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1 Introduction

The term “Selmer group” was first used in the 1960s to refer to a certain group that proved to
be useful in studying the arithmetic properties of an elliptic curve defined over a number field.
The classical definition is easily extended to abelian varieties defined over number fields. We will
recall that definition later. Over the years, it was found that one could define such objects in a
much more general context. Such definitions occur in the formulation of the Bloch-Kato conjecture
(in [BK]) as well as in generalizations of a conjecture of Iwasawa (in [Gr1] and [Gr2]). Roughly
speaking, a Selmer group is a subgroup of a global Galois cohomology group defined by imposing
local restrictions of some kind on the cocycle classes. These local conditions take a rather specific
form in the examples cited above. However, in this paper, a Selmer group will be defined simply
as the kernel of a very general type of map which we will call “global-to-local”.

Our objective is to study the cokernel of such a global-to-local map in a very general setting.
Suppose that K is a finite extension of Q and that Σ is a finite set of primes of K. Let KΣ denote
the maximal algebraic extension of K unramified outside of Σ. We will always assume that Σ
contains all archimedean primes and all primes lying over some fixed rational prime p. The Selmer
groups that we will consider are associated to a continuous representation

ρ : Gal(KΣ/K)−→GLn(R) ,

where R is a complete Noetherian local ring. Let M denote the maximal ideal of R. We assume
that the residue field R/M is finite and has characteristic p. Hence R is compact in its M-adic
topology. Let T be the underlying free R-module on which Gal(KΣ/K) acts via ρ. We define
D = T ⊗R R̂, where R̂ = Hom(R,Qp/Zp) is the Pontryagin dual of R with a trivial action of
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Gal(KΣ/K). That Galois group acts on D through its action on the first factor T . Thus, D is a
discrete abelian group which is isomorphic to R̂n as an R-module and has a continuous R-linear
action of Gal(KΣ/K).

The Galois cohomology group H1(KΣ/K,D) can be considered as a discrete R-module too. It
is a cofinitely generated R-module in the sense that its Pontryagin dual is finitely generated as an
R-module. (See proposition 3.2 in [Gr3].) For each prime v of K, let Kv denote the completion of
K at v. Suppose that one specifies an R-submodule L(Kv,D) of H1(Kv,D) for each v ∈ Σ. We
will denote such a specification simply by L. Let

P (K,D) =
∏

v∈Σ

H1(Kv,D) and L(K,D) =
∏

v∈Σ

L(Kv,D) .

Now L(K,D) is an R-submodule of P (K,D) and the corresponding quotient module is

QL(K,D) =
∏

v∈Σ

QL(Kv,D), where QL(Kv,D) = H1(Kv,D)
/
L(Kv,D) .

The natural global-to-local restriction maps for H1( · ,D) induce a map

(1) φL : H1(KΣ/K,D) −→ QL(K,D) .

The “Selmer group” for D over K corresponding to the specification L is defined to be ker(φL) and
will be denoted by SL(K,D). We refer to φL as the global-to-local map defining SL(K,D).

In the definition given above, one fixes an embedding of K into Kv for every prime v of K.
Here K denotes an algebraic closure of K and Kv denotes an algebraic closure of Kv. Thus, one
has an embedding of KΣ into Kv. The restriction maps GKv → Gal(KΣ/K) for v ∈ Σ then induce
the restriction maps for the cohomology groups occurring in the definition of φL. However, the
Selmer group doesn’t depend on the choice of embeddings.

It is clear that SL(K,D) is an R-submodule of H1(KΣ/K,D) and so is also a discrete, cofinitely
generated R-module. For a fixed set Σ, the smallest possible Selmer group occurs when we take
L(Kv,D) = 0 for all v ∈ Σ. Following the notation in [Gr3], we denote that Selmer group by
X

1(K,Σ,D). In general, for any i ≥ 0, we define

X
i(K,Σ,D) = ker

(
H i(KΣ/K,D) −→

∏

v∈Σ

H1(Kv,D)

)
.

Obviously, we have X
1(K,Σ,D) ⊆ SL(K,D) for any choice of the specification L.

We don’t want to necessarily assume that R is a domain. But we will assume that R con-
tains a subring Λ of the following type: Λ is isomorphic to one of the formal power series rings
Zp[[x1, ..., xm]] or Fp[[x1, ..., xm+1]], where m ≥ 0. Furthermore, we assume that R is finitely-
generated and torsion-free as a Λ-module. Such a subring Λ is known to exist if R is a domain.
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This is a special case of a classical theorem of Cohen (theorem 16 in [Coh]). The Krull dimension of
R is the same as that for Λ, and is equal to m+ 1. Both R and Λ have the same characteristic. In
general, even if R is not a domain, the assumptions about R imply that R̂ is a divisible Λ-module.
Consequently, D will be a divisible Λ-module. In most of the results of this paper, it will be this
last property of D that is important.

The results that we prove in this paper assert that φL is surjective under various sets of hy-
potheses. In a subsequent paper [Gr4], and under additional hypotheses, we will apply such results
to prove that SL(K,D) has the following property as a Λ-module: There exists a nonzero element
θ ∈ Λ such that αSL(K,D) = SL(K,D) for all nonzero α ∈ Λ which are relatively prime to θ.
We then say that SL(K,D) is an “almost divisible” Λ-module. Equivalently, the assertion that
SL(K,D) is almost divisible as a Λ-module means that the Pontryagin dual of SL(K,D) has no
nonzero, pseudo-null Λ-submodules. The hypotheses that we need for this to be so are more strin-
gent than the ones needed to prove the surjectivity of φL. This is partly because we will apply the
results concerning surjectivity not just to D, but also to the (Λ/Π)-module D[Π], where Π varies
over Specht=1(Λ), the set of prime ideals of Λ of height 1. It will be useful for that reason to keep
the assumptions about D and L to a minimum.

One of the hypotheses that we will need in [Gr4] is purely ring-theoretic in nature. It is a
condition which guarantees that D[Π] is divisible as a (Λ/Π)-module for the prime ideals Π in
Specht=1(Λ), and has already played a role in our previous paper [Gr3]. The hypothesis is that
R is reflexive as a Λ-module. We then say that R is a “reflexive ring”. In the case where R is
also assumed to be a domain, one can equivalently require that R is the intersection of all its
localizations at the prime ideals in Specht=1(R). (One can find an explanation of this equivalence
in [Gr3], part D of section 2.) That condition also occurs as part of the definition of a Krull domain.
For example, it is stated as condition (2.b) on page 116 of Nagata’s book [Nag]. In the literature,
one sometimes finds the term “weakly Krull domain” for a domain R satisfying that condition
together with a certain finiteness condition (automatically satisfied if R is Noetherian). The class
of reflexive domains is rather large. For example, if R is integrally closed or Cohen-Macaulay, then
it turns out that R is reflexive. There are important examples (from Hida theory), where R is not
necessarily a domain, but is still a free (and hence reflexive) module over a suitable subring Λ.

The map φL can certainly fail to be surjective. We can regard QL(K,D) as a discrete Λ-module.
We have already mentioned that the Pontryagin dual of H1(KΣ/K,D) is a finitely-generated Λ-
module. The same is true for the local cohomology groups H1(Kv,D) and hence for QL(K,D).
For any discrete, cofinitely-generated Λ-module A, we define corankΛ(A) to be rankΛ(Â), where
Â denotes the Pontryagin dual of A. Let sL(K,D), h1(K,D), qL(K,D), and cL(K,D) denote
the Λ-coranks of SL(K,D), H1(KΣ/K,D), QL(K,D), and coker(φL), respectively. Although the
definitions of these objects all involve the set Σ, we omit it from the notation. In fact, Σ will be
fixed throughout, except in sections 3.3 and 4.5. The following equation relating these coranks
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follows immediately from the definitions.

(2) sL(K,D) = h1(K,D) − qL(K,D) + cL(K,D) .

In particular, if h1(K,D) < qL(K,D), then cL(K,D) > 0 and φL will be far from surjective.
However, φL can fail to be surjective even if cL(K,D) = 0. A classical theorem of Cassels provides
one important illustration of this behavior, which we now discuss briefly, and also in section 4 with
more details.

Suppose that A is an abelian variety defined over K. Let g = dim(A). We denote the dual
abelian variety by B. The classical Selmer group SelA(K) for A over K is a torsion group. For
any prime p, its p-primary subgroup SelA(K)p is a subgroup of H1(K,D), where D = A[p∞], the
group of p-power torsion points on A. As we explain in section 4.5, it turns out that SelA(K)p is
isomorphic to SL(K,D), where we take Σ to be a finite set of primes containing the primes over p
and ∞ and the primes of K where A has bad reduction, and the specification L is defined in the
following way. For every prime v ∈ Σ, let

(3) L(Kv,D) = im(κv), where κv : A(Kv) ⊗ (Qp/Zp) −→ H1(Kv, A[p∞])

is the p-power Kummer map for A over Kv. One shows easily that A(Kv) ⊗ (Qp/Zp) = 0 if v ∤ p.
Thus, if v ∈ Σ and v ∤ p, then L(Kv,D) = 0. There is also a relatively simple description of
L(Kv,D) for a prime v lying over p in the case where A has good, ordinary reduction at v. This
can be found in proposition 4.5 in [CG] and will not play a role here. It is the inflation map
H1(KΣ/K,D) → H1(K,D) which identifies SL(K,D) with SelA(K)p.

In terms of our general notation, we are taking R = Λ = Zp and T = Tp(A), the p-adic Tate
module for A. Thus, T is a free Zp-module of rank n = 2g and Gal(KΣ/K) acts Zp-linearly on
T . The definition of SL(K,D) is the kernel of the global-to-local map φL. The theorem of Cassels
mentioned above is equivalent to the following assertion about the cokernel of φL. If SelA(K)p

is finite, then coker(φL) is isomorphic to the Pontryagin dual of H0(K,B[p∞]), the p-primary
subgroup of B(K). Thus, if SelA(K)p is finite, then coker(φL) is finite. If we assume in addition
that B(K) has no elements of order p, then φL is surjective.

Returning to the general setting, proposition 4.3 in [Gr3] gives an explicit lower bound b1(K,D)
for h1(K,D), where b1(K,D) is defined in terms of the Λ-ranks or coranks of various global and
local H0’s. This lower bound is derived directly from the Poitou-Tate duality theorems. One has

h1(K,D) = b1(K,D) + corankΛ

(
X

2(K,Σ,D)
)

,

where X
2(K,Σ,D) is as defined earlier. One therefore has an inequality

(4) sL(K,D) ≥ b1(K,D) − qL(K,D) .

The main results of this paper will be based on the assumption that equality holds in (4). By (2),
equality means that h1(K,D) = b1(K,D) and cL(K,D) = 0. We won’t need to recall the precise
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definition of b1(K,D) here because the assumption of equality in (4) is equivalent to the assumption
that both of the Λ-modules X

2(K,Σ,D) and coker(φL) have corank 0. That assumption will be
part of the hypothesis in many of our results.

In general, additional assumptions may be needed to conclude that φL is surjective. For example,
returning to the theorem of Cassels, where Λ = Zp and D = A[p∞] for an abelian variety A
of dimension g, it turns out that b1(K,D) and qL(K,D) are both equal to [K : Q]g, and so
equality holds in (4) if and only if SelA(K)p is finite. In that case, the surjectivity of φL requires
the additional assumption that H0(K,B[p∞]) = 0. There are some situations where no extra
assumption is needed. Proposition 5.3.1 is an example.

It will become evident that this paper relies very much on results proved in our previous paper
[Gr3]. The results that we prove here together with results in [Gr3] will in turn play an important
role in [Gr4] and [Gr5]. Our objective in all of these papers is to study basic questions which have
arisen naturally in Iwasawa theory over the years. Our approach is to study these questions from
a very general point of view.

It is a privilege to dedicate this paper to Masayoshi Nagata. We want to mention one specific
theorem of Nagata which has already played a role in [Gr2], and promises to be useful in the future.
Suppose that R is a domain and that R is the integral closure of R in its field of fractions. Theorem
7 in [Nag1] asserts that if R is a complete Noetherian local ring, then R is finitely-generated as an
R-module. Combining this with theorem 7 in [Coh], it follows that R is also a complete Noetherian
local ring. We will have reason to cite these theorems again in section 3.4.

