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1 Introduction

Suppose that K is a finite extension of Q and that X is a finite set of primes of K. Let
K5 denote the maximal extension of K unramified outside of ¥. We assume that ¥ con-
tains all archimedean primes and all primes lying over some fixed rational prime p. The
Galois cohomology groups that we consider in this article are associated to a continuous
representation

p: Gal(Ks/K) — GL,(R)

where R is a complete local ring. We assume that R is Noetherian and commutative. Let m
denote the maximal ideal of R. We also assume that the residue field R/m is finite and has
characteristic p. Thus, R is compact in its m-adic topology, as will be any finitely generated
R-module. Let 7 be the underlying free R-module on which Gal(Kx/K) acts via p. We
define D = T ®z I/%, where R = Hom(R,Q,/Z,) is the Pontryagin dual of R with a trivial
action of Gal(Kyx/K). Thus, D is a discrete abelian group which is isomorphic to R™ as an
R-module and which has a continuous R-linear action of Gal(Ky/K) given by p.

The Galois cohomology groups H'(Kyx /K, D), where 1 > 0, can be considered as discrete
R-modules too. The action of Gal(Kyx/K) on D is R-linear and so, for any r € R, the
map D — D induced by multiplication by r induces a corresponding map on H*(Kx/K, D).
This defines the R-module structure. It is not hard to prove that these Galois cohomology
groups are cofinitely generated over R. That is, their Pontryagin duals are finitely generated
R-modules. We will also consider the subgroup defined by

IT*(K, %, D) = ker (H'(Ky/K,D) — | [ H' (K., D)).
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Here K, denotes the v-adic completion of K. Thus, H_Ii(K,Z,D) consists of cohomol-
ogy classes which are locally trivial at all primes in » and is easily seen to be an R-
submodule of H(Ky,/K,D). Of course, it is obvious that III°(K, ¥, D) = 0. It turns out
that III*(K, %, D) = 0 for i > 3 too. However, the groups III' (K, ¥, D) and III*(K, X, D)
can be nontrivial and are rather mysterious objects in general.

Suppose that one has a surjective, continuous ring homomorphism ¢ : R — O, where
O is a finite, integral extension of Z,. Such homomorphisms exist if R is a domain and
has characteristic 0. Then P, = ker(¢) is a prime ideal of R. One can reduce the above
representation modulo Py to obtain a representation py : Gal(Kx/K) — GL,(O) which is
simply the composition of p with the homomorphism GL,(R) — GL,(O) induced by ¢.
Thus, p is a deformation of py and one can think of p as a family of such representations.
The underlying Galois module for p, is Ty = T /PyT. This is a free O-module of rank n.
Let Dy = Ty ®o (9 where O is the Pontryagin dual of O with trivial Galois action. The
Pontryagin dual of R/P, is R[P¢], the submodule of R annihilated by Py. Since R/ Py =
we have ﬁ[’P(;,] ~ 0. One can identify D, with D[P,]. We can compare the cohomology of
Dy with D since one has a natural homomorphism

H!(Ks/K, Dy) = H'(Ks/ K, DIPy)) — H'(Ky/K, D)[Py].

However, unless one makes certain hypotheses, this homomorphism may fail to be injective
and/or surjective. Note also that all of the representation p, have the same residual repre-
sentation, namely p, the reduction of p modulo m. This gives the action of Gal(Ky/K) on
Ty/mT, = T /mT or, alternatively, on the isomorphic Galois modules Dy[m| = D[m].

Assume that R is a domain. Let X denote the Pontryagin dual of H'(Kyx/K, D). One
can derive a certain lower bound for rankg(X) by using Tate’s theorems on global Galois
cohomology groups. Let Y denote the torsion R-submodule of X. The main result of this
paper is to show that if rankg(X) is equal to the lower bound and if R and p satisfy certain
additional assumptions, then the associated prime ideals for Y are all of height 1. Thus,
under certain hypotheses, we will show that X has no nonzero pseudo-null R-submodules.
By definition, a finitely generated, torsion R-module Z is said to be “pseudo-null” if the
localization Zp is trivial for every prime ideal P of R of height 1, or, equivalently, if the
associated prime ideals for Z have height at least 2.

If the Krull dimension of R is d = m + 1, where m > 0, then it is known that R
contains a subring A such that (i) A is isomorphic to either Z,[[T1, ..., T,,]] or T, [[11, --., Tm+1]],
depending on whether R has characteristic 0 or p, and (i) R is finitely generated as a A-
module. (See theorem 6.3 in [D].) One important assumption that we will often make is that
R is reflexive as a A-module. We then say that R is a reflexive domain. It turns out that
this does not depend on the choice of the subring A. An equivalent, intrinsic way of stating
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this assumption is the following: R = [\, Rp, where P varies over all prime ideals of R of
height 1. Here Rp denotes the localization of R at P, viewed as a subring of the fraction
field K of R. Such rings form a large class. For example, if R is integrally closed, then R
is reflexive. Or, if R is Cohen-Macaulay, then R will actually be a free A-module and so
will also be reflexive. We will also say that a finitely generated, torsion-free R-module X is
reflexive if X = (1, Xp, where P again varies over all the prime ideals of R of height 1 and
Xp = X ®r Rp considered as an R- submodule of the K-vector space X ®p K.

We will use the following standard terminology throughout this paper. If A is a discrete
R-module, let X = A denote its Pontryagin dual. We say that A is a cofinitely generated R-
module if X is finitely generated as an R-module, A is a cotorsion R-module if X is a torsion
R-module, and A is a cofree R-module if X is a free R-module. We define corankz(A) to be
rankp(X). Similar terminology will be used for A-modules. Although it is not so standard,
we will say that A is coreflexive if X is reflexive, either as an R-module or as a A-module,
and that A is co-pseudo-null if X is pseudo-null. For most of these terms, it doesn’t matter
whether the ring is A or a finite, integral extension R of A. For example, as we will show in
section 2, A is a coreflexive R-module if and only if it is a coreflexive A-module. A similar
statement is true for co-pseudo-null modules. However, the module D defined above for a
representation p is a cofree R-module and a coreflexive, but not necessarily cofree, A-module,
assuming that R is a reflexive domain.

Assume that X is a torsion-free R-module. Then, if r is any nonzero element of R,
multiplication by r defines an injective map X — X. The corresponding map on the
Pontryagin dual is then surjective. Thus, A = X will be a divisible R-module. Conversely,
if A is a divisible R-module, then X is torsion-free. If R is a finite, integral extension of A,
then A is divisible as an R-module if and only if A is divisible as a A-module. The kernel of
multiplication by an element r € R will be denoted by A[r]. More generally, if I is any ideal
of Ror A, welet A[l]={a€ A |ia=0foralliecl}.

Suppose v is a prime of K. Let K, K, denote algebraic closures of the indicated fields
and let G = Gal(K/K), Gg, = Gal(K,/K,). We can fix an embedding K — K, and this
induces continuous homomorphisms Gx, - Gx — Gal(Kyx/K). Thus, we get a continuous
R-linear action of Gg, on 7 and on D. Define 7* = Hom(D, pip~), where gy denotes
the group of p-power roots of unity. Note that 7™ is a free R-module of rank n. Choosing
a basis, the natural action of Gal(Ky/K) on T* is given by a continuous homomorphism
p*: Gal(Ky/K) — GL,(R). Consider the action of Gg, on T*. The set of Gg,-invariant
elements (7*)%% = Homg, (D, tip) is an R-submodule. The following theorem is the main
result of this paper.

Theorem 1. Suppose that R is a reflerive domain. Suppose also that T* satisfies the
following two local assumptions:



(a) For every prime v € 3, the R-module T*/(T*)%%v is reflerive.
(b) There is at least one non-archimedean prime v, € ¥ such that (T*)%%vw = 0.

Then II*(K, X, D) is a coreflerive R-module. If III*(K, %, D) = 0, then the Pontryagin dual
of H'(Kx/K, D) has no nonzero, pseudo-null R-submodules.

The proof of this theorem will be given in section 6, but some comments about the role of
various assumptions may be helpful here. The assumption that R is a domain is not essential.
It suffices to just assume that R contains a formal power series ring A over either Z, or I,
and that R is a finitely generated, reflexive module over A. Then D will be a coreflexive
A-module. In fact, it is precisely that assumption which is needed in the argument. In
particular, it implies that if 7 is an irreducible element of A, then D[r] is a divisible module
over the ring A/(m). Coreflexive A-modules are characterized by that property. (See corollary
2.6.1.) The assertion that IIT1*(K, 3, D) is also a coreflexive A-module implies that it is A-
divisible, but is actually a much stronger statement. Reflexive A-modules are a rather small
subclass of the class of torsion-free A-modules.

The conclusion in theorem 1 concerning H' (K /K, D) can be expressed in another way
which seems quite natural. It suffices to consider it just as a A-module. The ring A is a
UFD and so we can say that two nonzero elements of A are relatively prime if they have no
irreducible factor in common. We make the following definition.

Definition. Assume that A is a discrete A-module. We say that A is an “almost divisible”
A-module if there exists a nonzero element 6 € A with the following property: If A € A is a
nonzero element relatively prime to 6, then AA = A.

If A is a cofinitely generated A-module, then it is not hard to see that A is an almost
divisible A-module if and only if the Pontryagin dual of A has no nonzero pseudo-null A-
submodules. (See proposition 2.4.) Under the latter condition, one could take 6 to be
any nonzero annihilator of the torsion A-submodule Y of X = 121\, e.g., a generator of the
characteristic ideal of Y. Thus, theorem 1 asserts that, under certain assumptions, the
A-module H'(Kyx/K, D) is almost divisible.

The main local ingredient in the proof is to show that H'(K,,D) is an almost divis-
ible A-module for all v € X. It is local assumption (a) that guarantees this. In fact, it
is sufficient to assume that 7*/(7*)%%v is reflexive as a A-module for all v € ¥. This
implies that the map H?(K,,D[P]) — H?(K,,D) is injective for all but a finite num-
ber of prime ideals P in A of height 1; the almost divisibility of H!(K,,D) follows from
that. The hypothesis that II*(K,%,D) = 0 then allows us to deduce that the map
H?(Kx/K,D|P]) — H?*(Kx/K,D) is injective for all but finitely many such P’s, which
implies the almost divisibility of H'(Kx/K, D).



Both local assumptions (a) and (b) are used in the proof that I1I?(K, ¥, D) is a coreflexive
A-module. Assumption (b) obviously implies that (7*)%(K=/K) = (. That fact, in turn,
implies that the global-to-local map defining III?(K, &, D) is surjective. Such a surjectivity
statement plays an important role in our proof of theorem 1. We will discuss the validity
of the local assumptions at the end of section 5. Local assumption (a) is easily verified
for archimedean primes if p is odd, but is actually not needed in that case. It is needed
when p = 2 and, unfortunately, could then fail to be satisfied. For non-archimedean primes,
the local assumptions are often satisfied simply because (7*)%%v = 0 for all such v € X.
However, there are interesting examples where this fails to be true for at least some v’s in X
and so it is too restrictive to make that assumption.

The hypothesis that II1*(K, %, D) = 0 is quite interesting in itself. Under the assump-
tions in theorem 1, III*(K, ¥, D) will be coreflexive, and hence divisible, as an R-module.
Therefore, the statement that III?(K, %, D) = 0 would then be equivalent to the seemingly
weaker statement that corankp(I*(K,Y,D)) = 0. Just for convenience, we will give a
name to that statement.

Hypothesis L: II1*(K, X, D) is a cotorsion R-module.

Of course, it is only under certain assumptions that this statement implies that II1*( K, ¥, D)
actually vanishes. We will now describe two equivalent formulations of hypothesis L which
are more easily verified in practice. To state the first one, let D* = T* @ R. Then we will
show that

(1) corankR(H_IQ(K,E,D)) = corankR(Hll(K,Z,'D*))

This will be proposition 4.4. Thus, one reformulation of hypothesis L is the assertion that
II'(K, ¥, D*) is a cotorsion R-module. This formulation has the advantage that it is easier
to study H' and hence IIT'. We should mention that even under strong hypotheses like those
in theorem 1, it is quite possible for III' (K, ¥, D*) to be a nonzero, cotorsion R-module.

A second equivalent formulation can be given in terms of the R-corank of H'(Kyx /K, D).
As we mentioned before, we will derive a lower bound on this corank by using theorems of
Tate. Those theorems concern finite Galois modules, but can be extended to Galois modules
such as D in a straightforward way. The precise statement is given in proposition 4.3. It
is derived partly from a formula for the Euler-Poincaré characteristic. For ¢ > 0, we let
h; = corankg (H'(Kx/K,D)). Let ry denote the number of complex primes of K. For each
real prime v of K, let n, = corankg(D/D%v). Then

hi = hy + hy + 6.



where 6 = ron+ ), .1 ", - The Euler-Poincaré characteristic is hg — hy + hy = —6. Thus,
h, is essentially determined by hg and h, since the quantity J is usually easy to evaluate.
On the other hand, one gets a lower bound on hy by studying the global-to-local map

v H(Ks/K, D) — PX(K,%,D),

where P?(K, ¥, D) = [[,es, H*(Ky, D). The cokernel of v is determined by Tate’s theorems:
coker(y) & HY(Ky/K,T*)". Thus, one can obtain a certain lower bound for A, and hence
for hy. In proposition 4.3, we give this lower bound in terms of the ranks or coranks of various
H%s. The assertion that h; is equal to this lower bound is equivalent to the assertion that
ker(y) has R-corank 0, which is indeed equivalent to hypothesis L.

The local duality theorem of Poitou and Tate asserts that the Pontryagin dual of H*(K,, D)
is isomorphic to HY(K,, T*) = (T*)%kv. Thus, if we assume that (7*)%% = 0 for all non-
archimedean v € %, then H?(K,, D) = 0 for all such v. If we also assume that p is odd, then
obviously H%(K,, D) = 0 for all archimedean v. Under these assumptions, P*(K, Y, D) = 0
and Hypothesis L would then be equivalent to the assertion that H?(Kx/K,D) = 0.

The validity of Hypothesis L seems to be a very subtle question. We will discuss this at the
end of section 6. It can fail to be satisfied if R has Krull dimension 1. If R has characteristic
0, then, apart from simple counterexamples constructed by extension of scalars, it is not at
all clear what one should expect when the Krull dimension is greater than 1. However, one
can construct nontrivial counterexamples where R has arbitrarily large Krull dimension and
R has characteristic p.

Theorem 1 has a number of interesting consequences in classical Iwasawa theory. These
will be the subject of a subsequent paper. We will just give an outline of some of them here.
In fact, our original motivation for this work was to improve certain results in our earlier
paper [Gr89]. There we considered the cyclotomic Z,-extension K, of a number field K and
a discrete Gal(Kx/K)-module D isomorphic to (Q,/Z,)" as a Z, module. We obtain such
a Galois module from a vector space V' of dimension n over Q, which has a continuous Q,-
linear action of Gal(Ky/K). Let T be a Galois-invariant Z,-lattice in V' and let D = V/T.
The Galois action defines a representation p, : Gal(Ky/K) — Auty (T) = GL,(Z,). Since
only primes of K lying above p can ramify in K, /K, we have K, C Ky. One therefore has
a natural action of I' = Gal(K,/K) on the Galois cohomology groups H'(Ky/Ky, D) for
any 1 > 0. Now H'(Ky/K, D) is also a Z,-module. One can then regard H(Ks/K, D)
as a discrete A-module, where A = Z,[[I']], the completed Z,-group algebra for I'. The ring
A is isomorphic to the formal power series ring Z,[[T]] in one variable and is a complete
Noetherian local domain of Krull dimension 2. The modules H*(Ky,/K,, D) are cofinitely
generated over A.



Propositions 4 and 5 in [Gr89] assert that if p is an odd prime, then H?(Ky/K,, D) is
a cofree A-module, and if H*(Kx /K, D) = 0, then the Pontryagin dual of H'(Ky /K, D)
contains no nonzero, finite A-modules. One consequence of theorem 1 is the following sig-
nificantly more general result. We allow p to be any prime and K, /K to be any Galois
extension such that ' = Gal(K/K) = Z7' for some m > 1. For any i > 0, we define
I*(K4, 3, D) to be the subgroup of H(Ks /K, D) consisting of cocycle classes which are
locally trivial at all primes of K, lying above the primes in 3. Again, I acts continuously
on those Galois cohomology groups and so we can regard them as modules over the ring
A = Z,[[I']]. This ring is now isomorphic to the formal power series ring Z,[[11, ..., T,,]] in m
variables and has Krull dimension d = m + 1. The group LHi(KOO, ¥, D) is a A-submodule
of H(Kx /K, D). All of these A-modules are cofinitely generated.

Theorem 2. Let p be a prime. Suppose that Ko /K is any L} -extension, where m > 1.
Then I1*(K 4, X, D) is a coreflezive A-module. If III*(K,,, ¥, D) = 0, then the Pontryagin
dual of H'(Kx /Ky, D) has no nonzero, pseudo-null A-submodules.

The results proved in [Gr89] which were mentioned above concern the case where K, is the
cyclotomic Z,-extension of K. For odd p, one then has I1*(K,, %, D) = H*(Ky/Kw, D).
The assertion about cofreeness follows since m = 1 and so a cofinitely generated A-module
A is coreflexive if and only if it is cofree. (See remark 2.6.2.) Also, A is co-pseudo-null if and
only if it is finite. In that special case, theorem 2 is more general only because it includes
p=2.

The relationship to theorem 1 is based on a version of Shapiro’s lemma which relates the
above cohomology groups to those associated with a suitably defined Gal(Ky/K)-module
D. We can regard I' as a subgroup of the multiplicative group A* of A. This gives a
homomorphism I' — GL;(A). and hence a representation over A of Gal(Ky/K) of rank 1
factoring through I'. We will denote this representation by x. Define 7 =T ®z, A. Thus, T
is a free A-module of rank n. We let Gal(Kx/K) act on T by the representation p = p,®@x .
We then define, as before, D = T ®x K, which is a cofree A-module with a A-linear action of
Gal(Ky/K). The Galois action is through the first factor 7. We will say that D is induced
from D via the Z7'-extension K, /K. Sometimes we will use the notation: D = Indg_ /x (D).
Of course, the ring R is now A which is certainly a reflexive domain. We have the following
comparison theorem.

