurring in the above proposition is isomor-
phic to the maximal, finite A-submodule of X, as the proof shows. Also, one
can make the following statement concerning the structure of the A,’s with-
out the assumption that u(X) = 0. Let 1, ..., ur be the finer p-invariants
for the A-module X, which were defined in section 2.3. Then we have

A~ (2/p"2) x | [(2/p 2)""

=1
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This follows immediately from propositions 2.4.2 and 2.3.6.

2.5 Structure of the ideal class group of F.

Suppose that Fi, = |U,sq Fn is a Z,-extension of F. For brevity we will
denote Cly, by C,. The p-primary subgroup of C, will be denoted by A,.
For m > n > 0, we will denote the norm map Ng,, /r, (either from C, to Cy,
or from Ay, to A,) by Ny, . We will write J,, m, for Jg,, /m, -

The ideal class group of F, can be defined as Cy, = hl)lcn, where the
direct limit is defined by the maps J, . The natural map C, — Cy will
be denoted by J;, . The main object of study in this section will be Ay, =
li_n)lAn, (defined by the same maps J, ,,, restricted to the A,’s). This is the
p-primary subgroup of C.,. There is a natural action of I' on A.,, which we
can then regard as a discrete I'-module and hence as a discrete A-module.
Here is one important result. We denote the Iwasawa invariants A and p
occurring in the growth formula by A\(F/F) and pu(F./F), respectively.

Proposition 2.5.1. The A-module Ay, is cofinitely generated, cotorsion, and
copure of dimension 1. In particular, if w(Fo/F) = 0, then As = (Qp/Zp)*
as a group, where A = AM(F/F).

Proof. We will exploit three facts. Let A¥ = J, .(A4,). Then (1) Ay =
Unso Ay, (2) the groups A, are isomorphic to quotients of X = Xp_/p for
n >0, and (3) X is a finitely generated, torsion A-module.

The assertion (1) is obviously true and (3) is just the content of proposi-
tion 2.4.1. For (2), note that the natural restriction map X — Gal(L,/F,)
is surjective when n > 0. Also, Gal(L,/F),) is canonically isomorphic to
A, for all n. Obviously, A* is isomorphic to a quotient of A,, and so (2)
follows from these remarks. All of these groups have an action of I' and can
be viewed as A-modules. The isomorphisms will be as A-modules.

Since X is a finitely generated, torsion A-module, proposition 2.2.5 im-
plies that X /X is finite for some # € m. Since A’ is a quotient of X for
n > 0 (as a A-module), A /0A;} is then a quotient of X/6X. Also, note that
|Ax /A% | = |A%[6]], and so we get the following inequality

[AL10]] < |X/0X]
for all n > 0. It follows from this that A,[6f] is finite. Proposition 2.2.8 then

implies that A, is cofinitely generated and cotorsion as a A-module.
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We will show that A, is copure of dimension 1 as a A-module. This
means that the Pontryagin dual of A, has no nonzero, finite A-submodules.
Such a submodule would correspond to a quotient of Ay,. Let Ay, = Aso/Boo
be the maximal, finite A-module quotient of A,,. Thus, By, is the maximal,
A-submodule of A, which is copure of dimension 1. For each n > 0, de-
fine B, to be the inverse-image of By, under the map J, .. Clearly, B, is
a Gal(F,,/F)-invariant subgroup of A,. We denote A,/B, by A,. There
are maps :]Vn,m, jmoo, and Nmn on these quotient groups induced from the
corresponding maps Jy, m, Jn,c0; and Ny, , for m > n > 0. It is clear that

Jnoo : An = Ag

is injective for all n and surjective for n > 0. Therefore, the maps
Jnm : An = Ap,

are isomorphisms for m > n > 0. The norm maps
N s A — A,

will also be isomorphisms for m > n > 0. The surjectivity follows from
proposition 1.1.1. In addition, the identity

N © Jun(@) = @

m—n

will hold for all @ € Avn These observations imply that ﬁ” is trivial for
n > 0, and hence for all n. This is because, for m > n, the map a — a" "
cannot be an isomorphism of A, if that group is nontrivial. Tt follows that
Ao = 0 and hence A, is copure of dimension 1, as claimed.