The result just described was needed in [Gr2] in order to formulate a generalization of the so-
called “main conjectures” of Iwasawa and of Mazur. It provided a way to associate a “characteristic
divisor” to a Selmer group. This result of Nagata may also provide a way of gaining additional
insight into the kinds of divisors that can arise from the Selmer groups introduced in [Gr2]. Very
little is known about this. If one has a representation ρ of Gal(KΣ/K) over R, as discussed above,
then one can define a representation σ : Gal(KΣ/K) → GLn(R), simply be extending scalars. A
Selmer group associated to ρ will be an R-module. But there is then a natural way to associate a
Selmer group to σ, and that will be an R-module. The relationship between those Selmer groups
is not understood at present. We hope that studying this relationship will be one step in learning
more about the characteristic divisors of Selmer groups.

The organization of this paper is as follows. Section 3 contains the main general results con-
cerning the cokernel of φL as well as sufficient conditions for surjectivity. Those results are based
on section 2 which discusses the structure of various relevant Λ-modules. Sections 4 and 5 discuss
special situations where the results become more precise. The Tate module of an abelian variety
is discussed in section 4. One then has R = Λ = Zp. Section 5 concerns what we call a “twist
deformation” associated to an infinite Galois extension K∞/K such that Gal(K∞/K) ∼= Zm

p for
some m ≥ 1. In that case, we have R = Λ, a certain ring of Krull dimension m + 1. The results
discussed there will be useful in [Gr5].
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2 The structure of certain Λ-modules.

Suppose that D is a discrete, cofinitely-generated Λ-module and that Gal(KΣ/K) acts continuously
on D. We assume that this action is Λ-linear. Let T ∗ = Hom(D, µp∞), a compact, finitely-generated
Λ-module. The Λ-modules to be considered in this section include H1(KΣ/K, T

∗) and its maximal
torsion Λ-submodule H1(KΣ/K, T

∗)Λ-tors. Cohomology groups with values in T ∗ will always be
the continuous cohomology groups, which are defined by requiring continuity of cocycles. We refer
the reader to §3 of chapter 2 in [NSW] for the basic properties. For any i ≥ 0, define

X
i(K,Σ, T ∗) = ker

(
H i(KΣ/K, T

∗) −→
⊕

v∈Σ

H i(Kv, T
∗)

)
.

Of course, X
1(K,Σ, T ∗) is a Λ-submodule of H1(KΣ/K, T

∗).

We will use the global and local duality theorems of Tate and Poitou, extended from the case
of finite Galois modules to direct and inverse limits of finite Galois modules. Assume that we
have fixed a choice of the specification L for D and Σ, i.e., a choice of Λ-submodules L(Kv,D) of
H1(Kv,D) for all v ∈ Σ. By definition, we have a perfect pairing D × T ∗ → µp∞ . Thus, for each
prime v of K, there is a nondegenerate pairing:

(5) H1(Kv,D) ×H1(Kv, T
∗) −→ Qp/Zp.

The pairing behaves well with respect to the Λ-module structure on the two groups. Denoting
the pairing by 〈·, ·〉v, it has the property that 〈λα, β〉v = 〈α, λβ〉v for λ ∈ Λ, α ∈ H1(Kv,D), and
β ∈ H1(Kv, T

∗). We accordingly say that the pairing is a Λ-pairing.

To define a useful Selmer group for T ∗, we choose the following specification which we will denote
by L∗: For all v ∈ Σ, define L(Kv, T

∗) to be the orthogonal complement of L(Kv,D) under the
pairing (5). Thus, L(Kv, T

∗) and the quotient QL∗(Kv, T
∗) = H1(Kv, T

∗)/L(Kv, T
∗) are compact

Λ-modules and are isomorphic to the Pontryagin duals of the discrete Λ-modules QL(Kv,D) =
H1(Kv,D)/L(Kv,D) and L(Kv,D), respectively. Let P (K, T ∗), L(K, T ∗), and QL∗(K, T ∗) be
defined as the direct sums over all v ∈ Σ of the Λ-modulesH1(Kv, T

∗), L(Kv, T
∗), andQL∗(Kv, T

∗),
respectively. Thus, we have QL∗(K, T ∗) ∼= P (K, T ∗)

/
L(K, T ∗). The Selmer group SL(K,D) is the

kernel of φL, as discussed in the introduction. We now define a Selmer group SL∗(K, T ∗) to be the
kernel of the following map (induced from the restriction maps GKv → Gal(KΣ/K) for v ∈ Σ):

φL∗ : H1(KΣ/K, T
∗) −→ QL∗(K, T ∗) .

This map again is induced by the restriction maps GKv → Gal(KΣ/K) for v ∈ Σ.
All of the cohomology groups and the subgroups mentioned above are Λ-modules (either finitely

or cofinitely generated) and the maps are Λ-module homomorphisms. In particular, SL∗(K, T ∗) is
a Λ-submodule of H1(KΣ/K, T

∗).
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Section 2.1 below concerns X
1(K,Σ, T ∗). In section 2.2, we study the maximal torsion Λ-

submodule of H1(KΣ/K, T
∗), and especially when it vanishes. Section 2.3 concerns the maximal

torsion Λ-submodule of SL(K, T ∗). We will use the following notation. For any compact Λ-module
X, we let XΛ-tors denote the maximal Λ-torsion submodule of X. For a discrete Λ-module A,
we let AΛ-div denote the maximal Λ-divisible submodule of A. If θ ∈ Λ, or if I is an ideal in Λ,
then X[θ] denotes the kernel of multiplication by θ, X[I] denotes the intersection of those kernels
over all θ ∈ I. The Λ-submodules A[θ] and A[I] of A are defined similarly. We say that A is a
cotorsion Λ-module if A[θ] = 0 for some nonzero θ ∈ Λ. Assuming that A is cofinitely-generated,
A is cotorsion as a Λ-module if and only if corankΛ(A) = 0.

2.1. The Λ-rank of X
1(K,Σ, T ∗). The Poitou-Tate duality theorems include the following

result. There is a perfect pairing

(6) X
1(K,Σ, T ∗) × X

2(K,Σ,D) −→ Qp/Zp

and therefore the Λ-rank of X
1(K,Σ, T ∗) is equal to the Λ-corank of X

2(K,Σ,D). In particular,
X

1(K,Σ, T ∗) is a torsion Λ-module if and only if X
2(K,Σ,D) is cotorsion as a Λ-module. It is

often useful to assume that these equivalent properties are satisfied. We formulate such a hypothesis
in terms of D.

LEO(D): The Λ-module X
2(K,Σ,D) is cotorsion.

LEO(D) is referred to as Hypothesis L on page 361 of [Gr3]. An equivalent statement is that the
Λ-rank of X

1(K,Σ, T ∗) is 0.

Under rather mild hypotheses, we will now show that X
1(K,Σ, T ∗) is a torsion-free Λ-module.

Equivalently, such an assertion means that X
2(K,Σ,D) is a divisible Λ-module. LEO(D) would

then mean that X
2(K,Σ,D) = 0, and that X

1(K,Σ, T ∗) = 0 too.

Proposition 2.1.1. Assume that D is a divisible Λ-module. Assume also that there is at least
one prime η ∈ Σ such that H0(Kη, T

∗) = 0. Then X
1(K,Σ, T ∗) is a torsion-free Λ-module and

X
2(K,Σ,D) is a divisible Λ-module.

Proof. The first assumption means that T ∗ is a torsion-free Λ-module. Thus, if θ is a nonzero
element of Λ, then multiplication by θ gives an exact sequence

0 −→ T ∗ θ
−→ T ∗ −→ T ∗

/
θT ∗ −→ 0

from which we obtain the following exact sequence of cohomology groups

(7) H0(K, T ∗) −→ H0(K, T ∗
/
θT ∗) −→ H1(KΣ/K, T

∗)[θ] −→ 0 .
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We have a similar exact sequence for the cohomology groups over Kη. However, since we are
assuming that H0(Kη, T

∗) = 0, it follows that H0(K, T ∗) = 0 too. Thus, for any nonzero element
θ in Λ, the horizontal maps in the following commutative diagram are isomorphisms.

H0(K, T ∗
/
θT ∗) //

��

H1(K, T ∗)[θ]

��

H0(Kη, T
∗
/
θT ∗) // H1(Kη, T

∗)[θ]

The first vertical map is injective. Hence so is the second. As a consequence, the map

(8) H1(K, T ∗)Λ-tors −→ H1(Kη, T
∗)Λ-tors

is injective. By definition, X
1(K,Σ, T ∗)Λ-tors is contained in the kernel of the above map, and

hence must vanish. This shows that X
1(K,Σ, T ∗) is indeed a torsion-free Λ-module. �

Remark 2.1.2. Theorem 1 in [Gr3] includes a result which is analogous to the above proposition,
although somewhat different. The hypotheses in that theorem are more stringent, but the con-
clusion is the stronger statement that X

1(K,Σ, T ∗) is reflexive as a Λ-module. It is possible for
X

1(K,Σ, T ∗) to have positive Λ-rank. One finds several examples illustrating this possibility in
part D, section 6, of [Gr3].

It is also possible for X
1(K,Σ, T ∗)Λ-tors to be nontrivial. According to proposition 2.1.1, this

could only happen if H0(Kv, T
∗) has positive Λ-rank for all v ∈ Σ. As an example when Λ = Z3

and p = 3, one could take T = T3(E)(1) and Σ = {∞, 3, 7, 31}, where E is the elliptic curve 651E3
in Cremona’s tables. One has T ∗ = T3(E)(−1). The curve E has split multiplicative reduction at
v = 3, 7, and 31. One finds that H0(Qv, T

∗) ∼= Z3 for all v ∈ Σ and that X
1(Q,Σ, T ∗) ∼= Z/3Z.

We hope to discuss such examples elsewhere.

There are situations where one does expect to have X
2(K,Σ,D) = 0. This statement is

equivalent to LEO(D) under the assumptions of proposition 2.1.1. One very general conjecture in
this direction will be stated later, namely conjecture 5.2.1. If one makes the additional assumption
that p is odd and that H0(Kv, T

∗) = 0 for all non-archimedean v ∈ Σ, then one has H2(Kv,D) = 0
for all v ∈ Σ. One would then have X

2(K,Σ,D) = H2(KΣ/K,D), and so LEO(D) would then
mean that H2(KΣ/K,D) = 0. Consider the special case where Λ = Zp, D = Qp/Zp, and the Galois
action on Qp/Zp is trivial. One then has H2(Kv,Qp/Zp) = 0 for all v, even when p = 2. In fact,
LEO(Qp/Zp), or the equivalent statement that H2(KΣ/K,Qp/Zp) = 0, is a reformulation of the
famous Leopoldt conjecture for K and p. Thus, the more general formulations (such as conjecture
5.2.1) are extensions of Leopoldt’s conjecture in a sense, and have often been referred to by the
phrase “weak Leopoldt conjecture”. We refer the reader to appendice B in [Per] for a discussion of
some important special cases. ♦

Remark 2.1.3. The prime η in proposition 2.1.1 could be archimedean. Assume that D is a
divisible Λ-module, and hence T ∗ is torsion-free. Assume that T ∗ 6= 0. Let F be the field of
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fractions of Λ. We may suppose that η is a real prime, and so GKη has order 2. Let ση be a
generator. Of course, ση acts on the F-vector space V∗ = T ∗ ⊗Λ F . Then H0(Kη, T

∗) = 0 means
that 1 is not an eigenvalue of ση. It follows that H0(Kη, T

∗) = 0 if and only if the characteristic of
Λ is not 2 and ση acts on V∗ as the scalar −1. ♦

If Π ∈ Specht=1(Λ), then LEO(D[Π]) should be interpreted to mean that X
2(K,Σ,D[Π]) is

cotorsion as a (Λ/Π)-module. The following proposition is sometimes useful because the Krull
dimension of the underlying ring is reduced by 1. The proof uses the following general observation
from [Gr3]. (See remark 2.1.3 in that paper.) If A is a discrete, cofinitely-generated Λ-module
and r = corankΛ(A), then corankΛ/Π(A[Π]) ≥ r for all prime ideals Π of Λ. Furthermore, equality
holds for almost all Π ∈ Specht=1(Λ). The phrase “almost all” means “all but a finite number”.