Theorem 3. Fori >0, H(Ky/K,D) =~ H(Kx /Ky, D) as A-modules.

There is a similar comparison theorem for the local Galois cohomology groups which is com-
patible with the isomorphism in theorem 3 and so, for any ¢ > 0, one obtains an isomorphism

(2) (K, %, D) = I (K, %, D)



as A-modules. In particular, one can deduce from (1) and (2) that IIT1*(K ., Y, D) has the
same A-corank as [II' (K, Y, D*), where D* = Hom(T, j)-

Both of the local assumptions in theorem 1 turn out to be automatically satisfied for D
and so theorem 2 is indeed a consequence of theorem 1. The verification of those assumptions
is rather straightforward. The most subtle point is the consideration of primes that split
completely in K, /K, including the archimedean primes of K if p = 2. For any v which
does not split completely, one sees easily that (7*)“% = 0. Thus, hypothesis (b) is satisfied
since at least one of the primes of K lying over p must be ramified in K,/ K; one could take
v, to be one of those primes. If v does split completely, then one shows that (7*)%%v is a
direct summand in the free A-module 7*. This implies that the corresponding quotient, the
complementary direct summand, is also a free A-module and hence reflexive.

As a consequence, we can say that III*( K, X, D) is a coreflexive A-module. We believe
that it is reasonable to make the following conjecture.

Conjecture L. Suppose that K« 1is an arbitrary Z;'-extension of a number field K, X
1s any finite set of primes of K containing the primes lying above p and oo, and D s a
Gal(Kyx/K)-module which is isomorphic to (Q,/Z,)" as a group for some n > 1. Then
1* (K, %, D) = 0.

That is, hypothesis L should hold for D = Indg_ k(D). Equivalently, ' (K4, ¥, D*)
should be a cotorsion A-module. Furthermore, it turns out that the global-to-local map ~
is now actually surjective. The A-module P%(K,X, D) can, in general, be nonzero and even
have positive A-corank. To be precise, only primes v of K which split completely in K.,/K
can make a nonzero contribution to P?(K,Y, D). The contribution to the A-corank can
only come from the non-archimedean primes. If v is a non-archimedean prime which splits
completely in Ko /K, then we have coranky (H?(K,, D)) = coranky, (H?(K,, D)) and this
can be positive.

As an illustration, consider the special case where D = ppo. In this case, D* =
Q,/Z, (with trivial Galois action). One then has the following concrete description of
' (K4, ¥, D*). Let L, denote the maximal, abelian, pro-p-extension of K, which is
unramified at all primes. Let L'c>o be the subfield in which all primes of K, split completely.
Then we have

H_Il(Koo, 3,Q,/Z,) = Hom(Gal(L;o/Koo), Qp/Zp))

It is known that Gal(L. /K ) is a finitely generated, torsion A-module. (This is a theorem
of Iwasawa if m = 1 and is proved in [Gr73] for arbitrary m.) Hence the same thing is
true for the quotient A-module Gal(L,_/K,,). Therefore, III' (K, %, Q,/Z,) is indeed A-
cotorsion. Thus, conjecture L is valid for D = p,~ for an arbitrary Z;'-extension K, /K.
Note also that corankzp(H (K, ,upoo)) = 1 for any non-archimedean prime v. Hence, if X



contains non-archimedean primes which split completely in K, /K, then H*(Ky /Ko, fiy=)
will have a positive A-corank. Since ITI*(K, ¥, ppo) = 0, as just explained, it follows that
coranky (H 2(Ky /K, ,upoo)) is precisely the number of such primes, i.e., the cardinality of Y.
Therefore, the A-corank of H'(Kx./ K, pip) will be equal to r1 + 72+ |Y|. Non-archimedean
primes that split completely in a Z'-extension can exist. For example, let K be an imaginary
quadratic field and let K., denote the so-called “anti-cyclotomic” Z,-extension of K. Thus,
K is a Galois extension of Q and Gal(K/Q) is a dihedral group. One sees easily that if v
is any prime of K not lying over p which is inert in K/Q, then v splits completely in K, /K.

As a second illustration, consider the Galois module D = Q,/Z, with a trivial ac-
tion of Gal(Ky/K). For an arbitrary Zj'-extension K. /K, it is not hard to see that
UI*(Kw, %, D) = H*(Ky/Ks, D). This is so because H?(K,,Q,/Z,) = 0 for all primes
v of K. Let MZ denote the maximal abelian pro-p-extension of K, contained in K.
Then H'(Kx/Ks, D) = Hom(Gal(MZ/Kw),Qy/Z,), which is just the Pontryagin dual of
Gal(MZ /K). In this case, n = 1 and n, = 0 for all real primes. Conjecture L is there-
fore equivalent to the statement that the A-module Gal(M2 /K) has rank ry. Theorem 3
together with other remarks we have made has the following consequence.

Theorem 4. Let p be a prime. Suppose that K. /K is any Z'-extension, where m > 1.
Then Gal(MZ/Ky) is a finitely generated A-module and rank, (Gal(MZ/Ky)) > ro. If
rank, (Gal(MZ /K)) = ro, then Gal(MZ /K.) has no nonzero pseudo-null A-submodules.

Let M., denote the maximal abelian pro-p-extension of K., which is unramified at all
primes of K, not lying above p or co. One can show that Gal(MZ /M) is a torsion A-
module and so the equality in the above theorem is equivalent to the assertion that the A-rank
of Gal(M/K) is equal to ry. Note that My, = M, if one takes & = {v | v|p or v|co}. In
that case, the above theorem is proved in [NQD]. A somewhat different, but closely related,
result is proved in [Gr78]. Theorem 1 can be viewed as a rather broad generalization of these
results in classical Iwasawa theory.

The statement that coranky (Gal(Muo/Koo)) = 72 is known as the Weak Leopoldt Conjec-
ture for K« /K. That name arises from the fact that if one considers a Z,-extension K /K
and the Galois module D = Q,/Z,, the conjecture is equivalent to the following assertion:

Let K,, denote the n-th layer in the Z,-extension K /K. Let M, be the compositum of all
Z,-extensions of K,,. Let §, = rankzp(Gal(Mn/Kn)) —rop™. Then 6, is bounded as n — oo.

The well-known conjecture of Leopoldt would assert that §,, = 1 for all n.

If a Z;'-extension K, of K contains y,e, then the Galois modules jy~ and @, /Z, are
isomorphic over K. Since conjecture L is valid for D = pi,e, it is then also valid for
D = Q,/Z,. One deduces easily that conjecture L is valid for D = Q,/Z, if one just



assumes that K, contains the cyclotomic Z,-extension of K. Thus, under that assumption,
it follows unconditionally that Gal(MZ /K,) has no nonzero pseudo-null A-submodules. If
K is the cyclotomic Z,-extension of K, then this result was originally proved by Iwasawa.
It is theorem 18 in [Iw73]. He showed that that Galois group indeed has A-rank 7y and
deduced the non-existence of finite A-submodules from that.

There is a long history behind the topics discussed in this article. We have already
mentioned Iwasawa’s theorem in [Iw73]. A similar, but less general, result is proved in
his much earlier paper [Iw59]. There he assumes a special case of Leopoldt’s conjecture.
Those theorems of Iwasawa were generalized in [Gr78], [NQD], and [Pe84] for similarly-
defined Galois groups, but over Z;-extensions of a number field. The generalization to
Galois cohomology groups for arbitrary Galois modules of the form D = V/T has also been
considered by several authors, e.g., see [Sch], [Gr89], and [J]. The conjecture concerning the
possible vanishing of H?(Kx./K, D), and its relevance to the question of finite submodules,
can be found in those references. Perrin-Riou has a substantial discussion of these issues
in [Pe95], Appendice B, referring to that conjecture as the Conjecture de Leopoldt faible
because it generalizes the assertion of the same name mentioned before. We also want to
mention that the idea of proving the non-existence of nonzero pseudo-null submodules under
an assumption like hypothesis L was inspired by the thesis of McConnell [McC].

Considerable progress has been made in one important special case, namely D = E[p*],
where E is an elliptic curve defined over Q. If one takes K to be the cyclotomic Z,-
extension of QQ, where p is an odd prime, then conjecture L was verified in [C-M] under
certain hypotheses. This case is now settled completely; a theorem of Kato asserts that
H?*(Ks/Kw, E[p™®]) = 0 if Ky is the cyclotomic Z,-extension of K, K/Q is assumed to be
abelian and p is assumed to be odd. Kato’s theorem applies more generally when D = V/T
and V is the p-adic representation associated to a cuspform.

More recently, similar types of questions have been studied when K, /K is a p-adic Lie
extension. The ring A is then non-commutative. Nevertheless, Venjakob has defined the
notion of pseudo-nullity and proved the non-existence of nonzero pseudo-null submodules
in certain Galois groups. We refer the readers to [Ve| for a discussion of this situation. In
[C-S], Coates and Sujatha study the group III' (K., X, E[p*]), where E is an elliptic curve
defined over K. Those authors refer to this group as the “fine Selmer group” for E over K,
and conjecture that it is actually a co-pseudo-null A-module under certain assumptions.

Another topic which we intend to study in a future paper concerns the structure of a
Selmer group Selp(K) which can be attached to the representation p under certain assump-
tions. This Selmer group will be an R-submodule of H!(Kx/K,D) defined by imposing
certain local conditions on the cocycles. Theorem 1 can then be effectively used to prove
that the Pontryagin dual of Selp(K) has no nonzero pseudo-null R-submodules under various
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sets of assumptions. One crucial assumption will be that Selp(K) is a cotorsion R-module.
Such a theorem is useful in that one can then study how the Selmer group behaves under
specialization, i.e., reducing the representation p modulo a prime ideal P of R.

The study of Iwasawa theory in the context of a representation p was initiated in [Gr94].
More recently, Nekovar has taken a rather innovative point of view towards studying large
representations and the associated cohomology and Selmer groups, introducing his idea of
Selmer complexes [Nek]. It may be possible to give nice proofs of some of the theorems in
this paper from such a point of view. In section 9.3 of his article, Nekovar does give such
proofs in the context of classical Iwasawa theory. (See his proposition 9.3.1 and corollary
9.3.2.)

This research was partially support by grants from the National Science Foundation.
Part of this research was carried out during two visits to the Institut des Hautes Etudes
Scientifiques. The author is gratefully to IHES for their support and hospitality during
those visits. The author also wishes to take this opportunity to thank John Coates for
numerous valuable and stimulating discussions over the years. They have been influential
on many aspects of the author’s research, including the topic of this paper.

2 Some Module Theory.

Theorem 1 and some of the other theorems mentioned in the introduction concern modules
over a complete Noetherian local domain R. This section will include a variety of module-
theoretic results that will be useful in the proofs. In particular, we will point out that
several properties, such as pseudo-nullity or reflexivity, can be studied by simply considering
the modules as A-modules. The main advantage of doing so is that A is a regular local ring
and so has the following helpful property: FEvery prime ideal of A of height 1 is principal.
This is useful in proofs by induction on the Krull dimension. Such arguments would work
for any regular, Noetherian local ring. It seems worthwhile to state and prove various results
in greater generality than we really need. However, in some cases, we haven’'t determined
how general the theorems can be.

We will use the notation Spec,, ,(R) to denote the set of prime ideals of height 1 in a
ring R. The terminology “almost all” means all but finitely many. If I is any ideal of R, we
will let V(I) denote the set of prime ideals of R containing I.

A. Behavior of ranks and coranks under specialization. Consider a finitely generated
module X over an integral domain R. If IC is the fraction field of R, then rankg(X) =
dimg (X ®g K). The following result holds:

Proposition 2.1. Let r = rankp(X). Then rankg/p(X/PX) > r for every prime ideal
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P of R. There exists a nonzero ideal I of R such that rankg/p(X/PX) > r if and only
if P € V(I). In particular, rankg/p(X/PX) = r for all but finitely many prime ideals
P € Specy,—1(R).

Proof. We prove a somewhat more general result by a linear algebra argument. Suppose
that s > r. We will show that there is an ideal I; with the property:

rankR/p(X/’PX) >s << Pe V(Is)

The ideal I; will be a Fitting ideal. Suppose that X has g generators as an R-module. Thus
X is a quotient of the free R-module F' = RY9. Therefore, one has an exact sequence of
R-modules
RF 2Rt Y5 X —0

The map ¢ is multiplication by a certain g X h matrix a. Let f denote the rank of the
matrix . The R-rank of the image of ¢ is equal to f and so we have r = g — f. By matrix
theory, there is at least one f X f-submatrix (obtained by omitting a certain number of rows
and/or columns) of the matrix o whose determinant is nonzero, but there is no larger square
submatrix with nonzero determinant.

For every prime ideal P of R, the above exact sequence induces a free presentation of
X/PX.

(R/P)" 225(R/P)? *2 X/PX — 0

The second term is F//PF and exactness at that term follows from the fact that the image
of PF under v is PX. The homomorphism ¢p is multiplication by the matrix ap, the
reduction of & modulo P. We have rankg,»(X/PX) = g —rank(ap). The description of the
rank in terms of the determinants of submatrices shows that rank(ap) < rank(«) for every
prime ideal Pof R. If g > s > r,let e = g — s so that 0 < e < f. Let I; denote the ideal in
R generated by the determinants of all e X e submatrices of the matrix a. If e = 0, then take
I, = R. Since e < f, it is clear that I, is a nonzero ideal. Then ap has rank < e if and only
if I, C P. This implies that rankp/»(X/PX) > g — e = s if and only if I, C P as stated.
Finally, we recall the simple fact that if I is any nonzero ideal in a Noetherian domain R,
then there can exist only finitely many prime ideals of R of height 1 which contain /. N

Corollary 2.1.1. Let X; and X, be finitely generated R-modules. Suppose that ¢ : X1 — Xo
is an R-module homomorphism. Let r; = rankg(ker(@)) and ro = rankg(coker(¢)). For
every prime ideal P of R, let ¢p : X1/PX; — Xo/PX, be the induced map. There exists a
nonzero ideal I of R such that

rankg/p (ker(¢p)) = r1, rankg/p(coker(¢p)) =rs
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if P ¢ V(I). These equalities hold for almost all P € Specy;_;(R)

Proof. Let X = coker(¢) = X5/¢(X1). The cokernel of ¢p is isomorphic X/PX and so
the statement about the cokernels follows from proposition 2.1. Now the (R/P)-rank of the
kernel of ¢p is determined by the (R/P)-ranks of X;/PX;, Xo/PX,, and coker(¢p). We
can apply proposition 2.1 to X, X; and X5, which gives certain nonzero ideals of R in each
case. Take I to be the intersection of those ideals. |

Remark 2.1.2. Consider the special case where X; and X, are free R-modules. Then the
map ¢ is given by a matrix and the behavior of the ranks of the kernels and cokernels in the
above corollary is determined by the rank of the matrix and its reduction modulo P as in
the proof of proposition 2.1. The following consequence will be useful later.

Suppose that X; and X5 are free R-modules. Then for every prime ideal P of R, we have
rankg/p ( ker(¢p)) > rankg (ker(e)).

This can also be easily deduced from the corollary. A similar inequality holds for the cokernels
of ¢ and ¢p.

Suppose that R is a complete Noetherian local domain with finite residue field. Then X
is compact and its Pontryagin dual A = X is a cofinitely generated, discrete R-module. The
Pontryagin dual of X/PX is A[P], the set of elements of A annihilated by P. Thus, one has
corank g p(A[P]) = rankg/p(X/PX). If A; and A, are two cofinitely generated R-modules
and ¥ : Ay — Ay is a R—mo/d\ule homo/n\lorphism, then there is an R-module homomorphism
¢ : X9 = X1, where X; = Ay, Xy = A, and ¢ is the adjoint of ). The kernel and cokernel
of 1 are dual, respectively, to the cokernel and kernel of ¢. We will say that A; and A, are
R-isogenous if there exists an R-module homomorphism % such that ker(y) and coker (1))
are both R-cotorsion. We then refer to ¢ as an R-isogeny. It is easy to see that R-isogeny
is an equivalence relation on cofinitely generated R-modules.

Remark 2.1.3. The above proposition and corollary can be easily translated into their
“dual” versions for discrete, cofinitely generated R-modules. For example,

1. If r = corankg(A), then corankp/p(A[P]) > r for every prime ideal P of R. There
exists a nonzero ideal I of R with the following property: corankg,p(A[P]) = r if and only
if I £ P. The equality corankg/p(A[P]) = r holds for almost all P € Spec,,_,(R).

2. Suppose that A1 and Ay are cofinitely generated, discrete R-modules and that ) : Ay — As
s an R-module homomorphism. Let ¢; = corankR(ker(w)) and ¢y = corankR(coker(l/))).
For every prime ideal P of R, let 1p : A1[P] — A3[P] be the induced map. There ezists a
nonzero ideal I of R such that

corankR/p(ker(iﬁp)) =c;, corankg/p (coker(iﬁp)) =
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if P ¢ V(I). In particular, if ¢ is an R-isogeny, then ¥p is an (R/P)-isogeny if P ¢ V(I).

Remark 2.1.2 can also be translated to the discrete version and asserts that if the above A4;
and A, are cofree R-modules, then

corankR/p(ker(wp)) > ¢y, corankg/p (coker(wp)) > ey
for every prime ideal P of R.

Remark 2.1.4. As mentioned before, if I is a nonzero ideal in a Noetherian domain R,
then there exist only finitely many prime ideals P € Specy,_;(R) which contain I. This is
only important if R has infinitely many prime ideals of height 1. Suppose that R is a finite,
integral extension of a formal power series ring A, as we usually consider in this article. Then
if the Krull dimension of R is at least 2, the set of prime ideals of R of height 1 is indeed
infinite. This follows from the corresponding fact for the ring A which will have the same
Krull dimension. In fact, if Q is any prime ideal of R of height at least 2, then Q contains
infinitely many prime ideals of R of height 1. Corollary 2.5.1 provides a useful strengthening
of this fact when R = A. It will also be useful to point out that in the ring A, assuming its
Krull dimension d is at least 2, there exist infinitely many prime ideals P of height 1 with
the property that A/P is also a formal power series ring. The Krull dimension of A/P will
be d — 1.