Finally, if u(Ay) = 0, then the Pontryagin dual of A, will be a finitely
generated Z,-module. It is pure of dimension 1 as a A-module, and so it
must be torsion-free and hence free as a Z,-module. Hence A, is indeed

cofree as a Z,-module. |

The ingredients in the above proof have some consequences relating the
structure of X = Xp_,r and A, as A-modules. For example, it follows that

Ann(X) C Ann(A)

To see this, just note that if # € Ann(X). then 6 annihilates the A-modules
A? for sufficiently large n, and so clearly § € Ann(Ay). It is also not difficult
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to see that A(Ay) < A(X). Using proposition 2.3.6, one can also verify that
U(As) < p(X). The following result allows one to turn these inequalities
into equalities.

Proposition 2.5.2. Let Z be the mazimal, finite A-submodule of X. Then
ker(Jp,00) 2 Z for n > 0. In particular, ker(J, ) has bounded order.

Proof. Choose n, so that the Z,-extension F,/F,, satisfies RamHyp(2).
Let Y = Gal(Le /Ly, Fs) as in Proposition 2.4.2. Then we have a canon-
ical homomorphism «, : X — A, which is defined as the composition of
the restriction map X — Gal(L,/F,) with the inverse Artin isomorphism
Artgi s, ¢ Gal(Ln/F,) — A,. We then have the following commutative
diagram

X — A,

lum,n Jjn,m (39)

X — A,

for m > n > 0. The left vertical arrow is the map X — X defined by
T — U p.

To verify the commutativity of the above diagram, suppose that z € X.
The commutative diagram (4) in the proof of proposition 1.1.1 implies that

Nm,n(a’m(x)) = an(x)

According to proposition 1.2.2, we have

Jn,m(an (.CE)) - NGal(Fm/Fn) (am (CE)),

where Ngai(#,,/r,) @ Am — Ap is the norm operator for Gal(F,,/F,), act-
ing on A,,. If g is a generator of Gal(F,,/F,), then the norm operator is

P —1

i= 9

Now an element v € T' acts on A, via its restriction |g, . The map
o @ X — A, then becomes a I'-homomorphism. We can lift the norm
operator Ngai(r,,/F,) on Ay to X as follows. Recall that 1 +7" € A acts on
X as 7,. Let v, = 72", which is a topological generator for Gal(F,,/F},).
Then (1 + T)P" acts on X as v,. Since g = 7,|p, generates Gal(F,,/F,),
the element Y77 ""'(1 4+ T)? € A is a lifting of Ngai(F,,/F,)- This element is
Wi/ Wn, = V.-

We then have am(Vmnt) = Ngay(F,/r,)(@m(2)). This is indeed equal to
JInm(an(x)), and so diagram (39) is commutative. Now take m > n > n,.
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Define a map
It X/ VY = X/vpn Y

by Jnm (% + Vnn,Y) = Vmn® + Vmn,Y . It follows that
ket (nym) 2 Ker(jn.n) (40)
Since Vpm(Vnm,Y) = Vinm, Y, We have
ker(jnm) = (X[Vnm] + Voo Y) /Van, Y = X[Vnml/ (X [Vnm] 0 Vnn,Y)

Since m > n > n,, the quotient X/v,,, X is finite, and so X[v,,,,] C Z. It is
clear that we have X[v, ,,] = Z when m > n, and therefore

ker(Jpo0) = Z/(Z Npp,Y) (41)

The subgroups {v,,,Y | n > n,} form a base of neighborhoods of 0 in X,
and so it is also clear that Z N v, , Y = 0 for n > n,, proving the stated
result. [ |

Remark 2.5.3. The prime-to-p part of the C,’s behave quite differently.
Suppose that ¢ is a prime, ¢ # p. Let @Q),, denote the ¢g-primary subgroup
of Cy,. Applying remark 1.2.8 (but for a Galois extension of p-power degree
and for the g-primary subgroup of the class groups, one sees that the map
Jnm © Qn — Qm is injective and that J, ,,(Qn) is a direct factor @, for
any m > n. Thus (), the direct limit of the @,’s, will be isomorphic
to the direct sum of the finite groups Qo, Q1/Jo,1(Q0), Q2/J12(Q1), ... The
behavior of the groups Qn/Jn—1,(@n-1) is difficult to study. We will describe
some results and conjectures about this topic in chapter 4.