Proposition 2.1.4. Assume that Λ has Krull dimension ≥ 2. Then LEO(D) is satisfied if and
only if LEO(D[Π]) is satisfied for almost all Π ∈ Specht=1(Λ). Furthermore, if D is Λ-divisible and
H2(KΣ/K,D[Π]) is a cotorsion (Λ/Π)-module for at least one Π ∈ Specht=1(Λ), then H2(KΣ/K,D)
is a cotorsion Λ-module, and hence LEO(D) is then satisfied.

Proof. Lemma 4.4.1 in [Gr3] states that X
2(K,Σ,D[Π]) and X

2(K,Σ,D)[Π] have the same
(Λ/Π)-corank for almost all Π ∈ Specht=1(Λ). The observation from [Gr3] cited above implies
that the (Λ/Π)-corank of X

2(K,Σ,D)[Π] is equal to the Λ-corank of X
2(K,Σ,D) for almost all

Π ∈ Specht=1(Λ). The first part of the proposition follows immediately.
For the second part, let π be a generator of Π. The fact that D is divisible by π implies that

there is a surjective map from H2(KΣ/K,D[Π]) to H2(KΣ/K,D)[Π]. Combining that fact with
the above observation from [Gr3] gives the inequalities

corankΛ

(
H2(KΣ/K,D)

)
≤ corankΛ/Π

(
H2(KΣ/K,D)[Π]

)
≤ corankΛ/Π

(
H2(KΣ/K,D[Π])

)
.

If the last corank is 0, then so is the first, and hence H2(KΣ/K,D) is indeed Λ-cotorsion. �

2.2. The torsion Λ-submodule of H1(KΣ/K, T
∗). We first prove a result concerning the

vanishing of the maximal torsion Λ-submodule of H1(KΣ/K, T
∗). Let m denote the maximal ideal

of Λ. Note that Λ/m ∼= Fp. Thus, D[m] is a finite-dimensional representation space for Gal(KΣ/K)
over Fp.

Proposition 2.2.1. Assume that D is divisible as a Λ-module and that D[m] has no subquotient
isomorphic to µp for the action of GK . Then H1(KΣ/K, T

∗) is torsion-free as a Λ-module.

Proof. We can use the exact sequence (7). Thus, it suffices to show that H0(K, T ∗
/
θT ∗) = 0 for

all nonzero θ ∈ Λ. Suppose that j ≥ 1. Proposition 3.1 in [Gr3] implies that the composition
factors in the GK-module D[mj ] are the same as those in the GK-module D[m], and hence the
second hypothesis implies that µp is not one of those composition factors. Consequently, none of
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the composition factors in T ∗/mjT ∗ is isomorphic to the trivial Galois module Z/pZ. Now T ∗
/
θT ∗

is a projective limit of a sequence of finite GK-modules An, each of which is a quotient of T ∗/mjT ∗

for some value of j. If H0(K, T ∗
/
θT ∗) 6= 0, then we will have H0(K,An) 6= 0 for some value of n.

Thus, for such n, An has a submodule isomorphic to the trivial module Z/pZ. This can’t happen
and so we must indeed have H0(K, T ∗

/
θT ∗) = 0. �

The torsion Λ-submodule of H1(KΣ/K, T
∗) can vanish even if D[m] has a subquotient isomor-

phic to µp. Propositions 2.2.5 and 2.2.7 below give some situations where that is so. They are
based on the next proposition which is itself a straightforward consequence of (7). For the first
part, one just chooses θ to be a nonzero element in the annihilator of H1(KΣ/K, T

∗)Λ-tors. For the
second part, if H1(KΣ/K, T

∗)Λ-tors 6= 0, then at least one irreducible factor π of θ will have the
stated property. Note that (7) is valid just under the assumption that D is a divisible Λ-module.

Proposition 2.2.2. Suppose that D is divisible as a Λ-module and that H0(K, T ∗) = 0. We have

H1(KΣ/K, T
∗)Λ-tors

∼= H0(K, T ∗
/
θT ∗)

for some nonzero element θ in Λ. Furthermore, H1(KΣ/K, T
∗)Λ-tors 6= 0 if and only if there exists

an irreducible element π in Λ such that H0
(
K, T ∗

/
πT ∗

)
6= 0.

Remark 2.2.3. By definition, we have T ∗
/
πT ∗ ∼= Hom

(
D[π], µp∞

)
. Hence, H0

(
K, T ∗

/
πT ∗

)
6= 0

means that there exists a nontrivial GK-homomorphism from D[π] to µp∞ . ♦

We will assume now that the discrete, cofinitely generated Λ-module D is actually cofree. This
means that T ∗ is a free Λ-module of finite rank. This assumption is satisfied in a number of
interesting cases. For example, it holds if T is a free R-module, as in the introduction, and R is a
free Λ-module. If R is a domain, then R is free as a Λ-module if and only if R is a Cohen-Macaulay
ring. (See proposition 2.2.11 in [BH].) However, if R is reflexive and its Krull dimension is at
least 3, then R may conceivably fail to be free as a Λ-module. Cofreeness of D has some useful
implications, as we now discuss. The first is contained in the following result.

Proposition 2.2.4. Suppose that D is cofree as a Λ-module and that H0(K, T ∗) = 0. Then
H1(KΣ/K, T

∗) has no nonzero, pseudo-null Λ-submodules.

The conclusion means that the associated prime ideals for the torsion Λ-moduleH1(KΣ/K, T
∗)Λ-tors

are of height 1. That is, its support is pure of codimension 1.

Proof. Suppose to the contrary that Z is a nonzero pseudo-null Λ-submodule of H1(KΣ/K, T
∗).

It is clear that Λ must have Krull dimension at least 2. According to corollary 2.5.1 in [Gr3],
the annihilator of Z contains infinitely many prime ideals Π ∈ Specht=1(Λ). Choose any such
Π. Since Λ is a UFD, Π must be principal. Let π be a generator. As in proposition 2.2.2, Z
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is isomorphic to a Λ-submodule of H0
(
K, T ∗

/
πT ∗

)
. Now Λ/Π has no nonzero, pseudo-null Λ-

submodules. Hence, the same is true for the free (Λ/Π)-module T ∗
/
πT ∗, and therefore also for the

submodule H0
(
K, T ∗

/
πT ∗

)
. �

Proposition 2.2.5. Suppose that D is cofree as a Λ-module and that D[m] has no quotient iso-
morphic to µp for the action of GK . Then H1(KΣ/K, T

∗) is torsion-free as a Λ-module.

Proof. By definition, we have T ∗
/
mT ∗ ∼= Hom

(
D[m], µp). The assumption about µp means that

H0
(
K, T ∗/mT ∗

)
= 0. The stated result follows from proposition 2.2.2 and the following lemma.

One applies the lemma to first see that H0(K, T ∗) = 0, and then to see that H0(K, T ∗/πT ∗) = 0
for all irreducible elements π in Λ.

Lemma 2.2.6. Suppose that T ∗ is free as a Λ-module. Suppose that Π1 and Π2 are prime ideals
in Λ such that Π1 ⊆ Π2. If H0

(
K, T ∗/Π2T

∗
)

= 0, then H0
(
K, T ∗/Π1T

∗
)

= 0.

Proof. The action of Gal(KΣ/K) on T ∗ factors through a quotient group which is topologically
finitely-generated. To see this, note that T ∗ is a free Λ-module since D is assumed to be cofree.
After choosing a basis, the Galois action on T ∗ is given by a continuous homomorphism

σ : Gal(KΣ/K) −→ GLd(Λ)

where d = rankΛ(T ∗). The Galois action on T ∗
/
mT ∗ is given by the reduction of σ modulo m,

which factors through Gal(L/K) for some finite Galois extension L of K. One can verify that the
kernel of the map GLd(Λ) → GLd(Fp) is a pro-p group. Hence, σ factors through Gal(M/K), where
M is the maximal pro-p extension of L contained in KΣ. However, the Burnside Basis theorem
shows that Gal(M/L) is topologically finitely generated, and hence so is Gal(M/K).

Thus, we can find a set {g1, ..., gt} in GK such that, if X is any quotient of the GK-module T ∗,
then H0(K,X) coincides with the kernel of the following map:

βX : X −→ Xt, defined by βX(x) =
(
(g1 − 1)x, . . . , (gt − 1)x

)

for all x ∈ X. The map βT ∗ is given by a td× d matrix B with entries in Λ. The kernel of βT ∗ has
Λ-rank equal to d− rank(B). More generally, for any prime ideal Π of Λ, let BΠ denote the td× d
matrix with entries in Λ/Π obtained by reducing B modulo Π. If X = T ∗

/
ΠT ∗, then the kernel

of βX has (Λ/Π)-rank equal to d− rank
(
BΠ

)
. The rank r of a matrix over a domain is the largest

integer for which at least one r×r-minor has a nonzero determinant. That description implies that

rank
(
BΠ2

)
≤ rank

(
BΠ1

)
.

Now T ∗/Π1T
∗ is free of rank n as a (Λ/Π1)-module. If H0

(
K, T ∗/Π1T

∗
)
6= 0, then BΠ1

will have
rank ≤ n − 1. Hence, the same inequality will be true for the rank of BΠ2

, and therefore we will
have H0

(
K, T ∗/Π2T

∗
)
6= 0. �
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The following is a more refined result which is useful if D[m] does have a quotient isomorphic
to µp. As in the introduction, we denote the Krull dimension of Λ by m+ 1. We let Specht=m(Λ)
denote the set of prime ideals of Λ of height m. Note that if p is in Specht=m(Λ), then Λ/p is a ring
of Krull dimension 1, and hence is either a finite integral extension of Zp if Λ/p has characteristic
0, or a finite integral extension of a formal power series ring Fp[[x]] in one variable if Λ/p has
characteristic p. If D is cofree as a Λ-module, then T ∗ is free. Thus, for any prime ideal Π of
Λ, T ∗

/
ΠT ∗ will be a free (Λ/Π)-module. Therefore, the (Λ/Π)-submodule H0(K, T ∗/ΠT ∗) either

vanishes or has positive rank.

Proposition 2.2.7. Suppose that T ∗ is free as a Λ-module. Assume that the Krull dimension of
Λ is m+1, where m ≥ 1. If m = 1, assume that H0(K, T ∗/pT ∗) vanishes for all p in Specht=1(Λ).
If m ≥ 2, assume that H0(K, T ∗/pT ∗) vanishes for all but finitely many p in Specht=m(Λ). Then
H1(KΣ/K, T

∗) is torsion-free as a Λ-module.

Proof. The first assumption implies that D is Λ-cofree and hence certainly Λ-divisible. By lemma
2.2.6, the other assumptions imply that H0(K, T ∗) = 0. Therefore, according to proposition 2.2.2,
it suffices to show that H0(K, T ∗/ΠT ∗) = 0 for all Π in Specht=1(Λ). If m = 1, this vanishing
statement is true by assumption. If m ≥ 2, then every prime ideal Π of Λ of height 1 is contained
in infinitely many prime ideals p of height m, as follows from the lemma below. Therefore, in that
case, the assumption implies that H0(K, T ∗/pT ∗) = 0 for at least one such p, and lemma 2.2.6
then implies the vanishing of H0(K, T ∗/ΠT ∗). �

Lemma 2.2.8. Suppose that Λ has Krull dimension m+ 1, where m ≥ 2. If Π is a prime ideal of
height < m, then there exist infinitely many prime ideals p ∈ Specht=m(Λ) such that Π ⊂ p.

Proof. There exists a prime ideal containing Π of height m − 1. Thus, we can assume that Π
itself has height m− 1. Consider Λ/Π, a complete Noetherian local domain of dimension 2. It is a
finite integral extension of a subring Λ′ which is a formal power series ring over Zp or Fp of Krull
dimension 2. Thus, Λ′ has infinitely many prime ideals of height 1. It follows that the same is true
for Λ/Π. The assertion in the lemma follows immediately. �

The next two propositions concern the case m = 1. The first concerns a global cohomology
group. The second result is local and its proof is virtually identical.

Proposition 2.2.9. Suppose that Λ has Krull dimension 2, that T ∗ is free as a Λ-module, and
that H0(K, T ∗) = 0. Then H1(KΣ/K, T

∗)Λ-tors 6= 0 if and only if there exists at least one Π ∈
Specht=1(Λ) with the following property: Either D[Π] has a quotient isomorphic to µp∞ as a GK-
module, or D[Π] has infinitely many distinct quotients isomorphic to µp.