The ideal I occurring in proposition 2.1 is not unique. In the special case where X is a
torsion R-module, so that r = 0, one can take I = Anng(X). That is:

Proposition 2.2. Suppose that X is a finitely generated, torsion R-module and that P is a
prime ideal of R. Then rankp/»(X/PX) > 0 if and only if Anng(X) C P.

Proof. This follows by a simple localization argument. Let Rp be the localization of R at
P. Then M = PRp is the maximal ideal of Rp. Let Xp = X ®g Rp, the localization of X
at P. Then rankg/»(X/PX) = dimy(Xp/MXp), where k denotes the residue field Rp/M.
We have rankp/»(X/PX) =0 <= Xp = MXp <= Xp = 0, the last equivalence following
from Nakayama’s Lemma. Finally, Xp = 0 if and only if Anng(X) Z P. [ |

Remark 2.2.1. Proposition 2.2 can be easily restated in terms of the discrete, cofinitely
generated, cotorsion R-module A = X. Note that Anng(A) = Anng(X). As we will discuss
below, the height of the prime ideals P for which A[P] fails to be (R/P)-cotorsion is of some
significance, and specifically whether such prime ideals can have height 1.

A contrasting situation occurs when X is a torsion-free R-module. We then have the
following simple result.
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Proposition 2.3. Assume that X s a finitely generated, torsion-free R-module and that P
is a prime ideal of R of height 1 which is also a principal ideal. Then rankg/p(X/PX) =
rank(X). In particular, if R is a regular local ring, then rankp/p(X/PX) = rankg(X) for
all P € Specy,_,(R).

Proof. The assumption about P implies that the localization Rp is a discrete valuation ring
and hence a principal ideal domain. Therefore Xp is a free Rp-module of finite rank. Letting
k = Rp/M again, it is then clear that dimy(Xp/MXp) = rankg, (Xp). The above equality
follows from this. |

If X is a free R-module, then the situation is better. One then has the obvious equality
rankg/p(X/PX) = rankp(X) for all prime ideals P of R.

B. Associated prime ideals and pseudo-nullity. Assume that X is a finitely generated,
torsion R-module. A prime ideal P of R is called an associated prime ideal for X if P =
Anng(z) for some nonzero element z € X. Assuming that R is Noetherian, there are only
finitely many associated prime ideals for X. We say that X is a pseudo-null R-module if no
prime ideal of R associated with X has height 1. If R has Krull dimension 1, then every
nonzero prime ideal has height 1 and so a pseudo-null R-module must be trivial. If R is a
local ring of Krull dimension 2 and has finite residue field, then X is a pseudo-null R-module
if and only if X is finite.

If R is a finite, integral extension of a Noetherian domain A, then an R-module X can
be viewed as a A-module. We say that a prime ideal P of R lies over a prime ideal P of A if
P ="PnNA. The height of P in R will then be the same as the height of P in A. For a given
prime ideal P of A, there exist only finitely many prime ideals P lying over P. It is clear
that if P is an associated prime ideal for the R-module X and if P lies over P, then P is an
associated prime ideal for the A-module X. Conversely, if P is an associated prime ideal for
the A-module X, then there exists at least one prime ideal P of R lying over P which is an
associated prime ideal for the R-module X. To see this, consider the R-submodule Y = X[P]
which is nonzero. Suppose that the associated prime ideals of R for Y are Pq,...,P;. Let
P, =P;NnA for 1 <7 <t Thus, each P, is an associated prime ideal for the A-module Y
and so P C P, for each i. There is some product of the P;’s which is contained in Anng(Y)
and the corresponding product of the P;’s is contained in Anny(Y) = P. Thus, P; C P for
at least one 7. This implies that P, = P and so, indeed, at least one of the prime ideals P;
lies over P. These observations justify the following statement:

1. X is pseudo-null as an R-module if and only if X is pseudo-null as a A-module.

The ring A is a UFD. Every prime ideal of height 1 is generated by an irreducible element
of A. One can give the following alternative definition of pseudo-nullity:
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2. A finitely generated A-module X is pseudo-null if and only if Ann(X) contains two
relatively prime elements.

Another equivalent criterion for pseudo-nullity comes from the following observations. If )
is an associated prime ideal of X, then X[Q] # 0 and so X[P] # 0 for every ideal P C Q.
If @ has height > 2, then @) contains infinitely many prime ideals P of height 1. On the
other hand, if the associated prime ideals for X all have height 1, then X[P] = 0 for all the
non-associated prime ideals P of height 1. To summarize:

3. A finitely generated A-module X has a nonzero pseudo-null A-submodule if and only if
there exist infinitely many prime ideals P € Specy,_;(A) such that X[P] # 0.

If A =X, then X[P] # 0 if and only if PA # A. Hence, the above remarks imply the
following result.

Proposition 2.4. Suppose that A is a cofinitely generated, discrete A-module. The following
three statements are equivalent:

(a) PA = A for almost all P € Specy,_,(A).
(b) The Pontryagin dual of A has no nonzero pseudo-null A-submodules.

(c) A is an almost divisible A-module.

As mentioned before, if P has height 1, then P = (7) where 7 is an irreducible element of A.
The statement that PA = A means that 74 = A, i.e., A is divisible by . Let Y denote the
torsion A-submodule of X = A. Then, assuming statement (b), one has PA = A if and only
if P ¢ Supp(Y). In the definition of “almost divisible,” one can take 6 to be any nonzero
element of A divisible by all irreducible elements 7 which generate prime ideals in Supp(Y'),
e.g., 0 could be a generator of the characteristic ideal of the A-module Y.

One can ask about the behavior of pseudo-null modules under specialization. Here is one
useful result.

Proposition 2.5. Suppose that the Krull dimension of A is at least 3 and that X is a
finitely generated, pseudo-null A-module. Then there erists infinitely many prime ideals
P € Specy;,—1(A) such that X/PX is a pseudo-null (A/P)-module.

Proof. One can consider A as a formal power series ring A,[[T]] in one variable, where the
subring A, is a formal power series ring (over either Z, or F,) in one less variable. One can
choose A, so that X is a finitely generated, torsion module over A,. (See Lemma 2 in [Gr78]
if A has characteristic 0. The proof there works if A has characteristic p.) Since the Krull
dimension of A, is at least 2, there exist infinitely many prime ideals P, of A, of height 1.
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The module X/P,X will be a finitely generated, torsion (A,/P,)-module for all but finitely
many such P,’s. Now P, = (m,), where 7, is an irreducible element of A,. Clearly, 7, is
also irreducible in A. The ideal P = m,A is a prime ideal of height 1 in A. Since X/PX is
finitely generated and torsion over A,/P,, and A/P = (A,/P,)[[T]], it follows that X/PX is
a pseudo-null (A/P)-module. [

One surprising consequence concerns the existence of infinitely many height 1 prime ideals
of a different sort.

Corollary 2.5.1. Suppose that A has Krull dimension at least 2 and that X is a finitely gen-
erated, pseudo-null A-module. Then there exist infinitely many prime ideals P € Specy,_,(A)
such that P C Anny(X).

Proof. We will argue by induction. If A has Krull dimension 2, the the result is rather easy
to prove. In that case, one has m} C Ann,(X) for some n > 0. It suffices to prove that m}
contains infinitely many irreducible elements which generate distinct ideals. First consider
A = Z,[[T]]. There exist field extensions of Q, of degree > n. For any such extension F,
choose a generator over Q, which is in a large power of the maximal ideal of F'. Then its
minimal polynomial over @, will be in m} and will be an irreducible elements of A. By
varying the extension F' or the generator, one obtains the desired irredicible elements of
A. The same argument works for F,[[S, T]] since the fraction field of F,[[S]] also has finite,
separable extensions of arbitrarily high degree.

In the proof of proposition 2.5, it is clear that we can choose the P,’s so that A,/P, is
also a formal power series ring. The same will then be true for A/P. Now assume that the
Krull dimension of A is at least 3. Choose two elements 6;,602 € Ann(X) such that 6, and
0 are relatively prime. The A-module Y = A/(6,6,) is then pseudo-null. Choose P so that
A= A/P is a formal power series ring and so that Y = Y/PY is a pseudo-null A-module.
Let 0; and 0, denote the images of #, and # in A. Then Y = A/(f;,0,) and the fact that
this is pseudo-null means that 6; and @, are relatively prime in that ring. Clearly, the ideal
Anng(Y) in A is generated by 6, and f,. We assume that this ideal contains infinitely many
prime ideals of A of height 1. Any such prime ideal has a generator of the form @76, + @36,
where a7, @; € A are the images of ay, ap € A, say. Let 7 = a;0; + apfy. Then 7 € Anny (X)
and is easily seen to be an irreducible element of A. We can find infinitely many distinct
prime ideals () C Ann,(X) in this way. [

C. Reflexive and coreflexive modules. Let m > 0. Suppose that the ring A is either
Zy|[T, ..., T,]] (which we take to be Z, if m = 0) or F,[[T1, ..., Try41]], so that the Krull-
dimension of A is m + 1. Suppose that X is a finitely generated, torsion-free A-module. Let
L denote the fraction field of A. Let Ap be the localization of A at P. We can view the
localization Xp = X ®x Ap as a subset of V = X ®, L which is a vector space over £ of
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dimension ranky (X). The reflezive hull of X is defined to be the A-submodule of V defined
by X = (p Xp, where this intersection is over all prime ideals P € Spec,,_,(A) and Ap
is the localization of A at P. Then X is also a finitely generated, torsion-free A-module,
X C X, and the quotient X /X is a pseudo-null A-module. Furthermore, suppose that X'
is any finitely generated, torsion-free A-module such that X C X" and X'/X is pseudo-null.
Since X'/X is A-torsion, one can identify X’ with a A-submodule of V containing X. Then
X'C X. We say that X is a reflerive A-module if X = X. This is equivalent to the more
usual definition that X is isomorphic to its A-bidual under the natural map. We will make
several useful observations.

Suppose that R is a finite, integral extension of A. Let IC denote the fraction field of R.
We can define the notion of a reflexive R-module in the same way as above. If X is any
finitely generated, torsion-free R-module, the R-reflexive hull of X is the R-submodule of
the KC-vector space X ® K defined by X = (|, Xp, where P runs over all the prime ideals of
R of height 1. This is easily seen to coincide with the A-reflexive hull of X as defined above.
One uses the fact that, with either definition, X is torsion-free as both an R-module and a
A-module, X /X is pseudo-null as both an R-module and a A-module, and X is maximal
with respect to those properties. We can define X to be a reflexive R-module if X = X.
But our remarks justify the following equivalence:

1. An R-module X is reflexive as an R-module if and only if it is reflexive as a A-module.

Thus, it suffices to consider A-modules. Suppose that X is a reflexive A-module and that
Y is an arbitrary A-submodule of X. Both are torsion-free A-modules, but, of course, the
quotient R-module X/Y may fail to be torsion-free. However, one can make the following
important observation:

2. The A-module Y is reflexive if and only if X/Y contains no nonzero pseudo-null A-
submodules.

This is rather obvious from the properties of the reflexive hull. Since X is assumed to be
reflexive, we have Y C X. Hence Y /Y is the maximal pseudo-null A-submodule of X/Y.
Every pseudo-null A-submodule of X/Y is contained in Y /Y. The observation follows from
this.

The above observation provides a rather general construction of reflexive A-modules. To
start, suppose that X is any reflexive A-module and that rank(X) =r, eg.,, X = A" If Y
is a A-submodule of X such that X/Y is torsion-free, then X/Y certainly cannot contain a
nonzero pseudo-null A-submodule. Thus ¥ must be reflexive. Consider the L-vector space V
defined before. It has dimension r over L. Let W be any L-subspace of V. Let Y = X N W.
Then rank, (Y) = dimg(W). It is clear that X/Y is a torsion-free A-module and so the
A-module Y will be reflexive. To see this, first note that X/Y is a torsion-free A-module.
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Here is one important type of example.

3. Suppose that a group G acts A-linearly on a reflexive A-module X. Then Y = X must
also be reflexive as a A-module.

This is clear since G will act £-linearly on V and, if we let WW denote the subspace V¢, then
Y =XnNnW.

Suppose that m = 0. Then A is either Z, or F,[[T]]. Both are discrete valuation rings
and have just one nonzero prime ideal, its maximal ideal, which has height 1. The module
theory is quite simple, and every finitely generated, torsion-free A-module is free and hence
reflexive. However, suppose that m > 1. Then A has infinitely many prime ideals of height 1.
They are all principal since A is a UFD. We then have the following useful result. We always
take the term reflexive to include the assumption that the module is finitely generated and
torsion-free.

Proposition 2.6. Assume that m > 1 and that X is a finitely generated A-module.

(a) If X is a reflexive A-module and if P € Specy,_,(A), then X/PX is a torsion-free
(A/P)-module.

(b) Conversely, if X/PX is a torsion-free (A/P)-module for almost all P € Specy,_;(A),
then X is a reflexive A-module.

Proof. Suppose that X is reflexive and that P is any prime ideal of height 1 in A. Then
P = (), where 7 is any irreducible element of A. Then PX = 7 X is also a reflexive
A-module. As observed above, it follows that X/PX contains no nonzero pseudo-null A-
submodules. But any finitely generated, torsion (A/P)-module will be pseudo-null when
considered as a A-module. This is clear because the annihilator of such a (A/P)-module
will contain 7 as well as some nonzero element of A which is not divisible by 7. Therefore,
X/PX must indeed be a torsion-free as a (A/P)-module, proving part (a).

Now, under the assumptions of (), we first show that X must be a torsion-free A-module.
For if Y is the A-torsion submodule of X and if P = () is any height 1 prime ideal, then the
snake lemma implies that there is an injective map Y/PY — X/PX. But, if Y is nonzero,
so is Y/PY. Also, if A € A is a nonzero annihilator of Y, then Y/PY is a torsion (A/P)-
module for all but the finitely many prime ideals P of height 1 which contain A. It follows
that ¥ = 0. There are infinitely many such P’s.

Let Z = X/X. Then Z is a pseudo-null A-module. Assume Z is nonzero. Then there
exist infinitely many prime ideals P = (7) of A of height 1 such that Z[n] is nonzero too.
Clearly, Z|r] is a torsion (A/P)-module. Consider the exact sequence

05X 33X 3270
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By the snake lemma, together with the fact that X is a torsion-free A-module, one obtains
an injective map Z[r] — X/PX. Therefore, for infinitely many P’s, X/PX fails to be
torsion-free as a (A/P)-module, contradicting the hypothesis. Hence Z = 0 and X is indeed
reflexive. |

The first part of proposition 2.6 is quite trivial for free modules. In fact, if R is any
ring and X is a free R-module, then X/PX is a free (R/P)-module and will certainly be
torsion-free if P is any prime ideal of R.

We often will use proposition 2.6 in its discrete form.

Corollary 2.6.1. Suppose that m > 1 and that A is a cofinitely generated A-module.

(a) If A is a coreflexive A-module, then A[P] is a divisible (A/P)-module for every prime
tdeal P of A of height 1.

(b) Conversely, if A[P] is a divisible (A/P)-module for almost all P € Spec,,_,(A), then
A must be coreflexive as a A-module.

Remark 2.6.2. One simple consequence concerns the case where the Krull-dimension is 2,
i.e. A is either Z,[[T]] or F,[[S, T]]. Suppose that X is a reflexive A-module. The ring A/(T)
is isomorphic to either Z, or F,[[S]], both principal ideal domains. Since X /T X is a finitely-
generated, torsion-free module over A/(T), it is therefore a free module. Let r = rank, (X).
Proposition 2.3 implies that the rank of X/TX over A/(T) is also equal to r. Hence X/T'X
can be generated as a A/(T’)-module by exactly r elements. By Nakayama’s lemma, X can
be generated by r elements as a A-module and so it is a quotient of A". It follows that
X = A". Therefore, we have the following well-known result:

If A has Krull dimension 2, then every reflexive A-module is free.

It follows that every coreflexive A-module is cofree when A has Krull dimension 2.

Remark 2.6.3. One can use proposition 2.6 to give examples of reflexive A-modules which
are not free if the Krull dimension of A is at least 3. A torsion-free A-module of rank 1 will
be isomorphic to an ideal in A and it is known that a reflexive ideal must be principal and
hence free. Thus, our examples will have rank at least 2. We take X = A”". Let Y be a
A-submodule of X with the property that Z = X/Y is a torsion-free A-module. Thus, as
observed before, Y will be A-reflexive. Suppose that P = () is any prime ideal of A of
height 1. Then we have an exact sequence

0— Y/PY — X/PX — Z/PZ — 0
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of (A/P)-modules. We can choose P so that A/P is also a formal power series ring. Assume
that Y is actually a free A-module. Then both Y/PY and X/PX would be free (A/P)-
modules and hence reflexive. Thus, the quotient (A/P)-module Z/PZ would contain no
nonzero pseudo-null (A/P)-submodules. However, it is easy to give examples of torsion-free
A-modules Z which fail to have that property. As one simple example, suppose that Z is
the maximal ideal my of A. Then A/Z is annihilated by 7 and so we have

7Z CnAC Z

Thus, 7A/7Z is a (A/P)-submodule of Z/PZ, has order p, and will be a pseudo-null (A/P)-
module since that ring has Krull dimension at least 2. Take r to be the number of generators
of Z as a A-module and take X as above. Then one has a surjective A-module homomorphism
X — Z. If we let Y denote the kernel of this homomorphism, then Y is a reflexive A-module,
but cannot be free.

One can view this remark from the point of view of homological algebra. Nakayama’s
Lemma implies easily that projective A-modules are free. Let d denote the Krull dimension
of A. Thus, as we just explained, the A-module m, cannot have projective dimension 1 if
d > 3. In fact, one can show that m, has projective dimension d — 1.

D. Reflexive domains. In general, if R is any commutative integral domain, we will say
that R is a reflexive domain if
R=()Rp,
P

where P varies over all prime ideal of R of height 1 and Rp denotes the localization of R at
P. If R contains A as a subring and is finitely generated as a A-module, then R is reflexive in
the above sense precisely when R is reflexive as a A-module. This is implied by the following
result. Note that £ = R ®, L is the fraction field of R. We define R = (), Rp, where P
varies over all prime ideals of R of height 1. Thus, Risa subring of K containing R and R
is a reflexive domain if and only if R = R.