2.6 The base field F' = Q(u,).

In this section, we will continue to discuss the important example F' = Q(1,).
Remark 1.2.11, propositions 1.4.5 and 1.4.6, and the discussion in between,
and section 1.6 already concern this field. It will be an example which we
will return to periodically throughout this book. We will now illustrate some
of the results of this chapter for the base field F'.

The cyclotomic Z,-extension of F' = Q(u,) is Foe = Q(pp=). Earlier
results in this chapter give us some rough, general picture of the structure
of X = Gal(Ly/Fx), where L, is the pro-p Hilbert class field of Fi,. This
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special case has been studied extensively, both theoretically and computa-
tionally, and so we will start with a brief summary of what is now known.
We denote the maximal real subfield of F' by F'*.

L. If pt hp, then X =0.

II. The p-invariant u(X) vanishes.

III. If p{ hp+, then X is a free Zy-module.

IV. If p{ hp+, then X is a cyclic Gal(Fy/Q)-module.

V. If p < 12,000,000, then p { hp and rankz, (X) is equal to the index of
wrreqularity for p.

The first assertion is an immediate consequence of proposition 2.1.2. The
second is a theorem due to B. Ferrero and L. Washington (which is valid
more generally for the cyclotomic Z,-extension of any abelian extension F' of
Q.) We will give two proofs in Chapter 7. Assuming that result, the third
assertion just means that the maximal finite A-submodule of X is trivial.
That is, X is pure of dimension 1. We will justify this statement below.

The fourth result needs some explanation. The field L., is a Galois ex-
tension of Q. Thus X is a normal subgroup of Gal(L,/Q) and so admits
a continuous Z,-linear action of G = Gal(F/Q). If p t hp+, then X is
a free Z,-module (according to I1I). The assertion that X is cyclic as a
G-module then means that X is spanned as a Z,-module by {gz, | ¢ € G}
for some z, € X. Now the structure of X as a A-module reflects the action
of I' = Gal(F/F) on X. The finite group A = Gal(F,/Q) (which is a
subgroup of G) also acts on X. Since G is commutative, the actions of I" and
A on X commute. That is, the action of A on X is A-linear. Therefore, it
is natural to consider X as a module for the ring A[A] - the group ring for
A over A. The assertion in IV then means that X is a cyclic A[A]-module
when p{ hp+. We will also justify this statement below.

The assertion V' is a result of elaborate calculations described in [Buhler
et al]. The first such calculations were done in 1967 by Iwasawa and Sims
verifying the same assertion for p < 4001. As we proceed, it will become
clearer how such calculations could be done. It is a conjecture of Vandiver
that h}. is never divisible by p.

We return now to assertion /1. We must explain why the maximal finite
A-submodule Z of X is trivial if p { hp+. By proposition 2.5.2, Z is trivial if
and only if J, » : A, — A is injective for all sufficiently large n. The n-th
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layer in the Z,-extension Fi,/F is F,, = Q(upn+1). Each of these fields is a
CM-field. For m > n > 0, we can apply proposition 1.2.14 to the extension
Fo/Fy. Jom : An — Ay, are injective for all m > n > 0. The assumptions
in that proposition are clearly satisfied.

The maximal totally real subfield of F,,, which we denote by F.f, is a cyclic
extension of F'* of degree p". Only one prime of F't is ramified in Ff/F*,
namely the unique prime above p, and that prime is totally ramified. Hence,
proposition 1.1.4 implies that if p { hz+, then p { hp+ for all n > 0. Therefore,

in the notation of proposition 1.2.14, we have Asf‘)) = 0 and hence A,, = Agfl).
It follows that the maps J, ,, : A, — A,, are injective. Therefore, the maps
Jn.0o are injective, and we can then conclude that Z is trivial if p{ hp+.