Proof. According to proposition 2.2.2 and remark 2.2.3, H1(KΣ/K, T
∗)Λ-tors 6= 0 if and only if

HomGK
(D[Π], µp∞) 6= 0 for some Π ∈ Specht=1(Λ). Note that H0

(
K, T ∗/ΠT ∗

)
is a torsion-free
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module over Λ/Π, a domain of Krull dimension 1. If Λ/Π has characteristic 0, then it follows that
H0

(
K, T ∗/ΠT ∗

)
is a torsion-free Zp-module, and hence is either trivial or has positive Zp-rank. If

Λ/Π has characteristic p, then it follows thatH0
(
K, T ∗/ΠT ∗

)
is trivial or has infinite Fp-dimension.

Thus, HomGK
(D[Π], µp∞) 6= 0 means that D[Π] has one of the two stated properties. �

Proposition 2.2.10. Suppose that Λ has Krull dimension 2, that T ∗ is free as a Λ-module, that
v ∈ Σ, and that H0(Kv, T

∗) = 0. Then H1(Kv, T
∗)Λ-tors 6= 0 if and only if there exists at least one

Π ∈ Specht=1(Λ) with the following property: Either D[Π] has a quotient isomorphic to µp∞ as a
GKv -module, or D[Π] has infinitely many distinct quotients isomorphic to µp.

2.3. The vanishing of SL∗(K, T ∗)Λ-tors. We will first show that the vanishing of SL∗(K, T ∗)Λ-tors

and of H1(KΣ/K, T
∗)Λ-tors are equivalent under a certain assumption.

Proposition 2.3.1. Assume that L(Kv,D) ⊆ H1(Kv,D)Λ-div for all v ∈ Σ. Then

SL∗(K, T ∗)Λ-tors = H1(KΣ/K, T
∗)Λ-tors .

In particular, this equality is true if L(Kv,D) is a divisible Λ-module for all v ∈ Σ.

Proof. The assumption means that H1(Kv, T
∗)Λ-tors ⊆ L(Kv, T

∗) for all v ∈ Σ. Obviously, we
have SL∗(K, T ∗)Λ-tors ⊆ H1(KΣ/K, T

∗)Λ-tors. The opposite inclusion follows by noting that the
image of any element of H1(KΣ/K, T

∗)Λ-tors in H1(Kv, T
∗) must be in H1(Kv, T

∗)Λ-tors and hence
in L(Kv, T

∗). �

Proposition 2.3.2. Assume that D is divisible as a Λ-module. Assume also that there exists a
prime η ∈ Σ with the following two properties: (i) H0(Kη, T

∗) = 0, and (ii) QL(Kη,D) is divisible
as a Λ-module. Then SL∗(K, T ∗)Λ-tors = 0.

Proof. Only the local condition at η occurring in the definition of SL∗(K, T ∗) will be needed.
Consider the maps

H1(K, T ∗)Λ-tors −→ H1(Kη, T
∗)Λ-tors −→ H1(Kη, T

∗)
/
L(Kη, T

∗) .

Just as in the proof of proposition 2.1.1, assumption (i) implies that the first map is injective.
It is the map (8). Now L(Kη, T

∗) is the Pontryagin dual of the divisible Λ-module QL(Kη,D)
and is therefore a torsion-free Λ-submodule of H1(Kη, T

∗). It follows that the second map is also
injective. By definition, any element of SL∗(K, T ∗)Λ-tors has trivial image under the composite of
those maps and therefore must be trivial. �

Remark 2.3.3. Assumption (ii) in proposition 2.3.2 would obviously be satisfied if H1(Kη,D) is
a divisible Λ-module, but is a significantly less restrictive property in general. However, the two
properties are equivalent if one makes the first assumption in proposition 2.3.1 for v = η. To explain

13



this, suppose that v is any prime of K. Then H1(Kv,D)
/
H1(Kv,D)Λ-div is a cotorsion Λ-module.

It follows that the image of H1(Kv,D)Λ-div in QL(Kv,D) is precisely QL(Kv,D)Λ-div. Therefore,
QL(Kv,D) is a divisible Λ-module if and only if L(Kv,D)H1(Kv,D)Λ-div = H1(Kv,D). It follows
that if QL(Kv,D) is a divisible Λ-module and if L(Kv,D) ⊆ H1(Kv,D)Λ-div, then H1(Kv,D) is a
divisible Λ-module. The converse is clearly true too. ♦

3 The cokernel of φL.

Section 3.1 will describe coker(φL) in terms of SL∗(K, T ∗) and X
1(K,Σ, T ∗). This is a direct con-

sequence of the Poitou-Tate duality theorems and the basis for our results concerning coker(φL).
We apply this description together with results from section 2 to obtain some rather general suf-
ficient conditions for φL to be surjective. In section 3.3, under rather restrictive assumptions, we
discuss what happens if Σ is allowed to vary.

3.1. Expressing coker(φL) in terms of Selmer groups for T ∗. For a given specification
L, we have defined Λ-submodules L(K,D) and L(K, T ∗) of P (K,D) and P (K, T ∗), respectively.
Furthermore, they are orthogonal complements of each other under the pairing

(9) P (K,D) × P (K, T ∗) −→ Qp/Zp

which is defined by the local pairings (5). It is a nondegenerate Λ-pairing. We define

(10) G(K,D) = im
(
H1(KΣ/K,D) → P (K,D)

)
,

G(K, T ∗) = im
(
H1(KΣ/K, T

∗) → P (K, T ∗)
)
.

For brevity, we will denote G(K,D), P (K,D) and L(K,D) by G, P , and L, respectively. Similarly,
G(K, T ∗), P (K, T ∗) and L(K, T ∗) will be denoted by G∗, P ∗ , and L∗. Thus, G and L are
Λ-submodules of the discrete Λ-module P , while G∗ and L∗ are Λ-submodules of the compact Λ-
module P ∗. Under the pairing (9), the submodules G and G∗ are orthogonal complements of each
other, as are L and L∗.

By definition, the cokernel of φL is isomorphic to P/GL. The pairing (9) shows that its Pon-
tryagin dual is isomorphic to G∗ ∩ L∗. It is clear from the definition that G∗ ∩ L∗ is the image of
SL∗(K, T ∗) under the second map in (10). Denoting the kernel of that map by X

1(K,Σ, T ∗), we
obtain the following result concerning the cokernel of φL.

Proposition 3.1.1. With the above notation and assumptions, we have the following Λ-module
isomorphism for the Pontryagin dual of coker(φL):

̂coker(φL) ∼= SL∗(K, T ∗)
/
X

1(K,Σ, T ∗) .
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In particular, if SL∗(K, T ∗) = 0, then φL is surjective.

The argument gives an isomorphism of Zp-modules if one just assumes that D is a discrete, p-
primary abelian group with a continuous action of Gal(KΣ/K).

Remark 3.1.2. It follows that coker(φL) is a cotorsion Λ-module if and only if SL∗(K, T ∗) and
X

1(K,Σ, T ∗) have the same ranks as Λ-modules. If LEO(D) is satisfied, then coker(φL) is cotorsion
as a Λ-module if and only if SL∗(K, T ∗) is a torsion Λ-module. ♦

Remark 3.1.3. Propositions 2.2.4 and 3.1.1 have the following consequence concerning coker(φL).

Suppose that D is Λ-cofree, that H0(K, T ∗) = 0, and that X
1(K,Σ, T ∗) = 0. Then ̂coker(φL)Λ-tors

is isomorphic to a submodule of H1(KΣ/K, T
∗)Λ-tors. Therefore, ̂coker(φL) has no nonzero, pseudo-

null Λ-submodules. That is, coker(φL) is an almost divisible Λ-module. ♦

3.2. Surjectivity of φL. We can now give sufficient conditions for the surjectivity of φL. However,
we first point out that proposition 3.1.1 itself gives such a sufficient condition. If one assumes that D
is a cofinitely-generated Λ-module, that LEO(D) is satisfied, that coker(φL) is a cotorsion Λ-module,
and that H1(KΣ/K, T

∗) is torsion-free as a Λ-module, then it clearly follows that coker(φL) = 0.
Nevertheless, the following results turn out to often be useful.

Proposition 3.2.1. Assume that D is divisible as a Λ-module, that LEO(D) is satisfied, and that
coker

(
φL

)
is a cotorsion Λ-module. Then φL is surjective if at least one of the following assumptions

is satisfied.

(a) D[m] has no subquotient isomorphic to µp for the action of GK ,

(b) D is a cofree Λ-module and D[m] has no quotient isomorphic to µp for the action of GK ,

(c) There is a prime η ∈ Σ satisfying properties (i) and (ii) in proposition 2.3.2.

Proof. As discussed in section 2.1, LEO(D) implies that X
1(K,Σ, T ∗) is a torsion Λ-module. By

proposition 3.1.1, and the assumption about the cokernel of φL, it follows that SL∗(K, T ∗) is a
torsion Λ-module. One can use proposition 2.2.1 if assumption (a) is satisfied to conclude that
SL∗(K, T ∗) = 0. If (b) is satisfied, then proposition 2.2.5 gives that conclusion. On the other hand,
if assumption (c) is satisfied, then proposition 2.3.2 implies that SL∗(K, T ∗) vanishes. In all three
cases, proposition 3.1.1 implies that coker(φL) = 0. �

Remark 3.2.2. The assumption about µp in part (a) of the above proposition is satisfied in many
interesting situations. As an example, suppose that ρ is a Galois representation of degree n over
R as in the introduction, that n ≥ 2, and that the residual representation ρ̃ giving the action of
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GK on T /MT is irreducible over the finite field R/M. Regarding ρ̃ as a representation space for
GK over Λ/m = Fp, all of the irreducible constituents will be conjugate over Fp and of dimension
divisible by n. Hence the Galois module µp cannot be a subquotient. Now ρ̃ also gives the action of
GK on D[M]. Thus, no subquotient of D[M] is isomorphic to µp. According to proposition 3.8 in
[Gr3], the irreducible constituents of the (Λ/m)-representation spaces D[m] and D[M] for GK are
the same (although with possibly different multiplicities). It therefore follows that no subquotient
of D[m] is isomorphic to µp.

Concerning assumption (b), one useful remark is that D[m] has a quotient isomorphic to µp

if and only if D[M] has such a quotient. To see this, note first that the intersection of the ker-
nels of all GK-equivariant homomorphisms from D[m] to µp is an R-submodule of D[m]. Thus,
HomGK

(D[m], µp) 6= 0 if and only if HomGK
(D[m]

/
MD[m], µp) 6= 0. Now one can regard both

D[M] and D[m]
/
MD[m] as representation spaces for GK over R/M. The first is isomorphic to ρ̃.

As we will explain below, the second is isomorphic to ρ̃t, where t is the dimension of R̂[m]
/
MR̂[m] as

an R/M-vector space. Equivalently, t = dimR/M

(
(R/mR)[M]

)
. Regarding D[M] and D[m]

/
MD[m]

as representation spaces for GK over Λ/m = Fp, the second is isomorphic to a direct sum of t copies
of the first, and so the above remark then follows.

Now note that if a ∈ R, then multiplication by a gives an R-endomorphism of R̂ and the induced
action on R̂[M] is simply multiplication by the reduction of a modulo M. The induced action of
a on R̂[m]

/
MR̂[m] is also multiplication by the reduction of a modulo M on that t-dimensional

vector space over RM. Now if g ∈ GK , then ρ(g) is an n×n matrix Ag over R. The action of ρ(g)

on D = R̂n is multiplication by Ag. The action of ρ(g) on D[M] = R̂n is given by the reduction

of Ag modulo M. The action of ρ(g) on D[m] = R̂[m]n is given by the reduction of that matrix
modulo mR. The action of ρ(g) on D[m]

/
MD[m] is given by t copies of the reduction of Ag modulo

M. Thus, we do have D[m]
/
MD[m] isomorphic to ρ̃t. ♦

Corollary 3.2.3. Assume that D is divisible as a Λ-module, that LEO(D) is satisfied, and that
coker

(
φL

)
is a cotorsion Λ-module. Suppose that Σ0 ⊂ Σ and that there exists a non-archimedean

prime η ∈ Σ
0

such that H0(Kη, T
∗) = 0. Then the map

φ
L,Σ0

: H1(KΣ/K,D) −→
∏

v∈Σ−Σ0

QL(Kv,D)

is surjective.