Proposition 2.7. R is the reflezive hull of R as a A-module.

Proof. Let P be a prime ideal of A of height 1. Let Py, ..., P, be the prime ideals P of R such
that PN A = P. We let Rp = R ®j Ap, which is the ring of fractions of R corresponding
to the multiplicative set A — P. Then Rp is a subring of K. The maximal ideals of Rp are
PiRp,1 <1 < g . The localization of Rp at P;Rp is clearly Rp, and so we have

Rp= () Ry,

1<i<g
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If P is any height 1 prime ideal of R, then P = P () A is a height 1 prime ideal of A. The
proposition follows immediately. |

Since R is also a finitely generated A-module, and hence an integral extension of A, we get
the following corollary (which is actually a standard theorem; see corollary 11.4 in [E]).

Corollary 2.7.1. If R s integrally closed, then R is reflezive.

Suppose that R is a finite integral extension of A. Then it is known that R is a free
A-module if and only if R is Cohen-Macaulay. (See proposition 2.2.11 in [B-H].) Any free
A-module is reflexive, Thus, if R is Cohen-Macaulay, then R is reflexive. One simple type of
example is R = A[f], where 0 is integral over A. Also, if R is regular or Gorenstein, then R
is Cohen-Macaulay.

The first part of proposition 2.6 is valid for R-modules if R is assumed to be a reflexive
domain. That is, if X is a finitely generated, reflexive R-module and P € Spec;,_,(R), then
X/PX is a torsion-free (R/P)-module. The same proof works once one notes that any prime
ideal P of height 1 in a reflexive domain R must be reflexive as an R-module. This is easily
verified.

Suppose that R is a complete Noetherian local ring, but is not necessarily a domain. We
will say that R is a reflexive ring if it has the following properties: (i) R contains a subring A
which is isomorphic to a formal power series ring over either Z, or F, and (ii) R is a finitely
generated, reflexive module over A. One important example arises from Hida theory. The
universal ordinary Hecke algebra b for a given level contains a natural subring A isomorphic
to the formal power series ring Z,[[T]] in one variable and is actually a free A-module of
finite rank. Thus this ring § is reflexive, but is not necessarily a domain. In general, suppose
that R satisfies (1) and R is a torsion-free A-module. Then R is a subring of the L-algebra
R®, L and the reflexive hull R of R as a A-module will be a reflexive ring.

E. Different choices of D. In the introduction we considered a free R-module 7 and
defined D = T ®g R, a cofree R-module, which we will now denote by Dg. This construction
behaves well under specialization at any ideal I of R in the following sense. Consider the
free (R/I)-module 7/IT. Applying the construction, we get

(T/IT) ®ryr (R/I) = T ®r (R[I]) = Dgll].
Another construction which will be useful later is to define Dy = T ®x A. Both con-
structions can be applied to an arbitrary R-module 7. To see the relationship, note that

we have Dy 2 T Qg AR where AR = RQ®\ A the R-module obtained from A by extending
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scalars from A to R. We have KR >~ Rif R is free as a A-module. In that case, it follows
that Dr and D, are isomorphic as R-modules. In general, one can only say that D and Dy
are R-isogenous. Their R-coranks are equal to rankg (7).

The A-module D, is always coreflexive. To see this, let P = (7) be any prime ideal of
height 1 in A. Consider the exact sequence induced by multiplication by 7.

~

0— A[P] —A-"5A—0
Tensoring over A by 7, one gets a surjective homomorphism
(3) (T/PT) ®a/p (K[P]) — Dy[P]

Note that A[P] = (A/P). Since A[P] is (A/P)-divisible, so is (T/PT) ®a,p (A[P]) and
that implies that D, [P] is a divisible (A/P)-module. Corollary 2.6.1 then implies that
Dy is coreflexive. We also remark that if 7 is assumed to be a torsion-free A-module,
then proposition 2.3 implies that rank,,p(7/P7T) and corank,,p(Da[P]) are both equal to
rank, (7) and so the map in (3) must be a (A/P)-isogeny.

Suppose that 7; and 7 are finitely generated R-modules. Let D; = 71 ®r R and Dy =
T> ®r R. We then have the following result.

Proposition 2.8. Suppose that ¢ : T1 — T2 is an R-module homomorphism and that
Y : Dy — Dy is the R-module homomorphism determined by ¥(z @ y) = é(z) @ y for
2 €T, y€eR. Then corankp (ker(y)) = rankg(ker(¢)). A similar equality holds for the
cokernels of 1 and ¢.

Proof. Let T3 denote the cokernel of ¢. Let D3 = T3 Qg R. We then have exact sequences:

7'11>7§—>7§,—>0, DILD2—>D3—>O

The second exact sequence follows from the first by tensoring each term with R. Since
corankg(D;) = rankg(7;) for each i, the stated equalities follow immediately. [

~

The proposition is also valid if D; is defined to be 7; ®5 A instead.

3 Cohomology Groups.

We consider a rather general situation. Suppose that R is a complete Noetherian local
ring with maximal ideal m and finite residue field k£ of characteristic p. Suppose that D
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is a cofinitely generated R-module and that G is a profinite group which acts continuously
and R-linearly on D. Then the cohomology groups H'(G,D) are also R-modules. Now
D[m] is a finite dimensional representation space for G over k and hence over F,. Denote
the distinct, F,-irreducible subquotients by o, ..., ;. We will assume throughout that the
cohomology groups H'(G, o) are finite for all # > 0 and for all k, 1 < k < t. This is so if
(i) G = Gk,, where K, is the v-adic completion of a number field K at any prime v, or if
(i) G = Gal(Kx/K), where ¥ is any finite set of primes of K.

A. Properties inherited from D. First we prove the following result which will be useful
in subsequent arguments.

Proposition 3.1. Let C = D;/D,, where Dy and Dy are G-invariant R-submodules of D.
Then every F,-irreducible subquotient of C[m| is isomorphic to one of the oy ’s.

Proof. First note that C is a cofinitely generated R-module, and so C[m] is finite. Also,
D = [J,5P[m"]. It follows that C[m] is a subquotient of D[m"] for some n. Hence it
is enough to prove that the composition factors for the G-module D[m"] are isomorphic
to the ay’s. It suffices to verify this for D[m/™|/D[m’] for all j > 0. Let Aj,..., )\, be
a set of generators for the ideal m’. Then one can define an injective G-homomorphism
D[mI*™]/D[m!] — D[m]? by mapping the coset of x € D[m’*!] to (A1, ..., \;x). The assertion
about the composition factors follows from this. [ |
Corollary 3.1.1. Let i > 0. If H(G, ) = 0 for all k, 1 < k < t, then H'(G,C) = 0 for
every subquotient C of D as an R[G]-module.

Proof. The hypothesis implies that H(G, C[m"]) = 0 for all n > 0. Since C = [Li_mC[m”], it

follows that H(G,C) = 0 as stated. [ |
Note that H°(G,D) = D¢ is just an R-submodule of D, and so is also a cofinitely

generated R-module. More generally, we have

Proposition 3.2. For any ¢ > 0, H'(G, D) is a cofinitely generated R-module.

Proof. We prove this by induction on the minimal number of generators of the maximal ideal
m. Let A be one element of such a generating set for m. Consider the two exact sequences

0— D[N\ =D — A\D — 0, 0—-AXD—-D—->D/AXD—0

The first is induced by multiplication by A; the second is obvious. If m is principal, then
D[\ = D[m] and D/A\D = D/mD are both finite, and the hypothesis that the H* (G, ay)’s
are finite implies that H*(G,D[\]) and H'"'(G, D/AD) are both finite. Thus the kernels of
the two maps

H'(G,D) — H'(G,\D),  H'(G,\D)— H'(G,D)
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are both finite. But the composite map D — AD — D is multiplication by A, and so the
kernel of the composite map H'(G, D) — H'(G,\D) — H*(G, D) is just H'(G, D)[\], which
is therefore finite. Thus, H*(G, D)[m] is finite, and hence, by Nakayama’s lemma (the version
for compact R-modules), H(G, D) is cofinitely generated as a R-module.

If a minimal generating set for m requires g generators, where g > 1, then the max-
imal ideal of R/()) requires g — 1 generators. The R/(A)-modules D[\ and D/AD are
both cofinitely generated. And so, by induction, we can assume that the R/(\)-modules
H'(G,D[\]) and H~'(G,D/AD) are also cofinitely generated. The above argument then
shows that the R/(\)-module H*(G, D)[)] is cofinitely generated, and hence so is H*(G, D)[m].
Nakayama’s lemma then implies that the R-module H*(G, D) is cofinitely generated. W

Various other properties of D are inherited by the Galois cohomology groups under
certain hypotheses. Some are quite obvious. We assume in the rest of this section that R is
a domain.

If D is R-cotorsion, then so is H'(G, D).
If D is a co-pseudo-null R-module, then so is HY(G, D).

As for the properties of divisibility or coreflexivity, these are also inherited under certain
rather stringent hypotheses. We have the following result.

Proposition 3.3. Suppose that i > 0. Suppose that H (G, o) =0 for 1 < k < t.
(a) If D is a divisible R-module, then so is H'(G, D).
(b) If D is a coreflexive R-module, then so is H'(G, D).

Note that the hypothesis that the H*™'(G,ax)’s vanish is true if G has p-cohomological
dimension equal to ¢. In particular, this hypothesis is true when ¢ = 2 for G = G, , where
v is any non-archimedean prime of K, and for G = Gal(Ky/K) when p is an odd prime.

Proof. The ring R is a finitely generated module over a formal power series ring A. A finitely
generated R-module X is torsion-free as an R-module if and only if it is torsion-free as a
A-module. Also, X is reflexive as an R-module if and only if it is reflexive as a A-module.
Thus, we may prove the proposition by using only the A-module structure. Prime ideals of
A of height 1 are principal. First we consider divisibility. Let A € A be nonzero. Then we
have the exact sequence

0—-DN—-D—-D—0

induced by multiplication by A. Hence we get an exact sequence

H'(G,D) — H'(G,D) = H'*'(G,D[\))
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The hypothesis in corollary 3.1.1 is satisfied for the index i+ 1 for the module C = D[], and
so we have H**}(G,D[)\]) = 0. Thus multiplication by \ is surjective on H*(G, D), proving
part (a) of the proposition.

Now we consider coreflexivity. Let P = (7) be any prime ideal of height 1 in A. It suffices
to show that H*(G,D)[P] is a divisible (A/P)-module for all such P. Then one can apply
corollary 2.6.1 to get the conclusion. Now since D is A-divisible, we get an exact sequence

0—-DP|l-D—-D—0

induced by multiplication by 7. The corresponding cohomology sequence then gives a surjec-
tive map H'(G,D[P]) — H'(G,D)[P] of (A/P)-modules. Corollary 2.6.1 implies that D[P]
is (A/P)-divisible, and hence, by part (a), so is H*(G, D[P]). It follows that H*(G, D)[P] is
indeed divisible as a (A/P)-module, proving part (b). [
B. Behavior under specialization. If [ is any ideal of R, then one has an obvious
(R/I)-module homomorphism

(4) HY(G,D[I]) — H'(G,D)[I]

We will discuss the kernel and cokernel. Since D[I]¢ = DY[I], this homomorphism is an
isomorphism when ¢ = 0. If # > 1, the simplest case to study is when [ is a principal ideal
and D is a divisible R-module. If I = (&), then we consider the exact sequence induced by
multiplication by &.

0— D[] —D-5D—0

The corresponding map on the cohomology groups is also induced by multiplication by &.
This gives the exact sequence

(5) 0— H"YG,D)/¢H'YG,D) - H'(G,D[I]) — H(G,D)[I] = 0

Thus, when [ is principal and D is divisible, the map (5) will at least be surjective. It suffices
just to assume that D is divisible by the element £ generating I. Here is one rather general
and useful result for arbitrary ideals, valid even when D is not assumed to be divisible.

Proposition 3.4. Suppose that D is a cofinitely generated R-module. Let i > 0. If1 > 0,
assume that H=1 (G, ay) = 0 for 1 < k < t. Suppose that I is any ideal of R. Then the map

18 an isomorphism.

Proof. We’ve already remarked that the map is an isomorphism when ¢ = 0. If 7 > 0, the
assumption implies that H* }(G,C) = 0 for every subquotient C of D as an R[G]-module.
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Thus, if we have an injective map C; — Cy of such R[G]-modules, then H* }(G,Cy/C;) = 0
and so the induced map H'(G,C;) — H*(G,C;) will be injective.
Suppose that I = () is a principal ideal. Multiplication by A gives an exact sequence

0— DA -5D 2D — 0

Let o : HY(G,D[)\)) = HY(G,D) and 8 : H(G,D) — H*(G, D) be the maps induced from
a and b. The map « is injective and its image is the kernel of the map . But the map
v : H(G,\D) — H'(G,D) is also injective and so the maps 8 and +y o 3 have the same
kernel. The map yo 38 : HY(G,D) — H'(G, D) is just multiplication by . Therefore, the
image of « is indeed H*(G,D)[)], which proves the proposition if I is principal.

We will argue by induction on the minimum number of generators of I. Suppose that
A1, .., Ag is a minimal generating set for I, where ¢ > 1. Let I} = (A,...,Aj—1). As-
sume that the map H(G,D[I,]) — H(G,D)[[] is an isomorphism. Then so is the map
HYG,D[L])[N\] — (HYG,D)[L])[N,] = HY(G,D)[I]. Now D[I;][\,] = D[I] and so, as
shown above, the map H*(G,D[I]) — H'(G, D[11])[\,] is an isomorphism. Composing these
isomorphisms, we get the isomorphism stated in the proposition for I. |

Remark 3.4.1. For the case 7+ = 1, the assumption in proposition 3.4 is that the triv-
ial F,-representation of G is not a composition factor in the F,[G]-module D[m|. As-
suming this is satisfied, we have H'(G,D[P]) & H'(G,D)[P] for every prime ideal P of
R. Let r = corankg(H'(G,D)). Applying remark 2.1.3 to A = H'(G, D), we see that
corankg/p (H'(G,D[P])) > r for all P and that equality holds for all P ¢ V(I), where I
is some nonzero ideal of R. A similar statement is true for any ¢ under the assumptions of
proposition 3.4.

Remark 3.4.2. Suppose now that R = A and that D is a cofree A-module. Assume that
P is a regular prime ideal of A, i.e., that the local ring A/P is regular. The ideal P can
be generated by a regular sequence Ay, ..., A, of elements of A. (See proposition 2.2.4 in
[B-H].) Define Py = (0) and P; = (A1,...,) for 1 < j < g. Then P; is a prime ideal
for j > 0 and D[F;] is a cofree, and hence divisible, (A/P;)-module. Note that if j > 1,
thenD[P;] = (D[P;_1])[A,;] and multiplication by A; defines a surjective map on D[P;_4].
This induces a surjective map

H'(G,D[P}]) — H'(G, D[P;_1])|P}]

Thus, coranks,p, (H'(G,D[P;])) > coranky,p, (H (G, D[P;_1])[F;]). Remark 2.1.3 implies
that coranky/p, (H'(G, D[P;_1])[P;]) > corankyp,_, (H'(G,D[P;_1]). Since D[Py] = D, we
have proved that

coranky/p(H'(G,D[P])) > coranks (H'(G, D))
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for all regular prime ideals of A. In particular, suppose that A/P = Z,. Then

corank, (H'(G, D)) < corankz, (H'(G,D[P))) < dimg, (H'(G, D[m,))).

In the following proposition, we consider D just as a A-module and take I = P to be a
prime ideal of height 1. However, the result can be extended to a more general class of rings
R as explained in remark 3.5.2 below.

Proposition 3.5. Suppose that D is a cofinitely generated A-module. Let ¢+ > 0. Then, for
almost all P € Spec,,_,(A), the kernel and cokernel of the map

H'(G,D[P]) — H'(G,D)[P]

are cotorsion (A/P)-modules and hence H'(G, D[P]) and H*(G, D)[P] will have equal (A/P)-
coranks.

Proof. As already mentioned, the result is obvious for ¢ = 0. We assume first that D is
A-divisible. Suppose that ¢ > 1. The map in question is surjective. Let 7 be a generator of
P, which is a principal ideal. Since we are assuming that D is A-divisible, we can use (5) for
I = P. As a A-module, H (G, D)/mH'"}(G, D) is a quotient of the cofinitely generated,
cotorsion A-module A = HY(G,D)/H""Y(G,D)s—dgiv- Let J = Anny(A). Then it is clear
that if P does not contain .J, then H' (G, D)/mH* (G, D) is a cotorsion (A/P)-module.
If D is not A-divisible, then one notes that D is A-isogenous to Dy _giy and so one can easily
reduce to the A-divisible case. [ |

Remark 3.5.1. A similar result holds for the cohomology groups associated to a finitely
generated A-module 7. We assume that G acts continuously and A-linearly on 7 and that
the cohomology groups H*(G, ) are finite for every simple subquotient « of the G-module
T /mpT. The G-module T is now compact and so we consider the continuous cohomology
groups. A discussion of their properties can be found in [NSW], chapter II, §3. Since

7 =Lim 7 /m™T, an inverse limit of finite Galois modules, we have
n

This follows from corollary 2.3.5 in [NSW]. Note that our assumption that the H*(G,a)’s
are finite is needed for this. It is not hard to show that H’(G,T) is a finitely generated
A-module. If P is a prime ideal of A, one has a natural map H’,,(G,T) — H.(G,T/PT).
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Suppose that P is a prime ideal of height 1. Then we have the following compact version of
proposition 3.5.

The kernel and cokernel of the map H',,(G,T)/PH:, (G,T) — H.,
(A/P)-modules for almost all P € Specy,_,(A\).

The argument is analogous to that given above. Suppose that P = (7). Assuming first that
T is a torsion-free A-module, one considers the exact sequence

(G, T/PT) are torsion

0—T->T—T/PT—0

induced by multiplication by m. The map in question is induced by this exact sequence.
It is injective and its cokernel is isomorphic to H%:'(G,T)[r], which is a A-submodule of
HY MG, T)A—tors, the torsion A-submodule of H5.'(G, 7). Thus, this cokernel is indeed
(A/P)-torsion for all but the finitely many P € Spec,,_,(A) containing the annihilator of
HYY G, T)a—tors- As before, one easily reduces the general case to the case where 7 is

torsion-free.