In general, without the assumption that p { hp+, one can still state that
the odd A-components of X have no nonzero, finite A-submodules. In other
words, for each odd i, the A-module X" ig pure of dimension 1. Note
that Z is A-invariant. We are asserting that Z¢') = 0 if 4 is odd. if one
examines the proof of proposition 2.5.2, one sees that the isomorphism is
A-equivariant. Thus, one has an isomorphism

ker(Jn,oo)(‘”i) SWACH)

for any ¢. If 7 is odd, one can again apply proposition 1.2.14 to conclude that
Z«@") ig trivial.
Assertion IV is a consequence of proposition 1.4.5 or 1.4.6. Assuming

that p 1 hp+, we know that Agffl) is cyclic for each i. Since RamHyp(1) holds
for F,/F, we have a canonical isomorphism X/TX = Ap. This isomorphism
is A-equivariant. We can decompose X as a Z,[A]-module as follows:

X =] x@) (42)

We then have an isomorphism
X Tx@) o2 oW

for each . If 7 is even, then it follows from Nakayama’s lemma that X @) = 0.
If 5 is odd, Nakayama”s lemma implies that X (") can be generated by one
element as a A-module. Since this is valid for all 7, it follows that X is a
cyclic A[A]-module, as asserted.
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According to assertion /11, each A-component X (f’Ji) is a free Z,-module
if p{ hp+. Assertion V then means that rankz (X)) < 1, assuming that

p < 12,000,000. Thus, for those ¢’s for which X g nontrivial, we have
X = 7, and the action of I' on X" is by a character (x)*, where s; € Z,.
One of the most interesting discoveries of Iwasawa was that this number s;
must be the zero of a certain analytic function, the Kubota-Leopoldt p-adic
L-function L,(s,w’), where j = 1 — 4. We will prove this in a later chapter.

We now want to explain the relationship of the A-module X to the groups
H. .(Q,Dy), where v is a power of the cyclotomic character x and D,
denotes the Galois module associated to v as defined in section 1.6. Thus,
we assume that 1 : Gal(F/Q) — Z) is a continuous homomorphism. For

each i, let f;(T) denote the characteristic polynomial for X"

Proposition 2.6.1. Suppose that |n = w'. Then the restriction map
defines an isomorphism

H!,.(Q, Dy) — Homp(X©), D)

If ¥(v0) = 1+ By, then the group HQmF(X(“’i),Dw) is isomorphic to the
Pontryagin dual of X /(T — B,)X“). The group H.,.(Q, Dy) is finite if
and only if f;(By) # 0. We then have

0po(|H1inr(Q7 DT/’)‘) = Ordp(fl(ﬂW))
if 1 1s odd.

Proof. We consider the restriction map in two steps, from Gq to G and
from G to Gp,,. Proposition 1.5.5 implies that we have an isomorphism

Hénr(Q’ D1/J) — Hl

unr

(F> D’lP)A

For the second step, note that H°(F, Dy) = D,. The inflation-restriction
sequence for the extension F,,/F becomes

0 — HYT, Dy) — H'(F, Dy) — H'(Fy, Dy)" — H*(T, Dy)

We will show that H*(I', D) = 0 and that H'(T, D) is usually also trivial.

For the rest of the proof, and for later arguments, it will be useful to
make some general observations about H¢(I", A) for any discrete, p-primary
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abelian group A with a continuous action of I'. These will be summarized in
the lemma below. Let I';, = ['*" for n > 0. By definition, we have

H(T', A) = lig H(I/T,, A™)

under the natural inflation maps. We will let N/, denote the norm map
for the action of the finite cyclic group I'/T,, on A'™. The kernel will be
denoted simply by ker(Nrr, ), a subgroup of A™. The image is Npr, (A™),
a subgroup of A'. First we consider 7 = 2. We have

H*(T/T,, A'")) = AF/NF/Fn(AF“)
If m > n > 0, then the inflation map corresponds to the map
A"/Npr, (A™) — AT /Npr,, (AT)

which is defined by mapping the coset of a € Al in the first group to the
coset of Np,/r,,(a) in the second group. But Ny, r,,(a) = p™ "a since a is
fixed by I'. Hence, for each such a and for sufficiently large m, the image is
trivial. Thus, the direct limit is trivial. That is, H*(T', A) = 0.