Proof. Denoting φL by φ and φ
L,Σ

0

by φ′, it is clear that coker(φ′) is a quotient of coker(φ) and
hence is a cotorsion Λ-module. That is the assumption we actually need in this proof. If one defines
a local specification L′ by letting

L′(Kv,D) = H1(Kv,D) for v ∈ Σ
0
, L′(Kv,D) = L(Kv,D) for v ∈ Σ − Σ

0
,

then φ′ is just the map φL′ . Note that QL′(Kη,D) = 0. The assumptions in part (c) of proposition
3.2.1 are satisfied for the specification L′. It therefore follows that φ′ is indeed surjective. �
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Remark 3.2.4. The kernel of φ
L,Σ

0

= φL′ is SL′(K,D), which one can think of as a “non-primitive”

Selmer group SΣ0

L (K,D). It is defined just as SL(K,D), but one omits the local conditions for the
specification L corresponding to the primes v ∈ Σ

0
. Of course, we have the obvious inclusion

SL(K,D) ⊆ SΣ0(K,D) and the corresponding quotient SΣ0

L (K,D)
/
SL(K,D) is isomorphic to a

Λ-submodule of
∏

v∈Σ0
QL(Kv,D). If φL is itself surjective, then one has an isomorphism

SΣ0

L (K,D)
/
SL(K,D) ∼=

∏

v∈Σ0

QL(Kv,D) .

This provides a useful way to study the structure of SΣ0

L (K,D)
/
SL(K,D). ♦

The following results follow immediately from corollary 3.2.3. One just takes Σ0 = {η}.

Corollary 3.2.5. Under the assumptions of corollary 3.2.3, the natural map from QL(Kη,D) to
coker(φL) is surjective.

Corollary 3.2.6. Assume that D is divisible as a Λ-module, that LEO(D) is satisfied, and that η
is a non-archimedean prime in Σ such that H0(Kη, T

∗) = 0. Then the map

H1(KΣ/K,D) −→
∏

v∈Σ−{η}

H1(Kv,D)
/
H1(Kv,D)Λ-div

is surjective. The kernel of that map contains H1(KΣ/K,D)Λ-div.

This last corollary is an improved version of proposition 6.11 in [Gr3]. It follows that

(11) H1(KΣ/K,D)
/
H1(KΣ/K,D)Λ-div

has a certain quotient Λ-module involving just local cohomology groups. Proposition 2.2.10 de-
scribes when H1(Kv, T

∗)Λ-tors is nontrivial. One can often determine that Λ-module precisely. By
(5), one then obtains equivalent statements about its Pontryagin dual H1(Kv,D)

/
H1(Kv,D)Λ-div.

One then obtains sufficient conditions for (11) to be nontrivial, and some information about its
structure as a Λ-module.

Remark 3.2.7. Suppose that L1 and L2 are specifications for D and Σ. For i ∈ {1, 2}, let
Li(Kv,D) be the Λ-submodule of H1(Kv,D) for the specification Li. We will write L1 ⊆ L2 if
we have L1(Kv,D) ⊆ L2(Kv,D) for all v ∈ Σ. It is then obvious that coker(φL2

) is a quotient
of coker(φL1

) as a Λ-module. Thus, if coker(φL1
) is Λ-cotorsion, then so is coker(φL2

). The
converse is clearly true if L2(Kv,D)

/
L1(Kv,D) is Λ-cotorsion for all v ∈ Σ. In particular, if L is a

given specification for D and Σ, we can define a new specification Ldiv by replacing L(Kv,D) by
L(Kv,D)Λ-div for all v ∈ Σ. With this notation, coker(φL) is Λ-cotorsion if and only if coker(φLdiv

)
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is Λ-cotorsion. Also if coker(φLdiv
) = 0, then coker(φL) = 0 too. The converse of that statement is

not true in general. ♦

3.3. Varying Σ. We now discuss the dependence of the kernel and cokernel of φL on the choice
of Σ under certain restrictive assumptions. We let Σmin denote the set consisting of primes v of K
such that either v|p or v is archimedean or the inertia subgroup of GKv acts nontrivially on T . We
assume that L(Kv,D) has been defined in some way for all v ∈ Σmin, and call the corresponding
specification Lmin. For v 6∈ Σmin, we will assume that L(Kv,D) = 0. Furthermore, we will make
the following assumption.

Hypothesis 3.3.1. H0(Kv,D) is a cotorsion Λ-module for all v 6∈ Σmin.

By definition, the action of GKv on D is unramified when v 6∈ Σmin. Let H1
unr(Kv,D) denote

H1(Kunr
v /Kv,D), the kernel of the restriction map H1(Kv,D) → H1(Kunr

v ,D)
)
. It is straightfor-

ward to show that H0(Kv,D) and H1
unr(Kv,D) have the same Λ-corank. If one assumes that D is

a divisible Λ-module, then one finds that H1
unr(Kv,D) vanishes if H0(Kv,D) is Λ-cotorsion. Thus,

assuming that D is Λ-divisible, hypothesis 3.3.1 means that H1
unr(Kv,D) = 0 for all v 6∈ Σmin.

Suppose that Σ1 and Σ2 are finite sets of primes of K, both containing Σmin. Assume also that
Σ1 ⊆ Σ2. The definition of L(Kv,D) described above gives a specifications L1 and L2 for the sets
Σ1 and Σ2. Note that since the action of GK on D factors through Gal(KΣ1

/K), we have

H1(KΣ2
/KΣ1

,D) = Hom
(
Gal(KΣ2

/KΣ1
),D

)
.

We will assume that hypothesis 3.3.1 is satisfied. Since the inertia subgroups of Gal(KΣ2
/KΣ1

)
generate a dense subgroup, it follows that we have an exact sequence

(12) 0 −→ H1(KΣ1
/K,D) −→ H1(KΣ2

/K,D)
β

−→
⊕

v∈Σ2−Σ1

H1(Kv,D) .

We then obtain the following commutative diagram:

0 // H1(KΣ1
/K,D) //

��

H1(KΣ2
/K,D) //

��

H1(KΣ2
/K,D)

/
H1(KΣ1

/K,D) //

��

0

0 // QL1
(K,D) // QL2

(K,D) // QL2
(K,D)

/
QL1

(K,D) // 0

where the rows are exact, the first two vertical maps are φL1
and φL2

, respectively, and the third
map is induced by the global-to-local map β.

The exactness of (12) implies the injectivity of the third vertical map. Applying the snake
lemma to the above commutative diagram gives us the following proposition.
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Proposition 3.3.2. Assume that D is a divisible Λ-module, that hypothesis 3.3.1 is satisfied, that
L(Kv,D) = 0 for all v 6∈ Σmin, and that Σ1 ⊆ Σ2 are finite sets of primes of K containing Σmin.
Then the maps

ker
(
φL1

)
−→ ker

(
φL2

)
, coker

(
φL1

)
−→ coker

(
φL2

)

are both injective. Furthermore, the first map is also surjective and the cokernel of the second map
is isomorphic to coker(β).

One can weaken the hypotheses somewhat. It suffices to make the assumption that L(Kv,D) = 0
and that H0(Kv,D) is Λ-cotorsion just for the primes v in Σ2 − Σ1.

One can regard the map β as the map φM2
, where M2 is the following specification for Σ2:

M2(Kv,D) = H1(Kv,D) for v ∈ Σ1, M2(Kv,D) = 0 for v ∈ Σ2 − Σ1 .

One sees that ker(φM2
) = H1(KΣ1

/K,D), and so the third vertical map in the above diagram
is injective. Its cokernel is precisely the cokernel of φM2

. We can examine coker(φM2
) by using

proposition 3.1.1. Note that M2(Kv,D) = H1
unr(Kv,D) for v ∈ Σ2−Σ1. Its orthogonal complement

M∗
2 (Kv, T

∗) is H1
unr(Kv, T

∗). Therefore, just as for (12), we have an exact sequence

(13) 0 −→ H1(KΣ1
/K, T ∗) −→ H1(KΣ2

/K, T ∗) −→
⊕

v∈Σ2−Σ1

H1(Kv, T
∗) .

For v ∈ Σ1, we have M∗
2 (Kv, T

∗) = 0. It follows that the corresponding Selmer group SM2
(K, T ∗)

is isomorphic to the image of X
1(K,Σ1, T

∗) under the inflation map in (13) and that

̂coker(β) = ̂coker(φM2
) ∼= X

1(K,Σ1, T
∗)

/
X

1(K,Σ2, T
∗) .

In particular, if we are in a situation where X
1(K,Σ1, T

∗) = 0, then it follows that coker(β) = 0.
The above observations and proposition 3.3.2 have the following useful consequence.

Proposition 3.3.3. Assume that D is a divisible Λ-module and that hypothesis 3.3.1 is satisfied.
Consider the following global-to-local map:

ψ : H1(K,D) −→
( ⊕

v ∈ Σmin

QL(Kv,D)
) ⊕( ⊕

v 6∈ Σmin

H1(Kv,D)
)

.

Let Σ be a finite set of primes of K containing Σmin and let L be the corresponding specifica-
tion, as defined above. Then ker(ψ) ∼= ker

(
φL

)
. Furthermore, if one assumes in addition that

X
1(K,Σmin, T

∗) vanishes, then coker(ψ) ∼= coker
(
φL

)
.

Proof. The assumption that X
1(K,Σmin, T

∗) vanishes implies that X
1(K,Σ′, T ∗) also vanishes

for any finite set Σ′ containing Σmin. If Σ1 ⊆ Σ2 are two such sets, then the fact that coker(β) = 0
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and proposition 3.3.2 imply that the second map in proposition 3.3.2 is an isomorphism. Let Σ′

vary over all finite sets of primes of K containing Σ, ordered by inclusion. It follows that coker(φL)
is isomorphic to the direct limit of these cokernels. But that direct limit is precisely coker(ψ),
and so the stated isomorphism for the cokernels follows. Similarly, the stated isomorphism for the
kernels follows from the fact that the first map in proposition 3.3.2 is an isomorphism. �

Although we will not pursue this topic further, one can study what happens if X1(K,Σmin, T
∗)

is nontrivial. A useful tool would be the analogue of proposition 3.1.1 when the roles of D and T ∗ are
reversed. However, in situations which come up naturally in Iwasawa theory, if the Krull dimension
of Λ is at least 2, then one would generally expect X

1(K,Σmin, T
∗) to vanish (although exceptions

can be constructed). When Λ has Krull dimension 1, it is not so uncommon for X
1(K,Σmin, T

∗)
to be nontrivial and even to have positive Λ-rank. This issue is discussed in some detail in part
D, section 6 of [Gr3]. We will have some additional comments when Λ = Zp in the next section,
where we discuss the p-adic Tate module for an abelian variety.

3.4. Examples from Hida theory. Hida’s theory of families of ordinary modular forms provides
examples of Galois representations ρ of rank n = 2 over various complete Noetherian local rings R.
We refer the reader to [Hid], [EPW], and [Och] for a discussion of these representations. In these
examples, there is a canonical subring Λ of R. Its Krull dimension is either 2 (the one-variable
case) or 3 (the two-variable case). All of these rings are constructed somehow from Hida’s universal
ordinary Hecke algebra for a fixed level (or levels, as in [EPW]). These rings are not necessarily
domains. However, one may replace R by R/a, where a is a minimal prime ideal of R, obtaining
a domain, and ρ by its reduction modulo a. Even if R is already a domain, one can replace R
by various possibly larger rings in its field of fractions K, e.g., its reflexive hull as a Λ-module or
its integral closure in K. Both of those domains are also finitely-generated as Λ-modules. This
is clear for the reflexive hull. For the integral closure, this assertion follows from the theorem of
Nagata mentioned in the introduction. In either case, theorem 7 in [Coh] then implies that the new
ring is again a complete Noetherian local ring. Also, the residue field is still finite. One obtains a
representation over the new ring from ρ by extending scalars.