Remark 3.5.2. Suppose that D is a cofinitely generated R-module, where R is a finite,
integral extension of A. Let K be the field of fractions for R, a finite extension of the field
of fractions £ of A. We will assume that IC/L is a separable extension. One can prove that
the kernel and cokernel of the map

H'(G,D[P]) — H'(G,D)[P]

will be cotorsion (R/P)-modules for almost all P € Spec,,_,(R) as follows. Assume that
P € Specy,_;(A) satisfies the conclusion of proposition 3.5 and is also unramified for the
extension /L in the following sense: For all P lying over P, the maximal ideal in the
localization Rp is generated by P. Fix one such P. Consider the following commutative
diagram

H'(G,D[P]) — H'(G, D)[P]

| |’
H(G,D|P)) %~ H'(G,D)[P]

The horizontal maps « and o are defined in the obvious way. Both ker(«') and coker(«) are
(A/P)-cotorsion by assumption. Thus, they are annihilated by some element A € A—P. The
map S is induced from the inclusion D[P| — D[P]. Since P is assumed to be unramified,
P C PRp and hence there exists an element v € R — P such that yP C PR. This implies
that vD[P] C D[P] and so 7 annihilates D[P]/D[P]. It follows that ker(S) and coker(3)
are annihilated by 7. It is also clear that £’ is injective and coker(3’) is annihilated by
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7. A diagram chase then implies that ker(a) and coker(«) are annihilated by Ay. Since
this element of R is not in P, it follows that the kernel and cokernel of « are cotorsion
(R/P)-modules. This is true for all P lying over P.

The conclusion of proposition 3.5 is true for almost all P € Spec,,_;(A). It remains to
show that almost all P € Spec,,_,(A) are unramified in /L. Let S denote the integral
closure of R in IC. Then it is known that S is finitely generated as a A-module. (See theorem
6.4 in [D].) Let wy,...,w, be a fixed basis for IC over £ contained in R. Then for almost
all P € Specy,_;(A), the localizations Rp and Sp coincide and are free Ap-modules with
basis wy, ..., w,. Assume that P has this property. Now Ap is a discrete valuation ring and
Rp = Sp is a Dedekind ring. Since /L is separable, the discriminant of this extension
for the fixed basis is nonzero, and the prime ideal P is unramified if it doesn’t contain this
discriminant. It clearly follows that only finitely many P € Spec,,_;(A) can be ramified in
K/L.

C. Almost divisibility. Suppose that i > 1 and that P = () is a prime ideal of A of
height 1. Then, according to (5), the map H (G, D[P]) — H'(G,D)[P] will be injective if
and only if H"'(G, D)/rH" (G, D) = 0, assuming that D is divisible by 7. Thus, we have
the following useful equivalence.

Proposition 3.6. Suppose that D is an almost divisible, cofinitely generated A-module. Let
i > 1. Then the A-module H""'(G, D) is almost divisible if and only if the map

H'(G,D[P]) — H'(G,D)[P]
is injective for almost all P € Specy,_,(A).

Here is one important special case.

Proposition 3.7. Suppose that D is a coreflerive A-module on which G acts. Let 1 > 0.
Assume that HV2(G, o) =0 for 1 < k < t. If H*Y(G,D) = 0, then H'(G, D) is an almost
divisible A-module.

Proof. By proposition 3.6, it certainly suffices to show that H*"'(G, D[P]) = 0 for almost all
P € Specy,_;(A). This follows if we show that H*™' (G, D[P]) is both (A/P)-cotorsion and
(A/P)-divisible. Since H**'(G, D) = 0, proposition 3.5 implies the first statement for all but
finitely many height 1 prime ideals P. By corollary 2.6.1, D[P] is a divisible (A/P)-module,
and proposition 3.3 then implies the (A/P)-divisibility of H**'(G, D[P]) for every height 1
prime ideal P of A. |

D. Replacing R by its reflexive closure. Now suppose that 7 is a free R-module of
rank n and that G is a group which acts continuously and R-linearly on 7. Then G acts
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continuously and R- linearly on T T ®r R. If R is a finite extension of A, then the
above proposition implies that T is the reflexive hull of 7 as a A-module. Both R and R
are complete Noetherian local rings. As in the introduction, we define discrete G-modules

D =T Q®g Rand D =T Rz R. Then D is an R-module, D is an R—module both are

cofinitely generated A-modules, D is a divisible A-module, D is ~a coreflexive A-module, and
there is a surjective G-equivariant A-module homomorphism D — D whose kernel C is a
co-pseudo-null A-module. B

The hypothesis in proposition 3.3 for D and for D are equivalent. To explain this, let
m, denote the maximal ideal of A, m the maximal ideal of R. Then we can regard D[m,] as
a finite-dimensional representation space for G over the residue field A/m, = F, and D[m]
as such a representation space over é/ﬁ and hence over [F,. We then have the following
observation.

Proposition 3.8. The F,-representations spaces D[m], D[], D[ma], and D[m,] for G have
the same irreducible subquotients.

Proof. First note that D is a quotient of D. Also, for any nonzero A € A, one has D/D[\] =
One can choose A so that C C D[A]. Since D/C = D, it is clear that D is 1som0rph1(: to
a subquotient of D. Hence proposition 3.1 implies that D[m] and D[m] have the same
irreducible subquotients.
Now my C m and so D[m] C D[m,]. Also, the fact that R/msR is finite implies that
m’ C my R for some ¢ > 1. Hence D[m,] C D[m’]. Proposition 3.1 again implies that D[m,]
and D[m] have the same irreducible subquotients. The same argument applies to 5[mA] and
5[171] The proposition follows from these observations. |
The surjective homomorphism D — D induces a map H'(G, D) — H'(G, D) for any
i > 0. Since H(G,C) and H**'(G,C) are co-pseudo-null, the same will be true for both

the kernel and the cokernel of that induced map. Proposition 3.3 then has the following
consequence.

Proposition 3.9. Suppose that 1 > 0. Suppose that H™"(G,a) =0 for1 <k <t. Thenthe
map H{(G,D) — H(G, D) is surjective, H'(G, D) is A-divisible, H'(G, D) is A-coreflezive,

and the Pontryagin dual of H'(G, D) s precisely the reflexive hull of the Pontryagin dual of
H'(G,D).

Proof. Note that H***(G,C) = 0 by proposition 3.8 and corollary 3.1.1. This implies the sur-
jectivity. The divisibility of H(G, D) and coreflexivity of H'(G, D) follow from propositions
3.8 and 3.3. The Pontryagin dual of H(G, D) is a torsion-free A-module which is mapped
injectively into the Pontryagin dual of H'(G, D). The corresponding quotient A-module is a
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submodule of the Pontryagin dual of H*(G,C), and so it is pseudo-null. The final statement
follows from this. [ |

Remark 3.9.1. If D is not coreflexive, then the same would often be true for H(G, D).
Suppose, for example, that 4 = 1 and that H%(G, ax) = H*(G,ax) = 0 for 1 < k < t. Then,
if H(G, D[m]) # 0, it follows that H' (G, C) # 0 and that the map H(G, D) — H'(G, D) will
have a nonzero kernel. In that case, proposition 3.9 implies that H*(G, D) is non-reflexive.

E. Relationship between H'(G,D) and H', (G, T). Consider an arbitrary finitely gen-
erated R-module 7 on which a group G acts continuously and R-linearly. We assume that

H!(G, a) is finite for all 7 > 0 and all simple subquotients « of the finite G-module T /mT.

Proposition 3.10. Let D = T @ R. Then rankg(H},, (G, T)) = corankg(H (G, D)) for
all 1 > 0.

Proof. The statement concerns D = Dyg. Note that the simple subquotients a of the G-
module D[m] are among those for 7/m7T and so the corresponding cohomology groups are
finite. To prove the equality, it is enough to consider the rank and corank over the subring
A of R. We replace Dr by Dy = T ®4 A. This module is R-isogenous to Dg and so the
corresponding cohomology groups will have the same coranks.

If A has Krull dimension 1, then the argument is straightforward. The maximal ideal
my of A is then principal. Letting A, = 7/m}7T, we have A, = D[m}] for any n > 0. One
can relate the rank or corank in question to the growth of the finite groups H*(G, A,) as
n — oo. If A has Krull dimension > 1, there are infinitely many prime ideals of A of height
1. We then use an induction argument on the Krull dimension. Let r = corank, (H*(G, D))
and s = rank, (H(G,T)). According to proposition 3.5, the (A/P)-corank of H'(G, D[P])
will be equal to r for almost all P € Spec,,_,(A). As pointed out in part E of section 2, one
has a surjective (A/P)-homomorphism

——

(T/PT) ®a/p (A/P) — D|[P]

For almost all P’s, the (A/P)-coranks of these modules vLill\be equal, the kernel will therefore
be (A/P)-cotorsion, and hence H'(G,(T/PT) ®a/p (A/P)) will also have (A/P)-corank
equal to r. We can choose such a P so that A/P is also a formal power series ring. The
Krull dimension will be reduced by 1 and so we assume, inductively, that the (A/P)-rank of
H(G,T/PT) is equal to r too. This will be true for an infinite set of P’s in Specy,_;(A).
However, according to remark 3.5.1, H(G,T/PT) will have (A/P)-rank equal to s for all
but finitely many such P’s. Therefore, r = s. |

Remark 3.10.1. We want to mention another argument for the case ¢ = 0 based on
proposition 2.8. Let D = Dg. We will assume that G is topologically finitely generated. Let
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g1, .-, g: € G generate a dense subgroup of G. Consider the map ¢ : 7 — T defined by
o(z) = ((¢1 — 1)z, ..., (9 — 1)z) for all z € T. The induced map 1) : D — D, as defined
in proposition 2.8, is given by the same formula, but for x € D instead. This definition
implies that ker(¢) = H°(G,T) and that ker(¢) = H°(G, D). Proposition 2.8 then implies
the equality of the R-rank and R-corank for these two R-modules.

A similar argument implies that the R-rank of 7 is equal to the R-corank of Dg. These
modules are the maximal quotients on which G acts trivially. Consider the map ¢’ : 70 — T
defined by ¢'(z1, ...,z;) = Z:zl(gi — 1)a; for all z € T*. The induced map ' : D' — D is
again given by the same formula. It is easy to see that coker(¢’') = 7 and coker(y)') = Dg.
The stated equality follows from proposition 2.8.

Remark 3.10.2. One can apply remark 2.1.2 to obtain a useful consequence if we assume
that 7 is a free R-module. Then 7 is also a free R-module. Let ¢ be the map defined
above. If P is a prime ideal of R, then ¢p is defined by the same formula as ¢. It follows that
rankg/p ((T/PT)%) > rankg(T€) for every prime ideal P of R. According to proposition
2.1.1, equality holds on a nonempty Zariski-open subset of Spec(R). Also, note that if
(T/PT)¢ =0 for some prime ideal P, then it follows that 7¢ = 0.

4 Coranks.

In this section we will prove theorems concerning Euler-Poincaré characteristics, lower bounds
on the R-coranks of H' and H?, and the relationship between the R-coranks of ITI' and III?.
Assume that R is a finite, integral extension of A. If X is a finitely generated R-module,
then rank, (X) = rankg(X)ranks (R). Hence we can derive the formulas for ranks or coranks
by considering the various R-modules as A-modules. This simplifies the arguments since the
prime ideals of height 1 in A are principal. Thus, we will formulate all the results for a
discrete, cofinitely generated A-module D which has a A-linear action of the appropiate Ga-
lois groups. Proposition 3.2 implies that the Galois cohomology groups H'(Kx/K, D) and
H'(K,, D) are also cofinitely generated A-modules. Thus, we can consider their A-coranks.

A. Euler-Poincaré characteristics. We assume that D has a A-linear action of Gal(Ky/K).
We will prove the following result.

Proposition 4.1. Let vy denote the number of complex primes of K, m = corank, (D), and
m, = coranky(D/DC%v) for each real prime v of K. Then

v

) “(~1)’corank, (H'(Kz/K, D)) = —6,(K,D)

=0
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where 5A(K, D) =T1om + Ev real m;

For 7 > 3, we have H'(Kx/K,D) = 0 except possibly when p = 2. In fact, the global-to-
local restriction maps induces an isomorphism for 7 > 3

H'(Ks/K, D)= || H'(K,, D)

v|oo

(See [NSW], (8.6.13, ii).) This justifies our remark in the introduction that ITI*(K, %, D) = 0
for © > 3. The right-hand side is trivial if p is an odd prime. But suppose that p = 2. In
that case, if v|oo, then H*(K,,D) is of exponent 2 and hence can be regarded as a module
over A/(2) for any such v. Thus, if A has characteristic 0, then H(Kyx/K, D) is a cotorsion
A-module for i > 3. However, if A is a formal power series ring over Fy, then H'(Ky/K, D)
can have positive A-rank.

We will also state a formula for a local Euler-Poincaré characteristic for every non-
archimedean prime v of K. The cofinitely generated A-module D is just assumed to have a
A-linear action of Gg, .

Proposition 4.2. Let v be any non-archimedean prime of K. Let m = corank, (D).
(a) If v lies over p, then Zfzo(—l)icorankA(Hi(Kv,D)) = —m[K, : Q).

(b) If v does not lie over p, then Z?ZO(—I)icorankA (Hi(K,,,D)) =0.

Both of these propositions will be proved by a specialization argument, reducing to the
case where the Krull dimension of A is 1. That case is then rather easy, derived from the
Poitou-Tate formula for the Euler-Poincaré characteristic of a finite Galois module. The
Euler-Poincaré characteristic is additive for an exact sequence 0 — D; — Dy — D3 — 0.
For any D, we let Dj_g4;, denote its maximal A-divisible A-submodule. Then D/Dj_g4;, is
A-cotorsion. Also, the Euler-Poincaré characteristic for a A-cotorsion module is 0. Thus,
we can assume for the proof that D is A-divisible. The proofs of the two propositions are
virtually the same and so we will just give the proof of proposition 4.1.

Proof. If the Krull dimension of A is 1, then either A = Z, or A = F,[[T]]. In the first
case, the result is known. One determines the Z,-corank by reducing to the case of the
finite modules D[p"], n > 0. In the second case, the argument would be similar, reduc-
ing to the case of the finite modules D[T™], n > 0. If the Krull dimension is at least
2, then there are infinitely many prime ideals P of height 1 such that (A/P) is also a
formal power series ring, but with Krull dimension reduced by 1. By remark 2.1.3, we
can choose such a P so that coranks,p(D[P]) = coranks(D) and coranky,p(D[P]“%) =
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coranky (D%v) for all archimedean primes v of K. Then d,,p(K,D[P]) = 6, (K, D) for all
such P. By proposition 3.5 and remark 2.1.3, we can also assume that P has the property
that coranks,p (H*(G, D[P])) = coranks (H(G, D)) for i = 0,1, and 2. Choosing a P with
all of these properties reduces the proof of proposition 4.1 to the corresponding result for

D[P] considered as a module over the formal power series ring (A/P). By induction, we are
done. -

B. Lower bound on the A-corank of H'(Ky/K,D). We will derive a lower bound in
terms of various local and global H”’s. First we do this for the A-corank of H*(Kx/K, D).
Then applying proposition 4.1 gives a lower bound for the A-corank of H'(Ky/K,D). The
theorems of Poitou-Tate determine the cokernel of the map

~: HX(Ky/K,D) = P*(K, ¥, D)

where P?(K,%, D) = [[,es H*(Ky, D). Usually these theorems are stated for finite Galois
modules. See [NSW], (8.6.13, 1) for a complete statement in this case. But D is a direct limit
of the finite Galois modules D[m"] as n — oo, and one can therefore extend these theorems
easily. In particular, we have

(6) coker(y) = H'(Ky /K, T*)",

where 7* = Hom(D, pp~). This module is the inverse limit of the finite Galois modules
Hom(D[m?%], i) as n — oo. One can also extend Tate’s local duality theorem ([NSW],
(7.2.6) ), usually stated for finite Galois modules, to D obtaining, for example, the isomor-
phisms H?(K,,D) & H°(K,, T*)" for every non-archimedean prime v of K. When A has
characteristic 2, it is also necessary to consider the real archimedean primes since H%(K,, D)
could then have a positive A-corank. If v is such a prime, then the Pontryagin dual of
H*(K,,D)is HY(K,,T*) = (T*)%% /(1 + 0,)T*, where o, is the nontrivial element of G,.

We will use the following abbreviations for various ranks and coranks over A. For i > 0,
let h;(Kyx/K,D) = corank (H'(Kx/K,D)). If i = 0, we will usually write K in place
of Ky/K since the group is then just the Gk-invariant elements. We let ho(K,T*) =
ranky (H°(K, T*)) and ho(K,, T*) = ranks (H°(K,,T*)). If v is archimedean, we will let
TLO(K,,, T*) denote the A-rank of H %(K,, T*). With this notation, we get the following lower
bound for corank, (H%(Kx/K,D)):

(7) ho(Ko/K,D) > > ho(Ky, T) + > ho(Ky, T7) — ho(K,T)

v|oco vEX,vfoo

Equality occurs precisely when II1*(K, ¥, D) = ker(y) has A-corank equal to 0.

35



The terms in the quantity (K, D) (defined in proposition 4.1) are mostly A-ranks of
H%s. For a complex prime v, one obviously has m = hy(K,, T*). For a real prime v, one
sees easily that m, = ho(K,, T*) if the characteristic of A is not 2. This is not necessarily
so if A has characteristic 2. However, in all cases, one has the following result.

Proposition 4.3. Let by (K,X,D) = ho(K,D) + Y ,cx ho(Ky, T*) — ho(K,T*). Then we
have the inequality h1(Ks/K,D) > bi(K,%, D). Equality holds if and only if II1*(K, X, D)
15 A-cotorsion.

Of course, one can similarly define all the quantities in terms of R-ranks and coranks. The
corresponding lower bound will be denoted by bL(K, X, D).