Now, if =1 and m > n > 0, then the inflation map corresponds to the
homomorphism

ker(Nr/r,)/ (Yo — 1)AF" — ker(Nryr,,) /(7o — 1)AF’"

which is defined by mapping the coset of a € ker(Np/r,) to the coset of
the same a in ker(Npr,,). However, if a € A, then a € A'™ for some n
and, essentially as above, one sees that a € ker(Np,r,,) for sufficiently large
m. That is, U, (ker(Nrr,) = A. On the other hand, it is clear that
Unso (70— 1)AF;) = (7, —1)A. We have proved most of the following basic
lemma.

Lemma 2.6.2. If A is a discrete, p-primary I'-module, then
H'(T, A) = Af(y,— )4, H(T,4) =0

Furthermore, if we assume that A is a divisible group, that Ap| is finite, and
that A" is also finite, then H'(T', A) = 0 too.

To prove the final part of this lemma, note that A = (Q,/Z,)" for some r > 0.
We can regard 7, — 1 as an endomorphism of that group. The kernel of that
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endomorphism is A" and, if that kernel is finite, then the image is a divisible
group of Z,-corank r, and hence must also be isomorphic to (Q,/Z,)". It
follows easily that (7, — 1)A = A, and therefore that H'(T', A) is trivial as
stated.

Returning to the proof of proposition 2.6.1, the inflation-restriction se-
quence simplifies to

0 — Dy /(7o — 1)Dy — H'(F, Dy) — H'(Fp, Dy)F — 0

We can use this to prove that the second step of the restriction map is also
an isomorphism.

Assume first that |r is nontrivial. Then the above lemma implies that
we have an isomorphism H'(F, Dy) — H'(Fu, Dy)". Just as in the proof
of proposition 1.5.5, we must consider the kernel of the restriction map
H'(I,,Dy) — H'(I,, Dy), where v is a prime of F, n is a prime of Fj,
lying over v, and I,, I, are the inertia subgroups of Gy and Gp_ for a prime
of Q lying over . However, if v { p, then v is unramified in F,,/F. It follows
that I, = I,, and the kernel of the restriction map at v is certainly trivial.
There is a unique prime v of F' lying above p and a unique prime 7 of F,
lying over v. Also, v is totally ramified in Fi,/F, the inertia subgroup of I'
for v is T" itself, and hence I,/I, can be identified with I'. It follows that
H'(1,/I,, Dy) = 0. Therefore, the kernel of the restriction map at v is again
trivial. This proves that the restriction map

H) (F,Dy) — H,

unr unr

(Foo’DdJ)

is an isomorphism if ¢|r is nontrivial.

Now assume that ¢|r is trivial, i.e., that 1y = w’ for some 7. The re-
striction map H'(F, Dy) — H'(F, Dy)" has a nontrivial kernel, namely
HY(T',Dy) = Hom(T", Dy). This group is isomorphic to Q,/Z,. However,
consider the composite map

H'(T,Dy) — H'(I,/I,,Dy) — H'(I,, Dy)

where v is the prime of F' lying above p. The first map is an isomorphism,
the second map is injective. Hence, it follows that

ker(H,,,(F, Dy) — Hy,,(Fos, Dy)) = H,, (F,Dw)ﬂHl(F,D¢):0

unr unr unr
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To show that the cokernel of the map H. (F,Dy) — H}. (Fy, Dy)" is
trivial, we again refer to the proof of proposition 1.5.5. In the diagram
(24) and the exact sequence (25), take F' = F, D = Dy, and G = T.
However, ker(bp:/r) is now the infinite group H'(T', Dy,). Taking into account
the above remarks about the local restriction map for v { p, it follows that
ker(cp/p) = H'(I,/1,, Dy) and that the map ker(bp/p) — ker(cp/r) is
surjective. Therefore, the map ker(cp/p) — ker(ap ) is the zero-map.
Also, since G = T', lemma 2.6.2 implies that coker(bg//r) = 0. It then follows
that coker(ap /r) = 0.