The residual representation ρ̃ is 2-dimensional over the residue field of R. We will assume that
ρ̃ is irreducible. Proposition 2.2.1 and remark 3.2.2 then imply that H1(KΣ/K, T

∗)Λ-tors vanishes.
Suppose that L is a specification for ρ and Σ. Part (a) of proposition 3.2.1 implies that φL is
surjective if one makes the assumption that LEO(D) is satisfied and that coker(φL) is Λ-cotorsion.

Let r = rankΛ(R). The discrete Galois module D has Λ-corank 2r. There is a natural specifi-
cation L in this situation. One can find a description of L in [Gr2], and also in [Och] with more
detail. Theorem 3.10 in [Och] gives the surjectivity of φL, except for one case where the Selmer
group SL(K,D) may fail to be Λ-cotorsion. Ochiai refers to this as the “diagonal” case. Roughly
speaking, in the diagonal case, SL(K,D) may turn out to have positive Λ-corank if a certain root
number is −1. In that situation, coker(φL) would also turn out to have positive Λ-corank. We
exclude this case in the rest of this discussion.
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For all the examples mentioned above, apart from the diagonal case, one finds that q
L
(K,D) = r.

For the quantity b1(K,D) mentioned in the introduction, one also finds that b1(K,D) = r. One
verifies both of those assertions by a nontrivial “specialization” argument, reducing to a study of
the 2-dimensional representations associated to modular forms of varying weight. Furthermore,
by using theorems of Kato and Rohrlich, one shows that SL(K,D) is a cotorsion Λ-module. This
assertion is contained in theorem 3 and proposition 3.4 in [Och]. One therefore has equality in
(4). It follows that LEO(D) is satisfied and that coker(φL) is Λ-cotorsion. Consequently, under the
assumption that ρ̃ is irreducible, we can conclude that φL is surjective.

4 The Tate module of an abelian variety.

Assume that A is an abelian variety of dimension g defined over K. Let p be any prime. We will
illustrate the results of sections 2 and 3 in the case where R = Λ = Zp and T = Tp(A). Thus,
D = A[p∞], the group of p-power torsion points on A. We can take Σ to be any finite set of primes
of K containing the primes lying over p and ∞ and the primes where A has bad reduction. The
minimal such set will be denoted by Σmin, just as in section 3.3. If we choose a Zp-module basis
for T , then we can take ρ : Gal(KΣ/K) → GL2g(Zp) to be the homomorphism giving the natural
action of Gal(KΣ/K) on T . Note also that the Weil pairing shows that T ∗ ∼= Tp(B), where B is
the dual abelian variety for A. The results in section 3 provide a proof of a well-known theorem of
Cassels, as we will discuss in section 4.5.

4.1. Various ranks and coranks. We first determine the Zp-corank of QL(K,D). As in the
introduction, the local specification L is defined as follows. For each v ∈ Σ, let L(Kv, D) be the
image of the local Kummer map κv. Thus, L(Kv, D) is a divisible Zp-module for all v ∈ Σ. In
fact, for v ∤ p, H1(Kv, D) is a finite group and we have L(Kv, D) = 0. This is true even if v is
archimedean. On the other hand, if v | p, then it is known that A(Qv) contains a subgroup of
finite index which is a free Zp-module of rank g[Kv : Qp]. Therefore, A(Qv) ⊗ Qp/Zp is a cofree
Zp-module with corank g[Kv : Qp]. Since κv is injective, it follows that L(Kv, D) has the same
Zp-corank.

Now H1(Kv,D) is finite if v ∤ p and has Zp-corank equal to 2[Kv : Qp]g if v|p. These facts
are consequences of the formula for the local Euler-Poincaré characteristic for the GQv -module D
(which involves the Zp-coranks of H i(Kv,D), where 0 ≤ i ≤ 2). It then follows that the Zp-corank
of QL(Kv,D) is 0 for v ∤ p and is equal to g[Kv : Qp] for v|p. Summing over all v ∈ Σ, we see
that the Zp-corank of QL(K,D) is [K : Q]g, as stated in the introduction. It was denoted there by
qL(K,D).

If v is a non-archimedean prime, then the torsion subgroup of B(Kv) is finite. In particular,
H0(Kv, B[p∞]) is finite. It follows that H0(Kv, T

∗) = 0 for all non-archimedean primes v in
Σ. This has the following consequences. By proposition 2.1.1, X

1(K,Σ, T ∗) is torsion-free and
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X
2(K,Σ,D) is divisible. Also, H2(Kv,D) = 0 for all non-archimedean primes in Σ, and all primes

in Σ if p is odd. Therefore, we have H2(KΣ/K,D) = X
2(K,Σ,D) when p is odd. For p = 2,

H2(KΣ/K,D)
/
X

2(K,Σ,D) is a finite group of exponent 2.

We now discuss the Zp-corank of H1(KΣ/K,D). The Euler-Poincaré characteristic for the
Gal(KΣ/K)-module D is known to be −[K : Q]g. Also, the torsion subgroup of A(K) is finite and
so H0(KΣ/K,D) is certainly finite. Now H2(KΣ/K,D) and X

2(K,Σ,D) have the same Zp-corank
for any prime p. This gives the formula

(14) corankZp

(
H1(KΣ/K,D)

)
= [K : Q]g + corankZp

(
X

2(K,Σ,D)
)

and so the quantity denoted by b1(K,D) in the introduction is equal to [K : Q]g. Note that
b1(K,D) = qL(K,D). Also, it follows from (2) that

(15) corankZp

(
SL(K,D)

)
= corankZp

(
X

2(K,Σ,D)
)

+ corankZp

(
coker(φL)

)
.

4.2. The torsion subgroup of H1(KΣ/K, T
∗) and SL∗(K, T ∗) . Since Λ = Zp, if X is a

Λ-module, then XΛ-tors is just the torsion subgroup Xtors of X. We have the following result.

Proposition 4.2.1. With the above notation, we have the following equalities and isomorphism:

SL∗(K, T ∗)tors = H1(KΣ/K, T
∗)tors

∼= H0(K,B[p∞]) = B(K)p .

In particular, H1(KΣ/K, T
∗) and SL∗(K, T ∗) are torsion-free if and only if B(K)p = 0.

Proof. The fact that L(Kv,D) is divisible for all v ∈ Σ together with proposition 2.3.1 implies the
first equality. One can apply proposition 2.2.2 to T ∗ = Tp(B) and θ = pt for t sufficiently large to
obtain the isomorphism. Alternatively, one can also derive this directly from the following exact
sequence. It involves the Qp-representation space Vp(B) = Tp(B) ⊗Zp Qp for Gal(KΣ/K).

(16) 0 −→ Tp(B) −→ Vp(B) −→ B[p∞] −→ 0 .

The corresponding cohomology sequence proves that isomorphism since H0
(
K,Vp(B)

)
= 0 and

H1
(
KΣ/K, Vp(B)

)
is torsion-free. By definition, we have H0(K,B[p∞]) = B(K)p. �

4.3. Hypothesis LEO(D). Proposition 2.2.1 implies that X
2(K,Σ,D) is a divisible group.

Therefore, LEO(D) means that X
2(K,Σ,D) = 0. Equivalently, H2(KΣ/K,D) has Zp-corank 0.

This means that H2(KΣ/K,D) vanishes if p is odd and is elementary abelian if p = 2. The following
result gives other equivalent versions of LEO(D). We let D∗ = T ∗ ⊗Zp (Qp/Zp). One can identify
D∗ with B[p∞].
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Proposition 4.3.1. Let D = A[p∞],D∗ = B[p∞], and T ∗ = Tp(B). The Zp-coranks of

X
1(K,Σ,D) , X

1(K,Σ,D∗) , X
2(K,Σ,D) , and X

2(K,Σ,D∗)

are all equal to the Zp-rank of X
1(K,Σ, T ∗). In particular, LEO(D) is satisfied if and only if any

of the above groups is finite.

We remark that X
1(K,Σ,D) can be finite, and still nontrivial, in contrast to X

2(K,Σ,D) and
X

1(K,Σ, T ∗).

Proof. The fact that B is isogenous to A over K implies that X
i(K,Σ,D) and X

i(K,Σ,D∗)
have the same Zp-corank for any i ≥ 0. This is of interest only for i ∈ {1, 2} since those groups
are trivial otherwise. By (6), we have the corankZp

(
X

2(K,Σ,D)
)

= rankZp

(
X

1(K,Σ, T ∗)
)
. It

suffices then to show that rankZp

(
X

1(K,Σ, T ∗)
)

= corankZp

(
X

1(K,Σ,D∗)
)
. However, both of

these quantities are equal to the Qp-dimension of X
1(K,Σ, Vp(B)

)
. �

It is difficult to state a precise conjecture predicting when LEO(D) is satisfied. Of course, one
sufficient condition is that SL(K,D) be finite, as pointed out in the introduction. To state a more
general criterion, we will assume that XA(K)p, the p-primary subgroup of the Tate-Shafarevich
group for A over K, is finite. Consider the Kummer homomorphism

κ : A(K) ⊗Z (Qp/Zp) −→ H1(KΣ/K,D) .

Obviously, we have X
1(K,Σ,D) ⊆ SL(K,D). Our assumption about XA(K)p means that

[SL(K,D) : im(κ)] is finite. Hence, X
1(K,Σ,D) and X

1(K,Σ,D) ∩ im(κ) have the same Zp-
corank. Since κ is injective, X

1(K,Σ,D) ∩ im(κ) is isomorphic to the kernel of the map

ε : A(K) ⊗Z (Qp/Zp) −→
⊕

v|p

A(Kv) ⊗Z (Qp/Zp) .

Therefore, under the assumption that XA(K)p is finite, we have

corankZp

(
ker(ε)

)
= corankZp

(
X

1(K,Σ,D)
)

.

In particular, LEO(D) is satisfied if and only if ε has finite kernel. One can view A(K) as a

subgroup of
⊕

v|pA(Kv). The latter group contains a subgroup of finite index isomorphic to Z
[K:Q]
p .

If r = rank
(
A(K)

)
, then one can choose independent points P1, ..., Pr in A(K) which are in that

subgroup. One then sees easily that ker(ε) is finite if and only if P1, ..., Pr are Zp-independent.

We will state a conjecture in one special situation. Assume that A is defined over Q and that
K is an abelian extension of Q. One can regard A(K)⊗Z Qp as a representation space over Qp for

Gal(K/Q). For any character χ of Gal(K/Q), let rχ(A) denote the multiplicity of χ in A(K)⊗ZQp.
The following conjecture seems reasonable. It just concerns the case where g = 1.
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Conjecture 4.3.2. Suppose that A is an elliptic curve defined over Q and that K is an abelian
extension of Q. Then LEO(D) is satisfied if rχ(A) ≤ 1 for all characters χ of Gal(K/Q).

Assuming as above that XA(K)p is finite, the converse of this conjecture can be proved. The map
ε is Gal(K/Q)-equivariant. Suppose that A = A(K)⊗Z(Qp/Zp) and B =

⊕
v|p A(Kv)⊗Z(Qp/Zp).

If ε has finite kernel, then the adjoint map B̂ → Â has finite cokernel. Hence we have a surjective
map B̂ ⊗Zp Qp → Â ⊗Zp Qp of representations spaces for Gal(K/Q). If g = 1, then B̂ ⊗Zp Qp

is isomorphic to the regular representation of Gal(K/Q) over Qp. It follows that if LEO(D) is
satisfied for A and K, then we indeed have rχ(A) ≤ 1 for all χ.

If K = Q, then conjecture 4.3.2 is easily proven. One may assume that r = rank
(
A(Q)

)
= 1.

As we will explain in remark 4.4.3, the image of ε is then infinite. It follows that the kernel of
ε is indeed finite. This argument can be extended to the case where Gal(K/Q) has exponent
2, or, more generally, where [Q(χ) : Q] = [Qp(χ) : Qp] for all the characters χ of Gal(K/Q).
Furthermore, conjecture 4.3.2 can be proven if E is an elliptic curve with complex multiplication.
This case follows from a result in transcendental number theory, a theorem of Bertrand [Ber] giving
the analogue of the Baker-Brumer theorem for the formal group logarithm for E.

4.4. The cokernel of φL. We prove the following partial result.

Proposition 4.4.1. The order of coker(φL)
/
coker(φL)div is divisible by the order of B(K)p. If

SL(K,D) is finite, then coker(φL) is finite and is isomorphic to the Pontryagin dual of B(K)p.