Proof. Assume first that either p is odd or, if p = 2, that A has characteristic 0. Note
that the sum is over all v € X, finite and infinite. The contribution to this sum from the
infinite primes is just d, (K, D). Indeed, each complex prime contributes an m. To check
the contribution when v is a real prime, let o, be a generator of G,. Let 8, = 1 + o,
the norm map. Then (7*)%%v/3,7* has exponent 2 and is therefore a torsion A-module.
Hence (7*)%%v and 8,7* have the same A-ranks. Since o, acts by inversion on iy, 8, 7" is
the Pontryagin dual of D/D%%v as a A-module. Thus, the contribution from v will be m, .
It follows that the contribution from the infinite primes is just d, (K, D) and so the stated
inequality then follows from proposition 4.1 together with (7). The fact that EO(KU, T*)=0
implies that equality holds if and only if it holds in (7) and that is equivalent to the vanishing
of the A-corank of III*(K, X, D).

Now assume that A has characteristic 2. For the complex primes and finite primes,
everything is the same as before. If v is a real prime, then it is still true that 3,7 " is the
Pontryagin dual of D/D%%» as a A-module. Thus, the A-rank of 3,7* is m,. It follows
that ho(K,,T*) =m, + /f\Lo(Kv, T*). Using that observation, the inequality in proposition
4.3 follows from proposition 4.1 and (7). Equality is again equivalent to the validity of
hypothesis L. |

Remark 4.3.1. One can express all the quantities in the inequality in terms of discrete A-
modules. Let D* = T*®, A. Then, ho(K,, T*) = coranky (HO(KU,D*)) for each v € ¥ and
ho(K, T*) = coranky (HO(K, D*)) These equalities follow from proposition 3.10 or remark
3.10.1. Note that Gk, is topologically finitely generated and that the action of Gal(Kx/K)
on T* factors through a quotient group G satisfying that property.

In theorem 1, we assume that H°(K,,, 7*) = 0 for at least one non-archimedean v, €
Y. Since 7T* is torsion-free A-module in that theorem, an equivalent assumption would be
that ho(K,,7*) = 0 for some such v,. Note that this assumption obviously implies that
H°(K,T*) =0 or, equivalently, that ho(K,T*) = 0.
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C. The coranks of III' and IIT?. Another part of the Poitou-Tate duality theorems
gives a perfect pairing between II1* for a finite Galois module A and III' for the “Kummer
dual” A* = Hom(A, pn), where N = |A|. See [NSW], (8.6.8). Taking direct and inverse
limits gives a perfect pairing between III*(K, %, D) and III'(K, %, 7*). As discussed in the
introduction, both groups might be zero in important cases. We prefer to consider ITI' for a
discrete module D*, but this may often be nonzero even if III* (K, Y, 7*) = 0. We can only
prove a relationship between the A-coranks. It is not even quite clear how one should define
D*. We have some freedom because the A-corank of ITI* is not changed by a A-isogeny of
the coefficient module, as we show below. For the purpose of the following proposition, we
define D* = T* ®, A, although this may differ from D*, as defined in the introduction, by a
A-isogeny.

Proposition 4.4. The A-coranks of III*(K, %, D) and ' (K, X, D*) are equal.

We will use the following lemma which is the analogue of proposition 3.5 for ITI°.
Lemma 4.4.1. Suppose that D is a cofinitely generated A-module. Let i > 1. Then, for
almost all P € Specy,_,(A), both the kernel and the cokernel of the map

II*(K, %, DIP]) — WI'(K, ¥, D)[P]
will be cotorsion as (A/P)-modules. Hence III'(G,D[P]) and II'(G,D)[P] will have the
same (A/P)-coranks.
Proof. Applying proposition 3.5 to the global and local cohomology groups shows that the
kernels and cokernels of the maps

H'(Ksx/K,D[P]) — H'Kx/K,D)[P], P'K,%,D[P]) — P (K, D)[P]

are A-cotorsion for all but finitely many P’s of height 1. A straightforward application of
the snake lemma implies the result. One uses the fact that the kernels of both maps and the
cokernel of the first map are A-cotorsion. |

Now we show that the A-corank of ITT* is unchanged by A-isogenies. Assume that D;
and D, are cofinitely generated A-modules with a A-linear action of Gal(Kyx/K) and that
¢ : Dy — Dy is a Gal(Kyx/K)-equivariant A-isogeny. Then ¢ induces maps on both the
global and local cohomology groups and one has a commutative diagram

0—IIY(K,%, D) — H(Kx/K, D) —= P{(K,X, D)

lva l lA

O—>H‘[Z(K’E:D2) —>HZ(KE/K7 DQ) U—>Pi(K72aD2)
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The maps & and A are A-isogenies. It is clear that the image of III'(K, Y, D) under the
map « is contained in the kernel of o and so the map « corresponding to the dashed arrow
making the diagram commutative does exist. The fact that x and A are A-isogenies implies
that « is a A-isogeny.

Let sy = corankA(IHQ(K,E,D)), sy = corankA(Hll(K, E,’D*)). We prove the equal-
ity by induction. If the Krull dimension of A is 1, then proposition 4.4 is, as before,
rather straightforward to derive from the Poitou-Tate duality theorems for finite Galois
modules. In that case, let V = T @ L, V* = T* @ L, where L is the fraction field
for A. Thus, £ = Q, or £ = F,((T)). One then verifies that s, = dim.(III*(K, %, V))
and s} = dimg (IHl(K,E,V*)). Also, the duality theorem asserts that II1*(K, ¥, V) and
HI'(K, %, V*) are dual vector spaces, and so the equality s, = st follows. If the Krull
dimension d of A is at least 2, we reduce to the case of Krull dimension d — 1 by using
remark 2.1.3 and the above lemma. These imply that s, = coranks,p(ILI*(K, Y, D[P]))
and s7 = coranky,p (II' (K, X, D*[P])) for all but finitely many P of height 1. We may
assume, inductively, that s, = coranks,p(II'(K, X, D[P]*)). We can also assume that D
is A-divisible, replacing D by its maximal A-divisible submodule if necessary. This doesn’t
change s,. Then 7* will be a torsion-free A-module. Also, D* and s} will be unchanged.

To prove that s} = sy, it is now enough to show that D*|P] is (A/P)-isogenous to D[P]*.
Now Hom(D[P], jye) is isomorphic to 7*/PT* and so, by definition,

D[P]" = (T*/PT") ®r (A/P)

According to (3), we therefore have a surjective map D[P|* — D*[P]. The remark following
(3) implies that this map is actually a (A/P)-isogeny. [

The most interesting case is as described in the introduction. A somewhat different proof
of proposition 4.4 works nicely in that case, which we will sketch here. Assume that 7 is
a free R-module and that D = T ®z R. As above, let 7* = Hom(D, pp). We now take
D* = T*® R. Then, one can verify that D* is canonically isomorphic to Hom(7, iy ).
Hence the theorems of Poitou and Tate can be applied to the dual pair D* and 7.

One can define III*(K, X, T) for the compact R-module 7 as the kernel of the homomor-
phism

Yept - HCQts(KE’ T) — Pc2ts(K’ X, T)

where P*(K,%,T) = [[,ex H3(Ky, T). The cokernel of 7, is isomorphic to H°(K, D*)".

cts
If one applies proposition 3.10 to all the global and local terms, one deduces that the R-rank
of ker(7y.pt) is equal to the R-corank of ker(y). That is,

rankg (II1*(K, %, 7)) = corankg(III*(K, X, D))
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Now IIT'(K, X, D*) is isomorphic to the Pontryagin dual of II1*(K,Y,7) as an R-module
and so its R-corank must indeed be equal to the R-corank of III*(K, X, D).

5 Local Galois cohomology groups.

Suppose that v is a prime of K and that p is any prime number. We assume that D is a
cofinitely generated A-module with a A-linear action of Gk,. Let 7* = Hom(D, jipec). We
will consider first the local H? and then various properties for the local H'. Most results
will be for non-archimedean primes. We discuss the archimedean primes at the end of this
section.

A. The structure of H*(K,,D). If v is non-archimedean, then it is known that the p-
cohomological dimension of G, is equal to 2. (See theorem (7.1.8) in [NSW].) Proposition
3.3 therefore has the following immediate consequence:

Proposition 5.1. Let v be a non-archimedean prime of K. If D is A-divisible, then
H?*(K,,D) is A-dwisible. If D is A-coreflezive, then H*(K,, D) is A-coreflezive.

The fact that the A-module H?(K,, D) is coreflexive when D is coreflexive can also be seen
as follows. The Pontryagin dual of H?(K,, D) is H*(K,, T*) = (T*)%%v. Since the A-module
T* is reflexive, it follows that (7*)“e is also reflexive, as observed in section 2, part C.

Remark 5.1.1. It is not difficult to give an example where H?(K,, D) fails to be A-cofree
even if D is assumed to be A-cofree. This is based on the example described in remark 2.6.3.
We will use the same notation. There we exhibited a reflexive, but non-free, A-submodule
Y of X = A" for some r assuming that the Krull dimension of A is at least 3. Suppose that
A = Z,[[T1,T5]]. Recall that Y was the kernel of a A-module homomorphism X — Z where
Z was torsion-free and of rank 1. Arbitrarily choosing an injective A-module homomorphism
4 — X, we can regard Y as the kernel of a A-module homomorphism 7 : X — X. Choose
a basis for the A-module X. We will identify 7 with the corresponding matrix. Multiplying
7 by an element of A, if necessary, we can assume that 7 has entries in my. The kernel
will still be Y. Thus, ¢ = 1 + 7 will be an invertible matrix over A. The closed subgroup
<o > of GL.(A) generated topologically by ¢ will be a pro-p group, either isomorphic
to Z, or to a finite cyclic group of p-power order. In either case, we can easily define a
continuous, surjective homomorphism G, — < o >. Thus, Gk, acts A-linearly on X. If we
let D = Hom(X, f1 ), then D has the desired properties. Note that this example arises from
a representation of G, over A of rank r. It is also easy to arrange for this representation
to be the restriction to Gk, of such a representation of Gal(Kx/K) if v € X.

The next result holds for any prime of K, archimedean or non-archimedean.
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Proposition 5.2. Let v be any prime of K. Let D be a cofinitely generated A-module.
Assume that T*/(T*)%% is A-reflexive. For almost all P € Specy,_,(\), the map

H*(K,,D|P]) - H*(K,,D)

18 tnjective.
Proof. First assume that v is non-archimedean. We take P to be a prime ideal of height
1 in A. To prove injectivity of the map in question, we consider the adjoint map on the
Pontryagin duals: H®(K,,T*) — H°(K,,T*/PT*). If we let X = T*, then we must
prove that the map X%%v — (X/PX)%%v is surjective for all but finitely many P’s. Let
Y = X% the Pontryagin dual of H%(K,, D).

According to proposition 3.5, both the kernel and cokernel of the map in question will be
(A/P)-cotorsion for all but finitely many P’s. Therefore, the same will be true for the adjoint

map Y/PY — (X/PX)%w. Let Z = X/Y. By assumption, Z is a reflexive A-module. Now
we have an exact sequence of (A/P)-modules:

(8) 0 Y/PY = X/PX — Z/PZ — 0

and the image of (X/PX)%v in Z/PZ is (A/P)-torsion. Since Z/PZ is a torsion-free (A/P)-
module, it is clear that this image must be trivial, i.e. the map Y/PY — (X/PX)%w is
surjective as we needed to prove.

Suppose now that v is a real prime of K. We again must prove the surjectivity of the
adjoint map: H°(K,,7*) — H°(K,,T7*/PT*), involving the modified H”s. But these
A-modules are quotients of the A-modules H°(K,,7*) and H°(K,, T*/PT*) considered
above. It follows that the adjoint maps will again be surjective for all but finitely many
P € Specy,—1(A). [

Remark 5.2.1. The assumption that 7*/(7*)¢% is a reflexive A-module is important.
In the notation of the above proof, let’s assume that X = T is itself reflexive, but that
Z = X/Y is not. Thus, the Krull dimension of A is at least 2. Let Z be the reflexive hull of

the torsion-free A-module Z. Then U = Z /Z is nonzero. Corollary 2.5.1 asserts that there
are infinitely many prime ideals P = (7) of A such that U[P] = U. Since U is pseudo-null as
a A-module, U is then a torsion (A/P)-module. Multiplication by 7 induces an isomorphism
U= 27/Z — nZ/nZ which is a (A/P)-submodule of Z/PZ. Also, Z/xZ is a submodule
of the (A/P)-module Z/7Z, which is torsion-free by proposition 2.6. Thus, the maximal
torsion (A/P)-submodule of Z/PZ is isomorphic to U. Let Z' = nZ and let X’ be the
inverse image in X of Z' under the surjective map X — Z. Then Z'/PZ = U and we have
an exact sequence derived from (8)

0—>Y/PY - X'/PX - Z'/PZ — 0
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Since X/PX is a torsion-free (A/P)-module (by proposition 2.6) and the image of Y/PY
is contained in (X/PX)%%v, it follows that X'/PX C (X/PX)%v. Furthermore, excluding
only finitely many P’s, we can assume that the (A/P)-ranks of Y/PY and (X/PX)%%v are
both equal to rank,(Y). Then we have X'/PX = (X/PX)%%v. It follows that the map
Y — (X/PX)%v will not be surjective for such P’s. The cokernel will be isomorphic to U.
These considerations imply the following statement.

If T* is reflexive, but T*/(T*)%%v is not reflexive as A-modules, then there exist infinitely
many prime ideals P € Specy,_,(A) such that the map H*(K,,D[P]) — H?*(K,,D) has a
nonzero kernel.

The kernel of the map will be isomorphic to U for infinitely many P’s.

B. Almost divisibility of H'(K,, D). Proposition 3.7 has the following consequence.

Proposition 5.3. Suppose that v is a non-archimedean prime. If D is A-coreflexive and
H?*(K,,D) =0, then H'(K,, D) is an almost divisible A-module.

Here is a more general result. It follows from proposition 5.2 together with proposition 3.6.

Proposition 5.4. Suppose that v is any prime of K. Assume that T*/(T*)%%v is reflezive
as a A-module. If D is an almost divisible A-module, then H'(K,,D) is an almost divisible
A-module.

Remark 5.2.1 makes it clear that the assumption concerning 7*/(7*)%%v is crucial. The fol-
lowing proposition makes this more precise when D is A-coreflexive and v is non-archimedean.

Proposition 5.5. Let v be a non-archimedean prime. Assume that D is A-coreflexive. Then
the mazimal pseudo-null A-submodule of H'(K,, D)" is isomorphic to Z |Z, where Z denotes
the reflexive hull of the A-module Z = T*/(T*)C%.

Proof. Let U = Z/Z. Let U' denote the maximal pseudo-null A-submodule of H'(K,, D).
There is nothing to prove unless A has Krull dimension at least 2. Applying corollary 2.5.1
to the pseudo-null A-module U x U’, we see that there exist prime ideals P = (7) of A such
that 7U = 0 and #U’" = 0. We can also assume that P is not an associated prime for the
A-torsion submodule of H!(K,, D)". It follows that H'(K,, D) P] = U'. We therefore have
an isomorphism

H'(K,,D)/mH'(K,, D) = ker (H*(K,, D[P]) — H*(K,, D)[P])

since D is assumed to be A-divisible. The choice of P implies that the first group is pre-
cisely the Pontryagin dual of U’ and, as explained in remark 5.2.1, the second group is the
Pontryagin dual of U. Thus, indeed, U = U’. [ |
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C. Divisibility of H'(K,,D). It is rather common for H'(K,,D) to be a divisible A-
module. Proposition 3.3 gives sufficient conditions. The assumption that H?(K,,a) =
0 for a Gg,-irreducible subquotient o of the F,-representation space D[m,]| means that
HY(K,,Hom(a, p1,)) = 0, or, equivalently, that o % p,. Thus, we need just assume that p,
is not a subquotient of D[m,] for the action of Gk, to apply that proposition.

Proposition 5.6. Suppose that v is non-archimedean. Assume that p, is not a Gg,-
subquotient of Dlmy| and that D is A-diwvisible. Then H'(K,, D) is A-divisible.

Even if 4, is a subquotient of D[m,], one can prove divisibility under other assumptions.
Here is one such result.

Proposition 5.7. Suppose that v is non-archimedean. Assume that D is A-coreflerive. Let
D* = T* @ A. Assume that H°(K,,D*) is a co-pseudo-null A-module. Then H'(K,, D) is
a divisible A-module.

Note that the assumption about H°(K,,D*) implies that H°(K,,T7*) = 0 according to
proposition 3.10, and hence that H?(K,, D) = 0. Therefore, we already know that H'(K,, D)
is an almost divisible A-module.

Proof. Let P = () be any prime ideal of A of height 1. Since H?(K,,D) = 0, we must
show that H?(K,, D[P]) = 0 in order to conclude that H'(K,, D) is divisible by 7. (See
(6) for I = P, i = 2.) Now D[P] is (A/P)-divisible and hence so is H*(K,,D[P]). It
therefore suffices to prove that its (A/P)-corank is 0. The Pontryagin dual of this group is
(T*/PT*)%xe. By proposition 3.10, the rank of this (A/P)-module is equal to the corank
of the (A/P)-module ((T*/PT*) ®u/p (A/P))GK”. As pointed out at the end of section 2,
part E, the map (7*/PT*) ®a/p (A/P) — D*[P] is a (A/P)-isogeny and so the submodules
of G, -invariant elements have the same (A/P)-coranks. Finally, note that D*[P]%%w =
(D*)%%+[P]. The (A/P)-corank of this module is equal to 0 because the Pontryagin dual of
the A-module (D*)“% has no associated prime ideals of height 1. |

D. Coreflexivity of H!(K,, D). Proposition 3.3 immediately gives one simple sufficient
condition for coreflexivity.

Proposition 5.8. Suppose that v is non-archimedean and that p, is not a Gk, -subquotient
of Dlmy]. If D is A-coreflexive, then H'(K,, D) is also A-coreflexive.

A more subtle result is the following.

Proposition 5.9. Suppose that v is non-archimedean. Assume that D is A-cofree. Let
D* = T*® A. Assume that every associated prime ideal for the A-module H°(K,, D*)" has
height at least 8. Then H'(K,,D) is a coreflexive A-module.