Thus, in all cases, the map H,., (F, Dy) — H,. . (Fw, Dy)" is an isomor-
phism. Combining this with the first step, we obtain the isomorphism

H&nr(Q; Dq/)) — H1 (Foo, Dw)Ga‘l(Foo/Q)

unr

Now H! (Fw,Dy) = Hom(X, D,). Since A acts on Dy, by the character

unr
¥|a = w', we have

1
H unr

(Fuo, Dy)” = Hom(X“") Dy)

L (Fs, Dy)**T is isomorphic to Homp (X« D,) and
this establishes the first part of proposition 2.5.1.

Since 7, acts on D, as multiplication by 1 + 8, and this determines
the action of T, it follows that any element, of Homp(X®"), D,)) must factor
through the maximal quotient of X ") on which v, acts in the same way.
That quotient is X/ (v, — (1 + 8))X“"). Conversely, any element of
Hom(X®"), D,) factoring through that quotient will be I'-equivariant. That
is,

It is then clear that H*

Homp(X(wi), D) = Hom(X(wi)/(ryo — 1+ 5¢))X(“’i), Dw)

which is indeed isomorphic to the Pontryagin dual of X"/ (T — By)) X (")
since Dy = Q,/Z, as a group. This proves the second statement in the
proposition. It is then clear that H.,,(Q, D) is finite if and only if f;(8y) #
0. Furthermore, one can apply proposition 2.3.3 if ¢ is odd because we know
that X“") has no nonzero, finite A-submodules. The final statement follow
then follows. [ |

Remark 2.6.3. It is worth discussing what happens for an arbitrary Z,-
extension F,/F. We consider any number field F' and let p be any prime.
Let D = Dy, where v € Hom(I',Z)). Assume first that ¢ has infinite
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order. Then F,, = F(D) and D" is finite and nontrivial. The cokernel of
the restriction map
H'(F,D) — H'(Fw,D)" (43)

is isomorphic to a subgroup of H%(T', D). But that group vanishes according
to lemma 2.6.2 and hence the restriction map is surjective. The kernel is
H(T', D%F=). This group also vanishes because D%~ = D is divisible. For
the same reason, the local restriction map H'(Fy™", D) — H'(F"", D) is
injective for every ramified prime v in the extension Fi,/F, where n is a
prime of F, lying over v. Therefore, we again get an isomorphism

H! (F,D) — Homr(X, D), (44)

unr

where X = Xp_/p. In particular, if we let 8 = ¢(v,) — 1, then H,  (F,D)
is infinite if and only if fx(8) = 0. On the other hand, if ¢ has finite order,
then corollary 1.5.8 implies that H., .(F, D) must be finite. Therefore, since
fx(T) is a nonzero polynomial, it follows that H. _(F, D) is finite for all but
finitely many ¢ € Hom(T', Z5).

If 4 has finite order, then v is the trivial character unless p = 2. For
p = 2, the character 1 could have order 1 or 2. It is not difficult to verify
that the kernel of the map (44) is still finite. One uses the fact that if n is
sufficiently large, then at least one prime of F}, is totally ramified in F,/F,.
However, the cokernel of (44) can be infinite. In particular, if ¢ is trivial
(and so B8 = 0), it is possible to have fx(0) = 0 even though H_.  (F,D)
is finite. As an example to illustrate how this can happen, suppose that F
is an imaginary quadratic field, that p splits in F/Q, and that F,, is the
cyclotomic Z,-extension of F'. This situation was discussed briefly following
the proof of proposition 1.6.4. For s € Z,, let ¢y = (x)°. Thus, 1, has
infinite order if s # 0. Let Dy = Dy, and S5 = 95(7,) — 1). Thus, §; — 0 as
s — 0in Z,. For s # 0, we have

H,,(F, Dy) = Hom(X/(T — 8,) X, Qy/Zy)

as explained above. However, under the above assumptions on F', the order
of H. (F,D;) is unbounded as s — 0 in Z,. It follows that fx(8;) — 0 as

unr

s — 0 and therefore fx(0) =0.
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