Proof. The fact that X
1(K,Σ, T ∗) is torsion-free and proposition 3.1.1 imply that ̂coker(φL)

has a subgroup isomorphic to SL∗(K, T ∗)tors. This group is isomorphic to B(K)p according to
proposition 4.2.1. The first assertion follows.

As explained in the introduction, if we assume that SL(K,D) is finite, then X
2(K,Σ,D) and

coker(φL) are both finite. Therefore, it follows that SL∗(K, T ∗) is finite and that X
1(K,Σ, T ∗) = 0.

The stated isomorphism then follows from proposition 3.1.1. �

Corollary 4.4.2. If B(K)p 6= 0, then φL is not surjective.

Remark 4.4.3. If SL(K,D) is infinite, then it should also be true that coker(φL) is infinite. One
can at least show this if A(K) is infinite. First of all, note that if P ∈ A(K) has infinite order, then
〈P 〉 ⊗Z (Qp/Zp) is an infinite subgroup of A(Kv) ⊗Z (Qp/Zp) for any v|p. It follows that

corankZp

(
X

1(K,Σ,D)
)
< corankZp

(
SL(K,D)

)
.

Therefore, by proposition 4.3.1 and (15), one will then indeed have corankZp

(
coker(φL)

)
> 0. One

also has the trivial upper bound [K : Q]g on the Zp-corank of coker(φL), which is just qL(K,D).
In particular, suppose that K = Q and g = 1. Then coker(φL) has Zp-corank ≤ 1. ♦
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4.5. The classical definition of the Selmer group. One usually defines SelA(K) to be the
kernel of the map

(17) φK,A : H1
(
K,A(K)tors

)
−→

⊕

v

H1
(
Kv, A(Kv)

)
,

where v varies over all primes of K. The p-primary subgroup of A(K)tors is D = A[p∞] and
SelA(K)p is a subgroup of H1(K,D). We now explain why the inflation map from H1(KΣ/K,D)
to H1(K,D) induces an isomorphism from SL(K,D) to SelA(K)p. This turns out to follow from
proposition 3.3.3. First of all, note that hypothesis 3.3.1 is satisfied because A(Kv)tors is finite for
every non-archimedean prime v of K. Furthermore, L(Kv,D) = 0 for all v ∤ p. Finally, note that
for all primes v, we have an exact sequence

0 −→ im(κv) −→ H1(Kv,D) −→ H1
(
Kv, A(Kv)

)
p
−→ 0

and therefore we have ker(φK,A)p = ker(ψ), where ψ is the map occurring in proposition 3.3.3 for
D = D. We also obtain an isomorphism from coker(φK,A)p to coker(ψ).

Proposition 3.3.3 implies that the map from ker(φL) to ker(ψ)p is always an isomorphism.
This gives the identification of SL(K,D) to SelA(K)p, as mentioned above. Proposition 3.3.3
implies that the injective map from coker(φL) to coker(ψ)p is an isomorphism if we assume that
X

2(K,Σ,D) = 0. In particular, this will be so if SelA(K)p = SL(K,D) is finite.
The theorem of Cassels alluded to previously states that if SelA(K) is finite, then the cokernel

of φK,A is isomorphic to the Pontryagin dual of B(K)tors. To prove this, it is enough to prove
that the p-primary subgroups of those groups are isomorphic for every prime p, and that assertion
follows from the second part of proposition 4.4.1.

Cassels also proved a theorem including the case where SelA(K)p is infinite, at least under the
assumption that XA(K)p is finite. This more general theorem asserts that the Pontryagin dual of
coker(φK,A)p is isomorphic to B(K)⊗Z Zp. It therefore follows that the Zp-corank of coker(φK,A)p

is equal to rank
(
B(K)

)
= rank

(
A(K)

)
. One finds a discussion and proof of this result in [Bas].

As a consequence, it is possible for coker(φK,A)p and coker(φL) to have different Zp-coranks.
For example, consider the special case where K = Q, g = 1, and r = rank

(
A(Q)

)
≥ 2. Assume that

XA(K)p is finite. Thus, according to remark 4.4.3, coker(φL) has Zp-corank 1. That is, we have
coker(φL)div

∼= Qp/Zp. This is true for any finite set Σ containing Σmin. However, coker(φK,A)p is
the direct limit of the groups coker(φL) as Σ varies over all those finite sets. Thus, if one assumes
that XA(K)p is finite, then that direct limit turns out to have Zp-corank r. Evidently, the finite
groups coker(φL)

/
coker(φL)div have unbounded exponent as Σ varies if r ≥ 2.

5 Twist deformations.

Suppose that K∞/K is a Galois extension and that Γ = Gal(K∞/K) ∼= Zm
p for some m ≥ 1.

Let Λ = Zp[[Γ]], the completed group algebra for Γ over Zp. If {γ1, ..., γm} is a set of topological
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generators for Γ, then one can define an isomorphism from Λ to the formal power series ring
Zp[[x1, ..., xm]] by sending xi to γi − 1 for 1 ≤ i ≤ m. It follows that Λ is a domain and has Krull
dimension m+1. One can regard Γ as a subgroup of Λ× and hence one has a natural representation

κ : Γ −→ GL1(Λ) .

We let Λ(κ) denote the free Λ-module of rank 1 with this action of Γ.
Suppose now that T is a free Zp-module of rank n with a Zp-linear action of Gal(KΣ/K). Let

V = T ⊗Zp Qp and D = T ⊗Zp (Qp/Zp). Let TΛ = T ⊗Zp Λ, a free Λ-module of rank n. This
Λ-module has a Λ-linear action of Gal(KΣ/K), where the action is just through the first factor.
Since K∞ ⊂ KΣ, we can regard κ as a representation of Gal(KΣ/K) over Λ of rank 1. We define
T = TΛ ⊗Λ Λ(κ), which is also a free Λ-module of rank n, but with a new Λ-linear action of
Gal(KΣ/K). If we choose a basis for T , then we obtain a representation

ρ : Gal(KΣ/K) −→ GLn(Λ) .

The underlying Galois module is T . As in the introduction, the corresponding discrete Galois
module is D = T ⊗Λ Λ̂. We think of T as the twist of TΛ, or of T , by the Λ×-valued character
κ. For brevity, we will sometimes denote T by T ⊗ κ. Similarly, we sometimes write D ⊗ κ for D.
Note also that T ∗ is isomorphic to T ∗ ⊗ κ−1, where T ∗ = Hom(D,µp∞).

Suppose that ϕ : Γ → Q
×
p is a continuous group homomorphism. One sees easily that if γ ∈ Γ,

then ϕ(γ) is a principal unit in some finite extension of Qp. It is clear that ϕ has values in the
group of units of the ring Zp[ϕ(γ1), ..., ϕ(γm)], which we denote more briefly by Zp[ϕ]. This ring
is an order in some finite extension of Qp. We can define an action of Gal(KΣ/K) on the free
Zp[ϕ]-module T ⊗Zp Zp[ϕ], where Gal(KΣ/K) has the given action on the first factor and acts by
ϕ on the second. We denote this Galois module by T ⊗ ϕ, and refer to it as the twist of T by ϕ.
The corresponding discrete module will be denoted by D ⊗ ϕ.

We call the Galois module T defined above, or the corresponding representation ρ, a twist
deformation” for the following reason. If ϕ is as in the previous paragraph, then we can naturally
extend ϕ to a continuous ring homomorphism from Λ to Qp, which we also denote simply by

ϕ. In effect, we are identifying Homcont(Γ,Q
×
p ) with Homcont(Λ,Qp). The kernel pϕ of ϕ is in

Specht=m(Λ). The image of ϕ is the ring Zp[ϕ]. Of course, ϕ induces a continuous homomorphism
λϕ : GLn(Λ) → GLn(Zp[ϕ]), and composing this with ρ gives the representation ρϕ = λϕ ◦ ρ which
describes the action of Gal(KΣ/K) on the twisted Galois module T ⊗ ϕ. That is, we have an
isomorphism T /pϕT ∼= T ⊗ ϕ as Galois modules. Note however that T ∗/pT ∗ ∼= T ∗ ⊗ ϕ-1.

5.1. The torsion Λ-submodule of H1(KΣ/K, T
∗). We prove the following general results.

Proposition 5.1.1. If m ≥ 2, then H1(KΣ/K, T
∗) is torsion-free as a Λ-module.

Proposition 5.1.2. If m = 1, then H1(KΣ/K, T
∗)Λ-tors is a free Zp-module of finite rank.
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Proposition 5.1.3. If K∞ is the cyclotomic Zp-extension of K, then H1(KΣ/K, T
∗)Λ-tors 6= 0 if

and only if D = T ⊗Zp (Qp/Zp) has a quotient isomorphic to µp∞ for the action of GK∞.

The proofs of the above propositions will follow easily from the results proven in section 2
together with the following lemma.

Lemma 5.1.4. We have H0(K, T ∗/pT ∗) = 0 for all but finitely many p ∈ Specht=m(Λ). If Λ/p
has characteristic p, then H0(K, T ∗/pT ∗) = 0. If m ≥ 2, we have H0(K, T ∗/ΠT ∗) = 0 for all
Π ∈ Specht=1(Λ). For any m ≥ 1, we have H0(K, T ∗) = 0.

Proof. If p ∈ Specht=m(Λ) and Λ/p has characteristic 0, then Λ/p is isomorphic to an order in
some finite extension of Qp. Thus, the ring homomorphism Λ → Λ/p induces a continuous group

homomorphism ϕ : Γ → Q
×
p and p = pϕ. We then have T ∗/pT ∗ ∼= T ∗⊗ϕ. Now H0(K,T ∗⊗ϕ) 6= 0

implies that the representation space T ∗ ⊗Zp Qp for GK has a subspace on which GK acts by ϕ−1.
This can happen for only finitely many ϕ’s.

Assume that p ∈ Specht=m(Λ) and Λ/p has characteristic p. We will show that H0(K, T ∗/pT ∗)
vanishes for all such p. The action of GK on T ∗/pT ∗ factors through Gal(L/K), where L is a finite
Galois extension of K. Thus, the action of GK on T ∗/pT ∗ factors through Gal(LK∞/K). It is
enough to prove that H0(L, T ∗/pT ∗) = 0. Now T ∗/pT ∗ is a free module over Λ/p and GL acts by
the restriction of κ. Therefore, it is enough to show that H0(Γ′,Λ/p) = 0, where Γ′ is a subgroup
of Γ with finite index. Furthermore, we can assume that Γ′ = Γpt

for some t ≥ 0.
Note that the maximal ideal m in Λ is generated by {p, γ1 − 1, ..., γm − 1}. Its image in Λ/p is

the maximal ideal in that local ring, which we will denote by mp. It is a nonzero ideal because p

has height m and m has height m + 1. Since we are assuming that p ∈ p, mp is generated by the
images of γ1 − 1, ..., γm − 1 in Λ/p, and hence at least one of those images is nonzero. Note also

that for 1 ≤ i ≤ m, the images of γpt

i − 1 and (γi − 1)pt
in Λ/p are the same. Therefore, for some

γ′ ∈ Γ′, the image of γ′ − 1 in Λ/p is a nonzero element α in Λ/p. Thus, we have

H0(Γ′,Λ/p) ⊆ (Λ/p)[α]

which vanishes because Λ/p is a domain.
The statement about the vanishing of H0(K, T ∗/ΠT ∗) now follows immediately from lemmas

2.2.6 and 2.2.8. The final statement also follows immediately. �

Proofs of propositions 5.1.1, 5.1.2, and 5.1.3. Proposition 5.1.1 now follows immediately from
proposition 2.2.7. For proposition 5.1.2, one can verify that H1(KΣ/K, T

∗)[p] = 0 by using the
exact sequence (7) for θ = p and the above lemma for p = (p). The assertion then follows because
H1(KΣ/K, T

∗)Λ-tors is a finitely-generated, torsion Λ-module.
For proving proposition 5.1.3, note that the statement about D means that U = H0(K∞, T

∗)
has positive Zp-rank. The action of GK on U factors through Γ. Hence, rankZp(U) > 0 if and
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only if there exists a ϕ ∈ Homcont(Γ,Q
×
p ) such that H0(K,T ∗ ⊗ ϕ−1) 6= 0. That statement is in

turn equivalent to H1(KΣ/K, T
∗)[pϕ] 6= 0. Now if p ∈ Specht=1(Λ) and Λ/p has characteristic 0,

then p = pϕ for some ϕ as above. Therefore, by propositions 2.2.2 and 5.1.2, it indeed follows that
H1(KΣ/K, T

∗)Λ-tors 6= 0 if and only if rankZp(U) > 0.