42



Proof. Let d denote the Krull dimension of A. Let P € Spec,,—(A) be fixed. We will
denote A/P by R' and D[P| by D'. Thus, D' is a cofree R'-module. Since P is a principal
ideal, the ring R' is a complete intersection and is therefore a Cohen-Macaulay ring. (See
section 2.3 in [B-H].) It follows that R' contains a subring A’ such that: (i) A’ is isomorphic
to a formal power series ring and (ii) R’ is a free, finitely generated A’-module. The Krull
dimension of A’ is d — 1. Note that D[P] is cofree and hence coreflexive as a A’-module. We
will apply proposition 5.7 to this A’—modgle. For that purpose, the role of 7* is played by
T™ =T*/PT* and D* by D™ = T"™ Q@ A.

Since T™ is A-free, the discussion at the beginning of section 2, part E, shows that
T™®pg R' is isomorphic to D*[P] as an R'-module. Since R’ is free as a A’-module, T™* Qg R’
is isomorphic to 7" @ A’ and so D’* and D*[P] are isomorphic. The isomorphisms are G, -
equivariant. The assumption about H°(K,, D*) implies that H°(K,, D) = H°(K,, D*)[P]
is co-pseudo-null as an R'-module, and hence as a A’-module. Therefore, proposition 5.7
implies that H'(K,,D') is A'-divisible, and hence R'-divisible. That is, H'(K,, D[P]) is a
divisible (A/P)-module.

Now we have a surjective homomorphism H'(K,,D[P]) — H'(K,,D)[P]. Therefore,
for all P € Specy,_,(A), the (A/P)-module H'(K,,D)[P] is also divisible. Corollary 2.6.1
implies that H'(K,, D) is indeed coreflexive as a A-module. [

Remark 5.9.2. An example that we have in mind in propositions 5.7 and 5.9 arises from
classical Iwasawa theory over the local field K,. Suppose that K ,/K, is a Z;”—extension
where m > 1. Let A = Z,[[Gal(K,/Ky]]. If v 1 p, then one can only have m = 1, but if
v|p, then m could be as large as [K, : Q]+ 1. If D = V/T is a G,-module isomorphic
to (Qy/Zy)", let D = Indk_ ,/k,(D). There is a comparison theorem just as stated in the
introduction, but for a local field. We have that H°(K,, D*) is isomorphic as a A-module to
H%( Ky, D*) = D*(K ). This module has finite Z,-corank and is often even finite.

Assume first that D*(K,) is finite. Then the only associated prime ideal will be m,. In
that case, propositions 5.7 and 5.9 imply that H'(K,, D) is a divisible A-module for m > 1
and even coreflexive for m > 2. If D*(K,,) is infinite, then H'(K ,, D) is A-divisible if
m > 2 and A-coreflexive if m > 3.

This is not a new result. See lemma 5.4 in [O-V], which even applies to non-abelian
p-adic Lie extensions of a local field. Also, for the case m = 1, more precise results can be
found in section 3 of [Gr89].

E. Cofreeness of H'(K,, D). We can prove cofreeness under suitable assumptions. Let
Z/pZ denote the one-dimension F,-vector space with trivial Galois action.

Proposition 5.10. Suppose that v is a non-archimedean prime and that neither Z/pZ nor
pp are G, -subquotients of Dmy]. If D is a cofree A-module, then H' (K, D) is also a cofree
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A-module.
Proof. We can apply proposition 3.4 to conclude that the map
H'(K,,D[m,]) — H'(K,,D)[my]

is an isomorphism. The hypothesis about Z/pZ nor u, means that for every Gg,-irreducible
subquotient « of the F,-representation space D[my], we have H°(K,,a) = H*(K,,a) = 0.
Hence, by corollary 3.1.1, it follows that H°(K,, D) = 0 and H*(K,,D) = 0. We can then
apply proposition 4.2 to determine the A-corank of H'(Gk,, D), which will be either equal to
0 if v 1 p or equal to [K, : Q,]corank, (D) if v|p. However, we also have H°(K,, D[m,]) =0
and H?(K,, D|m,]) = 0. The Euler-Poincaré characteristic formula for the finite G g,-module
D[m,] determines the F,-dimension of H'(K,, D[m,]). It will either equal 0 if v nmidp or
equal [K, : Q,]dimg, (D[m,]) if v|p.

The hypothesis that D is a cofree A-module implies that coranks (D) = dimg, (D[m,]).
Thus, the above observations show that

corank (H'(Gk,, D)) = dimg, (H'(K,, Dlm,))) = dimg, (H"(K,, D)[m4])

We now use Nakayama’s lemma. Let r = coranks (H'(Gk,,D)). Let X be the Pontryagin
dual of H'(Gk,,D). Then X is a finitely generated A-module of rank r and the minimum
number of generators of X is dimg, (X/m,X), which is also equal to r. Thus, there is a
surjective A-module homomorphism A™ — X. Comparing ranks, it is clear that this map is
an isomorphism. Thus, X is free and so H'(Gg,, D) is indeed cofree as a A-module. [ |

Remark 5.10.1. If v { p, then one could just assume that D is A-divisible. The assumption
about Z/pZ and p, implies that H(Gk,,D) = 0 for i = 0 and 7 = 2. Proposition 4.2 then
implies that H'(Gk,, D) is A-cotorsion. By proposition 5.6, H'(Gk,, D) is also A-divisible
and so we have H'(Gg,, D) = 0, which is trivially A-cofree.

It is worthwhile to point out that the above proof applies with virtually no change if
one assumes that D is a cofree R-module over a complete Noetherian local domain R. One
concludes that, for any non-archimedean v, H'(G,, D) is a cofree R-module under the same
hypothesis about Z/pZ nor p,.

F. Local assumptions (a) and (b). Assume now that we are in the situation described
in the introduction. Thus, 7T is a free R-module of rank n, D = Dpg is R-cofree, and T*
is R-free. We have several comments about the important assumption that 7*/(7*)%%v is
also R-free. For many results proven in this section, it suffices to assume that 7*/(7*)%%v is
A-reflexive, but we don’t know how to verify such an assumption in itself. Freeness is more
accessible.
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As a first observation, note that if 7*/(7*)% is a free R-module, then it follows that
T (T*)C @ (T*/(T*)%v) as R-modules. Hence, (7*)%%v is a projective R-module and
therefore must also be free. Let r = rankR((T*)GKv ) It follows, furthermore, that the image
of (T*)%v in T*/mT* will have dimension r over the residue field ¥ = R/m. Conversely, if
(T*)%xv is free of rank r and its image in 7*/m7* has dimension r, then (7*)%%v will be a
direct summand of 7* and the complementary summand, which is isomorphic to 7*/(7*)%xs
will also be R-free.

An important case to consider is D = Indg, (D), where K /K is a Z;-extension
and D = V/T is a Galois module isomorphic to (Q,/Z,)" for some n > 1. In this case,
T is a free Z,-module of rank n and 7* = T* ®z, A, a free A-module of rank n. We take
R = A. The action of Gal(Kx/K) on A in the tensor product is given by a homomorphism
k:Gal(Ky/K) — I' = A* as described in the introduction. Now if v is a prime of K which
splits completely in K,/K, including, in particular, all archimedean primes, then &g, is
trivial. Thus, the action of G'x, on T* is via the first factor 7 in the tensor product. One
sees easily that (7%)%%v = (T*)%%v @z A and T*/(T*)%v = (T*/(T*)%% ) @z, A . Since
T*/(T*)%xv is a torsion-free Z,-module, it is Z,-free. This implies that 7*/(7*)%%v is indeed
a free A-module and hence local assumption (a) is satisfied if v splits completely. If v doesn’t
split completely in K, /K, then one can use remark 3.10.2 to verify that (7*)%%» = 0.

In some cases, assumption (a) can be verify by considering just the residual representation
p. We illustrate this when n = 2. Thus, p is a 2-dimensional representation over the residue
field k. There is nothing to show unless rankg ((7*)%%¢) = 1 and so we assume this is the
case. Suppose that ﬁ|GKU is reducible and that the two k*-valued characters that occur are
distinct. Then the same is true for p* and so it follows that the k-subspace (7*/m7*)¢xv
of T*/mT* has dimension 1 and that the action of Gk, on the corresponding quotient is
by a nontrivial character 7 : Gg, — k*. One deduces easily that there exists a finite cyclic
subgroup A of Gk, such that pt|A| and 7|4 is still nontrivial. Considering just the action
of A on T*, we see that we have a direct sum decomposition

T = (T & (T)

as R-modules, where 7, is the trivial character and 7 is a “lifting” of 7, both characters of
A having values in R*. Since (7*)%%» C (T*)% = (T*)" and T*/(T*)%v is a torsion-free
R-module, it follows that (7*)%%e = (7*)%, which is indeed a direct summand, verifying
assumption (a).

Note that if G, acts on 7* through a finite quotient group A whose order is not divisible
by p, then one has (7*)%% = (7*)2, which is again obviously a direct summand of 7.
The idempotent e, for the trivial character 7, of A is in the group ring Z,[A]. One has
(T*)%%v = e, 7" and the complementary direct summand is (1 — e,)7*. In particular,
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assumption (a) is satisfied for archimedean primes if p is odd - an unimportant case because
the groups H'(K,, D) are then trivial.

Now suppose that v is a real prime of K and that p = 2. Otherwise, the corresponding
cohomology groups are all trivial. Let o, denote the nontrivial element of Gg,. Note that
0,(¢) = (7! for ¢ € pyeo. First assume that R has characteristic 0. Let o, = 0, —1 which we
consider as an R-module endomorphism of 7*. Thus ker(c,) = (7*)%%> and so assumption
(a) is equivalent to the statement that im(a,) = o, (7™) is R-free.

Let 8, = 0, + 1 be the norm map on 7* The Pontryagin dual of H!(K,,D) is
HY(K,,T*) = ker(8,)/im(c,), a consequence of the local duality theorem but also easily
verified directly from the definitions of these groups. Assume now that R is a finite, integral
extension of A and is reflexive. Then 7™ is a reflexive A-module. Since 7*/ker(3,) is a
torsion-free A-module, it follows that ker(f,) is reflexive and that im(c,) is reflexive if and
only if ker(53,)/im(c,) has no nonzero pseudo-null A-submodules. That is, 7*/(7*)% is
a reflexive A-module if and only if H'(K,,D) is an almost divisible A-module. Since this
group has exponent 2, one can simply take § = 2 in the definition of almost divisibility,
which then simply means that H'(K,, D) is divisible when considered as a A/(2)-module.

It is easy to give an example where assumption (a) is not satisfied. Suppose that R =
A = Z,[[S]] and that 7* = A% Suppose that o, acts on T* by the matrix [_01 ﬂ Then
im(cy,) is isomorphic to m, and is not reflexive. Note that H'(K,,D) = A/my = F, in this
example. We have just specified the action of G,, but it is not hard to contrive a global
representation p over A where G'g, acts in this way.

Now assume that R has characteristic 2. Then o, = 0,, — 1 = 3, and o2 is the zero-map.
We have H'(K,, T*) = ker(a,)/im(c,). Using the notation from the introduction, we have

n, = corankg(D/D“ ) = rankg (im(c,))

since im(a,) is the orthogonal complement of D“%v under the pairing D x T* — py. If we
define n = corankg (D), then n = nf + n,. Since im(a,) C ker(q,), it follows that
n, <nt and H'(K,, T*) has R-rank equal to n; —n, . Almost anything could occur subject
to these constraints. One could simply define «, so that im(c,) C ker(c,). It could be any
R-submodule of 7* which has a generating set of n elements and has R-rank at most n/2.
This submodule could certainly fail to be R-free or A-reflexive. Note that (1 + «,)? is the
identity map and so we can define an action of Gk, on 7* (and hence on D) by letting

0y =14 .

Finally, we will discuss the verification of assumption (b). Suppose that v, is a non-
archimedean prime in Y. Since 7* is a torsion-free R-module, so is (7*)%%w. Hence
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(T*)%v = 0 if and only if its rank over R is equal to 0. According to remark 3.10.2,
we have the inequality

rankR((T*)GK”° ) < rankg, ((T*/PT*)GK“O )

for every prime ideal P of R. Therefore, it suffices to find just one P such that (7*/P7*)%vo
has (R/P)-rank equal to 0, or equivalently, such that D*[P]%%w has (R/P)-corank equal to
0. For example, this may occur for P = m. In that case, one would have (D*)%%w = (. If
the Krull dimension d of R is at least 2, then there are infinitely many prime ideals P of R of
height d — 1. Then R/P has Krull dimension 1. If D%kv is indeed R-cotorsion, then remark
2.1.3 implies that D[P]%%w = D%w[P] is finite for infinitely many such P’s. Exhibiting
one such P is sufficient to verify assumption (b).

6 Global Galois cohomology groups.

Assume that D is a cofinitely generated A-module and that Gal(Ky/K) acts A-linearly
on D, where X is a finite set of primes of K containing all primes above p and oco. Let
T* = Hom(D, pip ). This section will contain the proof of theorem 1. It will be a consequence
of somewhat more general theorems. The heart of the matter is to study H?*(Kx/K, D) and
certain A-submodules obtained by requiring local triviality at some of the primes in . The
almost divisibility assertion in theorem 1 for H'(Ky/K, D) will follow easily.

A. The structure of H*(Ky/K,D) and certain submodules. Assume first that p is
an odd prime. It is then known that Gal(Ky/K) has p-cohomological dimension 2 and so
propositions 3.3 has the following immediate consequence.

Proposition 6.1. Assume that p is an odd prime. If D is A-divisible, then H*(Kx/K, D)
is A-divisible. If D is A-coreflexive, then H?(Kyx/K, D) is A-coreflezive.

We will prove a more general result. The arguments depend on the fundamental com-
mutative diagram below. We assume that D is a cofinitely generated, divisible A-module.
Suppose that ¥’ is any subset of 3. We make the following definition:

Hi,(Ks/K,D) = ker (H'(Kz/K,D) —» || H'(K,,D))

for i > 1. Since Hy, (Kx/K, D) is clearly a A-submodule of H'(Ks/K, D), it is also cofinitely
generated. Note that if ¥’ = ¥, then Hi,(Ky/K,D) = II'(K, %, D). However, we will now
assume from here on that there is at least one non-archimedean prime v, in ¥ which is not
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in ¥'. Thus ¥’ will be a proper subset of ¥.. We will also always make the assumption that
D is a cofinitely generated, divisible A-module. Here is the fundamental diagram, where we
take P to be any prime ideal of A of height 1.

0 — H3,(Ks/K, D[P]) — H*(Ks/K, D[P]) —> [ [,exs H*(K,, D[P]) —>0

) K A
\

0—— H%(Kx/K,D) H?*(Ky/K,D) [Tyesy H*(K,, D) —0
I x w

0 —— H (Kx/K, D) H*(K3/K,D) yess H2(Ky, D) —>0

lf

0

H*(Ks/K, D[P]) — [L,esy H*(Ky, DIP]) —0

The 2nd and 3rd columns of maps in this diagram are induced by the exact sequence
0— D[P —-D-5D—0

where we have chosen a generator 7 for P. Thus, those columns are certainly exact. The
maps ¢, x and 1 are all just multiplication by 7. As for the rows, the exactness of the last
row is part of the Poitou-Tate theorems. (See [NSW], (8.6.13).) For the other rows, the only
issue is the surjectivity of the global-to-local maps. This follows from the following general
lemma since we are assuming that ¥ — ¥’ contains at least one non-archimedean prime v,,.

Lemma 6.2. Let v, be any non-archimedean prime in X. Then the map

H*(Ky/K,D) — || H*(K.,D)

VEX WFY,
18 surjective.

Proof. First consider the case where D, and hence 7* = Hom(D, p1,=), are just finite
Gal(Kyx/K)-modules. One has an exact sequence

H?*(Ky/K,D) L PX(K,%, D) HY(Kx /K, T*)",

where P*(K,%, D) =[],y H*(K,, D). The map v is just the global-to-local restriction map.
Let G denote its image. Let H,, denote the factor H*(K,,,D) in the product P?(K, X, D).
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The assertion to be proved is that GH,, = P?(K,%,D). The map « is the adjoint of the
“diagonal” map
B:H(Ks/K, T*) = P°(K,Z,T")

where PO(K, %, T%) = [],0 HY(K,, T*) x [Loes oo HO(Ky, T*). Since G is the kernel of
the map «, its orthogonal complement is the image of 5. The orthogonal complement of
H,, is just the kernel of the natural projection map m,, : PY%K,%,7*) - HYK,,, T").
The assertion means that the intersection of these orthogonal complements is trivial. Since
v, is non-archimedean, the map H°(Kx/K,T*) — H°(K,,, T*) is injective. That is, the
composite map m,, o 5 is injective. This implies that im(3’) Nker(m,,) = 0 which proves the
assertion. In general, D is a union of finite Galois modules, e.g. D = J,-,P[m}], and the
surjectivity therefore follows in general. - [ |

It remains to discuss the maps § and €. Under the assumptions that we are making, the
equality im(y) = ker(e) is established. It amounts to proving A-divisibility.

Proposition 6.3. If D is a divisible A-module, then HZ,(Kx/K, D) is a divisible A-module.

Proof. We must show that ¢ is surjective. Applying the snake lemma to the 2nd and 3rd
rows gives an exact sequence

ker () — ker (1)) — coker(p) — coker(x) LN coker (1))

Since o is surjective, it follows that the map a is surjective too. Now 7 is injective and so it
follows that the map b is also injective. The exact sequence then implies that coker(¢) =0
as we want. |

Finally, we consider the map ¢ in the fundamental diagram. The first two rows in that
diagram can be rewritten as follows. We use the letters d, k£ and [ for the vertical maps
corresponding to 4, k, and .

0 — H3,(Ks/K, D[P]) — H*(Ks/K, D[P]) —>[L,exs H* (K, D[P]) —0

] ] ;

0—— H(K5 /K, D)[P] — H(Ky/K, D)[P|— ,exy H*(K,, D) [P]

The maps k and [ are surjective. Since k is surjective, the snake lemma gives us an exact
sequence ker(l) — coker(d) — 0. We can now apply proposition 5.2 to deduce that d is
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at least sometimes surjective. If so, the first column of maps in the fundamental diagram
will then be exact.

Proposition 6.4. Assume that T*/(T*)%% is a reflerive A-module for all v € X'. Then,
for almost all P € Specy,_;(A), we have im(6) = ker(p).

Proof. The assumption concerning 7* implies that ker(l) = 0 for almost all prime ideals of
A of height 1. It would then follow that coker(d) = 0 and so d is indeed surjective for those
P’s. |

We can apply this proposition to obtain the following important result.

Proposition 6.5. Assume that T*/(T*)%%v is a reflexive A-module for allv € X'. If D is
a coreflezive A-module, then HZ,(Kx/K,D) is also a coreflerive A-module.

Proof. Excluding just finitely many prime ideals P € Spec,,_,(A), the stated assumptions
imply the following statements: The map d will be surjective and D[P] will be a cofinitely
generated, divisible (A/P)-module. Proposition 6.3 implies that HZ, (Kx/K, D[P]) is (A/P)-
divisible for all those P’s. Therefore, its image HZ (Kx/K,D)[P] under the map d will also
be (A/P)-divisible. Corollary 2.6.1 implies that HZ,(Ks/K, D) is coreflexive. [

The assumption about 7*/(7*)%%v in theorem 1 is due primarily to our need for that
assumption in propositions 6.5. Since we assume that R is a cofree A-module, the assumption
that 7*/(T*)¢% is R-free implies that this module is also A-reflexive. The other local
assumption in theorem 1 is made for the following simple reason. If (7*)%%w = ( for some
non-archimedean prime v, € 3, then we have H?(K,,,D) = 0. If we then let &' =% — {v,},
it is clear that IITI*(K, %, D) = HZ (Ks/K,D). We then can apply the above propositions
to get the following result.

Proposition 6.6. Assume that T*/(T*)%%v is A-reflezive for allv € ¥ and that (T*)%%v =
0 for at least one non-archimedean prime v, € ¥. If D is A-divisible, then 11*(K, ¥, D) is
A-divisible. If D is A-coreflezive, then TII*(K, X, D) is A-coreflezive.

Thus, all but the final statement is theorem 1 has been proven.

It is interesting to consider the case where ¥’ is as small as possible - just the set of
archimedean primes of K. We will then denote HZ (Kx/K,D) by H2 (Kx/K,D). For any
real prime v of K, we let 0, denote the nontrivial element of Gk,. Then propositions 6.3
and 6.5 give the following result. The content is the same as proposition 6.1 when p # 2.
Note that the assumption about (1 4+ 0,)D is true when p is odd and is equivalent to the
assumption that 7*/(7*)%%v is reflexive when p = 2.

50



Proposition 6.7. If D is a divisible A-module, then H2 (Kx /K, D) is a divisible A-module.
If D is a coreflerive A-module and if (1 + 0,)D is also coreflexive for every real prime v of
K, then H? (Kx/K, D) is a coreflexive A-module.

B. The cokernel of v. The Poitou-Tate duality theorems have some interesting conse-
quences concerning the cokernel of the map v : H?*(Kx/K,D) — P?(K,%,D), the map
whose kernel is I11°(K, Y, D). According to (6), coker(y)" & (7*)%lK=/K) which is a A-
submodule of 7*. If 7* is A-reflexive, then so is (7*)%(K=/K)  (See part C in section
2.) Furthermore, proposition 3.10 implies that the A-rank of (7*)%2(Kx/K) i5 equal to the
A-corank of H°(Kx/K,D*). These remarks give us the following results.

Proposition 6.8. If D is A-divisible, then coker(7) is also A-divisible. If D is A-coreflexive,
then coker(y) is also A-coreflexive.

Proposition 6.9. Assume that D is A-divisible and that H*(Ks/K,D*) is A-cotorsion.
Then ~y is surjective. In general, H'(Kx/K,D*) and coker(vy) have the same A-corank.

One simple case where v is surjective is if H'(Kx/K,D*[m,]) = 0. Then, of course,
H(Kx/K,D*)[my] = 0, and Nakayama’s lemma implies that H°(Ky/K,D*) = 0. Another
important case is if D is induced from some D = V/T via a Zj-extension K. /K, where
m > 1. Then H°(Kx/K,D*) = H'(Kx/Ky, D*) = D*(K) has finite Z,-corank and so
is clearly A-cotorsion since the Krull dimension of A is greater than 1. More generally, if
assumption (b) in theorem 1 holds, then, as we pointed out in the introduction, it follows
that H(Kyg/K,T*) = 0 and hence that = is surjective.

C. The structure of H'(Kyx/K,D). We now complete the proof of theorem 1. The
hypotheses are somewhat broader and so we state this as a proposition.

Proposition 6.10. Assume that D is A-coreflezive, that T*/(T*)%%v is A-reflexive for all
v € X, that (T*)%%vwe = 0 for some non-archimedean v, € ¥, and that II*(K,%, D) = 0.
Then H'(Kx/K, D) is an almost divisible A-module.

Proof. The assertion will follow from proposition 3.6 if we show that x is an injective map
for almost all P € Specy,_;(A). We have an exact sequence

0 —> ker(d) — ker(k) — ker(\)

Proposition 5.2 implies that ker(\) = 0 for almost all P € Specy,_,(A). Thus it suffices to
prove the same statement for ker(d).

If ¥ = ¥ — {v,}, then we have HZ,(Kx/K,D) = III*(K,%,D) = 0. Hence, ker(§) =
HZ,(Kx/K,D[P]). Now D[P] is a divisible (A/P)-module for all P € Spec,,_;(A) and hence
proposition 6.3 implies that HZ,(Kx/K,D[P]) is also (A/P)-divisible. Therefore, it suffices

ol



to prove that ker(d) has (A/P)-corank equal to 0 for almost all P € Specy,_;(A). It will then
follow that ker(d) = 0 and hence that « is injective. Proposition 3.5 implies that the (A/P)-
corank of ker(x) is 0 for almost all P € Specy,_;(A) and therefore the same must be true

for the submodule ker(§) = 0. This argument proves that, under the stated assumptions,
H'(Ksx/K,D) is indeed an almost divisible A-module. [

It is worth pointing out that H'(Ky /K, D) is not necessarily a divisible A-module as the
following proposition shows. It is not hard to find examples satisfying the hypotheses and
where at least one of the local factors H'(K,, D) for v € ¥’ fails to be A-divisible.

Proposition 6.11. Assume that D is A-divisible, that p is odd, that H*(K,,D) = 0 for all
nonarchimedean v € ', and that H?*(Kx,/K,D) = 0. Then the natural map

H'(Ky/K,D)/H"(Ks/K,D)x—aiv — || H'(Ky, D)/H"(Ky, D)saio

ved!

18 surjective.

If A is a discrete A-module, then Aj_g4, denotes the maximal A-divisible submodule of A.
If X = A, then the Pontryagin dual of A/AA_g, is isomorphic to the torsion A-submodule
of X.

Proof. Referring to the two-row commutative diagram above, the map ker(k) — ker(l) is
clearly surjective. That is, we have a surjective homomorphism

H'(Kx/K,D)/PH'(Kx/K,D) — H H'(K,,D)/PH'(K,,D)

ved!

for all P € Specy,_;(A). In general, suppose that A and B are two cofinitely generated,
cotorsion A-modules and that ¢ : A — B is a A-module homomorphism with the property
that the induced map A/PA — B/PB is surjective for all P € Spec,,_;(A). This means
that ¢(A) + PB = B for all such P’s. Let C' = coker(7)), which is also a cotorsion A-module.
It follows that #C = C for all irreducible elements of A. Thus C is a divisible A-module and
so C' = 0. This proves the proposition. [ |

D. A discussion of hypothesis L. One natural way to verify hypothesis L for a given
Galois module D is to show that the inequality in proposition 4.3, which gives a lower bound
b (K, 3, D) on the A-corank of H'(Kyx/K, D), is actually an equality. One can often verify
this by specialization. For example, suppose that A is a formal power series over Z, in m
variables, where m > 1. Consider a cofree, cofinitely generated A-module D with A-corank
n. Suppose that P is a prime ideal such that A’ = A/P is isomorphic to a formal power
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series ring over Z, or F, in m’ variable, where 0 < m’ < m. (If m' = 0, we mean that
AN = Z, or F,. In the latter case, P = my.) Since A’ is a regular local ring, remark 3.4.2
can be applied. If one can verify the equality coranks (H'(Kx/K,D[P])) = b} (K, X, D) for
one such prime ideal P, then hypothesis L for D would follow. Of course, it may happen
by (K, X, D[P]) > bj(K,X, D), in which case, the equality would be impossible. However,
remark 3.10.2 implies that there exists a nonzero ideal I of A such that b}, (K, %, D[P]) =
bi(K,%,D) for all P ¢ V(I).

We will discuss various special cases and give examples where hypothesis L fails to be
true. But it will be clear that these examples are rather special.

Elliptic curves. Suppose that F is an elliptic curve defined over K and that the Mordell-Weil
group E(K) has rank r > [K : Q|. Let s = r —[K : Q]. Let p be any prime number and
let X be a finite set of primes of K containing all primes lying above p or oo and the primes
where F has bad reduction. The Kummer map defines an injective homomorphism

E(K) @7 (Q/Z,) — H' (Ks/K, E[p™])

It follows that corankz, (H'(Kx/K,E[p™])) > r. In the notation of proposition 4.1, we
have dz,(K, E[p>*]) = [K : Q. The Euler-Poincaré characteristic formula then implies that
corankz, (H*(Kx/K, E[p*])) > 0. But H*(K,, E[p™]) = 0 for every non-archimedean prime
v of K and is finite for the archimedean primes (trivial if p > 2). Hence it follows that
corankz (III*(K, X, E[p])) > 0. Thus hypothesis L fails if R = Z, and D = E[p*®]. This
example corresponds to the representation p giving the action of Gal(Kyx/K) on the Tate
module 7 = T,(F).

In this example, the Krull dimension of R is 1. However, one can simply extend scalars
to obtain a “constant” deformation of T),(F) where R has arbitrary Krull dimension and
hypothesis L still fails to be valid. For example, let 7 = T,(E) ®z, A, where A is a formal
power series ring over Zj, in m variables. We assume that the Galois action on A is trivial.
Define D = T ®x A Ifm > 1, there are infinitely many homomorphism ¢ : A — Z, and
one has T, = T),(E), D, = E[p™] for all such ¢. It follows easily (by using lemma 4.4.1 for
example) that corank, (III*(K, ¥, D)) = coranks, (III*(K, ¥, E[p™])).

One natural deformation to consider is as described in the introduction. Suppose that
K/ K is a Z'-extension, where m > 1, and let D = Ind g, x (E[p™]). It is known in certain
cases that rank (E(K ! )) is unbounded as K’ varies over the finite extensions of K contained
in K. One can find a discussion of this phenomenon in [M], [M-R], [Va], and [C-V], for
example. To produce an example where Hypothesis L fails based on the above discussion,
one would need sg = rank(E(K')) — [K' : Q] to be unbounded above as K’ varies. No such
examples are known. It is hard to imagine that they could exist.
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Suppose that R = A = Z,[[11,...,T,,]] and that D[P] = E[p*] for some prime ideal
P of A, as in the example in the previous paragraph. Note that both b}(K,Y,D) and
by, (K, %, E[p™]) equal [K : Q]. Suppose further that coranky,(H'(Ks/K, E[p™])) = [K :
QJ, i.e., that hypothesis L holds for D[P]. Thus, by our initial remarks, hypothesis L. would
then hold for D. One example where this happens is if K = Q, EF(Q) has rank 1, and
the p-primary subgroup of the Tate-Shafarevich group for E/Q is finite. (See [M-C]| for a
discussion of this case.)

As another example, suppose instead that D[P] = Ind geye i (E[p™]) for some prime ideal
P of A, where K¥¢ denotes the cyclotomic Z,-extension of K. Assume also that F has ordi-
nary reduction at all the primes of K lying above p. A conjecture of Mazur asserts that the p-
Selmer group Selg (K &¥¢) for E over K¢ is a cotorsion module over Z,[[Gal(K%¢/K)]]. Since
HI' (K¢, %, E[p™]) C Selg(K %), Mazur’s conjecture would imply that III' (K¢, ¥, E[p™))
is also cotorsion. Now E[p*|* = E[p*] and so it would follow that conjecture L holds for
D[P]. It then would hold for D. One special case is D = Indx_ /x (E[p>]), where K is a
Z,-extension of K containing K¥°.

A twist of Q,/Z,. Let K denote the maximal real subfield of Q(s,). Assume that p = 37,
an irregular prime. Let 3 be the set of primes of K lying above p and oco. Let M, be
the maximal abelian pro-p-extension of K¢ which is unramified outside of ¥. Then it is
known that X = Gal(Mw/K%¢) = Z,. The action of I' = Gal(K%¥°/K) on X is given by
a nontrivial homomorphism ¢ : I' — 1 + pZ,. We define p : Gal(Kx/K) — GL,(Z,) to be
the composition of ¢ with the restriction map Gal(Ky/K) — I'. Thus the corresponding
Galois module D is isomorphic to Q,/Z, and Gal(Ks/K) acts via p. We denote this D by
(Q,/Z,)(p). Then we have

H'(Kys/K,D) = H'(Ks/KY, D) = Q,/Z,

The Z,-corank is 1. We have d7,(K, D) = 0 and so it follows that coranky (H?(Kx/K,D)) >
0. We again have H?(K,,D) = 0 for all v € ¥ and so, as in example 1, IIT*(K, %, D) fails
to be a cotorsion module over R = Z,. Just as before, one can form a constant deformation
of p over an arbitrary R to construct additional examples where hypothesis L also fails to
hold. However, if instead one considers D = Indgeve/x ((Q,/Zy)(p)), a cofree module over
R = Z,[[T']] of corank 1, then H'(Kyx/K,D) =~ Hom(X, (Q,/Z,)(p)), which is isomorphic to
Q,/Z, as a group and is a cotorsion R-module. Hypothesis L holds in this case.

Consider an arbitrary number field K. Let K, denote the compositum of all Z,-
extensions of K. Let I' = Gal(K/K), which is isomorphic to Z}' for some m > 1. Let
D = Indk_ /k(D), where D = pip-. Thus D is simply the twist of Q, /Z, by the cyclotomic
character x and D is a cofree module over A = Z,[[[']] with corank 1. As we pointed out in
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the introduction, hypothesis L is true for D and H_Il(K , 2, D*) is essential just the Pontrya-
gin dual of the Galois group Y = Gal(L,_/K). It is conjectured that Y is a pseudo-null
module over A. Thus, IIT' (K, X, D*) should even be a co-pseudo-null A-module. However,
this module can be nontrivial and it is conceivable that examples where hypothesis L fails
can arise by specialization.

Suppose that P is a prime ideal of A which is an associated prime ideal for Y. Then
II' (K, 3, D*)[P] will have positive corank over A/P. Consider the map

' (K, ¥, D*[P]) — HIY(K, %, D*)[P]

Thus, for such a P, either the cokernel of this map or IIT* (K, ¥, D*[P]) will have a positive
(A/P)-corank. If it is the latter, then hypothesis L would fail to be true for the (A/P)-
module D[P]. Virtually nothing is known about the associated prime ideals of Y in general.
One can construct examples where Y has an associated prime ideal P such that A/P is of
characteristic 0 and has arbitrarily large Krull dimension. However, the construction is an
imitation of classical genus theory and it is probably the cokernel of the above map which
has positive (A/P)-corank. This example illustrates the subtlety of hypothesis L.

Characteristic p. Let R be a formal power series ring over [, in any number of variables.
Let X' be a finite set of primes of K containing the primes above p and co. Suppose that we
have a representation p : Gal(Ky /K) — GL,(R). Let D be the cofree R-module of corank n
with Galois action given by p. We will make the following assumption: there exist infinitely
many primes v of K such that (i) p|gy is trivial and (i) p, C K,. Here G~ denotes the
decomposition subgroup of Gal(Ky//K) for any prime of Ky lying above v. For any prime
v satisfying (i) and (i), it is clear that Gk, acts trivially on 7* = Hom(D, y,). Thus, the
R-rank of Hy(K,,T*) is n and so the R-corank of H%(K,, D) is equal to n. Suppose that
YT = {vy,...., v} is a set consisting of such primes. Let ¥ = X' U Y. Then, by (7), we have
the following inequality:

corankg (H*(Kx/K,D)) > (t—1)n

If we assume that HO(Kys/ /K, T*) is a torsion R-module, then the lower bound would be tn
instead. It follows that the lower bound by (K, 3, D) on the R-corank of H'(Kyx/K,D) is
unbounded as ¢ — oo.

Now let ¢ denote the R-corank of [], .« H'(K,,D). The definition of Hy,(Kx/K,D)
gives the following inequality:

corankg (Hg (Kx/K,D)) > bp(K,%,D)—¢

We can make this corank positive by choosing a sufficiently large set T. We will assume
that the primes in T do not lie over p. The elements of Hy, (Kx/K, D) are locally trivial at
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all v € ¥/, but could be nontrivial at the primes v € Y. However, for each v € T, Gk, acts
trivially on D. This module is just a vector space over [, - a direct sum of copies of the
trivial Galois module Z/pZ. Let L, denote the maximal abelian extension of K, such that
Gal(L,/K,) has exponent p. Thus [L, : K,] = p?. Every element of H'(K,,Z/pZ) becomes
trivial when restricted to G, and so the same thing is true for the elements of H'(K,, D).

Choose a finite extension F' of K such that, for each v € T and for every prime 7 lying over
v, the completion F,, contains L,. We will also assume that F' is chosen so that FN Ky = K.
Such a choice is easily seen to be possible. Suppose that o € Hy,(Ks/K, D). Let o|r denote
the image of o under the restriction map H!(Ky/K,D) — H'(Fx,/F,D). Here F denotes
the set of primes of F' lying over those in . This restriction map is easily seen to be injective.
Then o] is locally trivial at all primes n € Y. That is, o|r € III'(F,Xx, D). It follows
that corankp (H_II(F, Yr, D)) will be positive and so we do get examples where hypothesis
L fails.
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