5.2. The validity of LEO(D). It is reasonable to conjecture that LEO(D) is always satisfied
when D has the form D = D⊗κ. We emphasize that here D is simply a Gal(KΣ/K)-module which
is isomorphic as a group to (Qp/Zp)

n for some n ≥ 1.

Conjecture 5.2.1. Assume that D = D ⊗ κ as defined above. Then X
2(K,Σ,D) = 0.

An equivalent version of this conjecture was stated in the introduction to [Gr3], on page 364. It
was called Conjecture L there, and asserts that X

2(K∞,Σ, D) = 0. The equivalence of these
formulations is discussed briefly in [Gr3] and will be explained in detail in [Gr5].

Proposition 5.2.3 below states that X
2(K,Σ,D) is a divisible Λ-module. Hence the vanishing

of X
2(K,Σ,D) is equivalent to the validity of LEO(D). The proposition follows immediately from

proposition 2.1.1 and the following lemma.

Lemma 5.2.2. Suppose that v ∈ Σ and that the decomposition subgroup of Γ for v is nontrivial.
Then H0(Kv, T

∗) = 0. In particular, H0(Kv, T
∗) vanishes for at least one v|p.

Proof. We will use the analogue of lemma 2.2.6 for Kv in place of K. The proof of that lemma still
works because if Lv is a finite extension of Kv and Mv is the maximal pro-p extension of Lv, then
Gal(Mv/Lv) is topologically finitely generated. This follows from the Burnside Basis Theorem.

Let Γv be the decomposition subgroup of Γ for v. The assumption about Γv implies that
it is infinite. If ψ : Γv → Q

×
p is any continuous homomorphism, then choose some continuous

homomorphism ϕ : Γ → Q
×
p such that ϕ|Γv = ψ. We can regard T ∗ ⊗Zp Qp as a representation

space for GKv . It has a nontrivial subspace on which GKv acts by ψ for only finitely many ψ’s.
Thus, we can choose ψ so that H0(Kv, T

∗⊗ϕ-1) = 0. This means that H0(Kv, T
∗/pϕT

∗) = 0. The
analogue of lemma 2.2.6 then implies that H0(Kv, T

∗) = 0. �

Proposition 5.2.3. Assume that D = D⊗κ as above. Then X
2(K,Σ,D) is a divisible Λ-module.

Archimedean primes always split completely in K∞/K. The hypothesis in the next result is
that the non-archimedean primes in Σ don’t split completely. This assumption is satisfied if K∞

contains the cyclotomic Zp-extension of K. However, if K is not totally real and if v is any non-
archimedean prime not lying over p, then one can always find at least one Zp-extension of K in
which v splits completely.
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Proposition 5.2.4. Suppose that Γv is nontrivial for all non-archimedean v ∈ Σ. If p is odd, then
X

2(K,Σ,D) = H2(KΣ/K,D). If p = 2, then H2(KΣ/K,D)
/
X

2(K,Σ,D) has exponent 2.

Proof. Lemma 5.2.2 and the local duality theorem implies that H2(Kv,D) = 0 for all non-
archimedean v ∈ Σ. If p > 2, the same is true for v|∞. If p = 2, then H2(Kv,D) may be
nonzero, but has exponent 2. The stated assertions clearly follow. �

Under the assumptions of the above proposition, one can use proposition 4.3 in [Gr3] to give
a simple formula for the quantity b1(K,D) mentioned in the introduction. It just involves T . For
every real prime v of K, we can write n = rankZp(T ) = n+

v +n−v , where n±v is the dimension of the
(±1)-eigenspace for a generator of GKv acting on T ⊗Zp Qp. Then we have

(18) b1(K,D) =
∑

v|∞

rankΛ

(
H0(Kv, T

∗)
)

= r2n +
∑

v real

n−v ,

where r2 denotes the number of complex primes of K. For the last equality, one uses the fact that
if v is archimedean, then Γv is trivial. It follows that rankΛ

(
H0(Kv, T

∗)
)

= rankZp

(
H0(Kv, T

∗)
)

for all v|∞.

Proposition 2.1.4 provides one possible way to verify that LEO(D) is satisfied in many interesting
cases. It is an inductive argument. We suppose that K∞ contains the cyclotomic Zp-extension of

K, which we will now denote by C∞. We can choose a sequence of extensions K
(i)
∞ for 1 ≤ i ≤ m

such that Gal(K
(i)
∞ /K) ∼= Zi

p, K
(1)
∞ = C∞, and K

(m)
∞ = K∞. Let Γ(i) = Gal(K

(i)
∞ /K) and let

Λ(i) denote Zp[[Γ
(i)]]. Thus, Λ(i) has Krull dimension i + 1. Let κi : Γ(i) → GL1(Λ

(i)) be the
corresponding representation. For each i, we have a Galois module D(i) = D ⊗ κi. In particular,
D = D(m).

There is also a surjective ring homomorphism Λ(i) → Λ(i-1) for each i ≥ 2. The kernel of that
homomorphism is a prime ideal Π(i) of height 1 in Λ(i). One has D(i-1) ∼= D(i)[Π(i)]. According
to proposition 5.2.4, for 1 ≤ j ≤ m, LEO(D(j)) means that H2(KΣ/K,D

(j)) is Λ(j)-cotorsion.
Proposition 2.1.4 then shows that if 2 ≤ i ≤ m and LEO(D(i-1)) is satisfied, then so is LEO(D(i)).
Therefore, it is enough to verify that LEO(D(1)) is satisfied.

Assume thatH2(KΣ/K,D⊗ϕ) is finite for some ϕ in Homcont

(
Γ(1),Q

×
p

)
. We can identify ϕ with

an element of Homcont

(
Λ(1),Qp

)
, and then Π = ker(ϕ) is in Specht=1(Λ

(1)). Since D⊗ϕ ∼= D(1)[Π],

proposition 2.1.4 again shows that H2(KΣ/K,D
(1)) is Λ(1)-cotorsion and so LEO(D(1)) is satisfied.

These considerations prove the following result.

Proposition 5.2.5. Assume that K∞ contains the cyclotomic Zp-extension C∞ of K. Assume

that H2(KΣ/K,D⊗ϕ) is finite for some ϕ ∈ Hom
(
Gal(C∞/K),Q

×
p

)
. Then LEO(D) is satisfied.

We now discuss two important special cases as illustrations.
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Illustration 5.2.6. The action of GK on µp∞ is given by a homomorphism χ : GK → Z×
p which

factors through Gal
(
K(µp∞)/K

)
. Let w = [K(µp) : K] if p is odd, w = [K(µ4) : K] if p = 2.

Note that χw factors through Gal(C∞/K). Let j be a fixed integer. Suppose that T = Zp(j),
which we regard as a Gal(KΣ/K)-module. The Galois action is by χj . One has T ∗ ∼= Zp(1 − j).
If j = 1, then D = µp∞ and one shows easily that X

2(K,Σ, D) = 0. If j 6= 1 and p is odd,
then X

2(K,Σ, D) = H2(KΣ/K,D). It is a conjecture of Schneider that this group vanishes. (See
[Sch1], page 192.) In general, one would conjecture that X

2(K,Σ, D) = 0 for all j and all p. Satz
3 in §6 of [Sch1] proves this vanishing for all but finitely many j’s. This theorem suffices to verify
the hypothesis in proposition 5.2.5. For if one takes any j′ ≡ j (mod w), then Zp(j

′) ∼= T ⊗ ϕ,
where ϕ = χj′−j . Note that ϕ is in Homcont

(
Gal(C∞/K), 1 + pZp

)
. One can choose j′ so that

X
2(K,Σ, D ⊗ ϕ) vanishes. It follows that LEO(D) is satisfied if K∞ contains C∞. ♦

Illustration 5.2.7. Assume now that T = Tp(E), where E is an elliptic curve defined over Q, and
that K/Q is abelian. We have D = E[p∞]. For n ≥ 0, let Cn denote the unique subfield of C∞ such
that [Cn : K] = pn. Theorems of Kato and Rohrlich then imply that the Zp-corank of SelE(Cn)p

is bounded as n → ∞. Thus, for some n
0
, we have corankZp

(
SelE(Cn)p

)
= corankZp

(
SelE(Cn

0
)p

)

for all n ≥ n
0
. One can then show that if ϕ is a character of Gal(C∞/K) of order pn, where

n > n
0
, then H2(KΣ/K,D ⊗ ϕ) is finite (and 0 if p is odd). Therefore, one can again conclude

from proposition 5.2.5 that LEO(D) is satisfied if K∞ contains C∞. ♦

5.3. Surjectivity. Propositions 5.3.1 and 5.3.3 below give sufficient conditions for the surjectivity
of φL. Proposition 5.3.2 is an interesting remark about the cokernel when it is nonzero. Those
results are consequences of the propositions in section 5.1 and proposition 3.1.1. The hypotheses
imply that SL∗(K, T ∗) ⊆ H1(KΣ/K, T

∗)Λ-tors and that X
1(K,Σ, T ∗) = 0. For proposition 5.3.3,

the assumption that L is Λ-divisible means that L(Kv,D) is a divisible Λ-module for all v ∈ Σ. If
that is so, then proposition 2.3.1 implies that coker(φL) is dual to H1(KΣ/K, T

∗)Λ-tors. The stated
result then follows from proposition 5.1.3.

Proposition 5.3.1. Assume that m ≥ 2, that LEO(D) is satisfied, and that coker(φL) is Λ-
cotorsion. Then φL is surjective.

Proposition 5.3.2. Assume that m = 1, that LEO(D) is satisfied, and that coker(φL) is Λ-
cotorsion. Then coker(φL) ∼= (Qp/Zp)

c for some c ≥ 0.

Proposition 5.3.3. Assume that K∞ is the cyclotomic Zp-extension of K, that LEO(D) is satis-
fied, that the specification L is Λ-divisible, and that coker(φL) is Λ-cotorsion. Then φL is surjective
if and only if H0(K∞, T

∗) = 0.

Illustrations. To continue illustration 5.2.6, assume that K∞ contains C∞ and that we choose the
specification L so that L(Kv,D) = 0 for all v ∈ Σ. Thus, LEO(D) is satisfied. Also, by definition,
SL(K,D) = X

1(K,Σ,D). In general, proposition 4.4 in [Gr3] implies that corankΛ

(
X

1(K,Σ,D)
)
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and rankΛ

(
X

1(K,Σ, T )
)

are equal. The argument in illustration 5.2.6 for Zp(1 − j), instead of

Zp(j), shows that X
1(K,Σ, T ) has Λ-rank 0. It follows that corankΛ

(
SL(K,D)

)
= 0.

By (2), we see that corankΛ

(
coker(φL)

)
= 0 if and only if h1(K,D) = qL(K,D). One finds

that qL(K,D) = [K : Q]. This follows from proposition 4.2 in [Gr2], which is a consequence of the
formulas for the local Euler-Poincaré characteristic for the Λ-module D and for all v ∈ Σ. The only
nonzero contribution to qL(K,D) comes from v|p, and is then [Kv : Qp]. By (18), together with
the fact that LEO(D) holds, we have

h1(K,D) = b1(K,D) =

{
r2 if j is even,

r1 + r2 if j is odd.

The above remarks show that corankΛ

(
coker(φL)

)
= 0 if and only if j is odd and K is totally real.

However, according to Leopoldt’s conjecture, if K is totally real, then the cyclotomic Zp-
extension of K should be the only one, and hence we should have K∞ = C∞ and m = 1. One can
then apply proposition 5.3.3 to conclude that φL is surjective if and only if j 6≡ 1 (mod w).

Assume now that j ≡ 1 (mod w). One then gets the following isomorphism

(19) coker(φL) ∼= Λ̂[pϕ] , where ϕ = χ1−j .

This is an isomorphism of discrete Λ-modules. As groups, we have coker(φL) ∼= Qp/Zp. To justify
(19), recall that T ∗

/
pϕT

∗ is isomorphic to T ∗ ⊗ ϕ−1 for any ϕ. Thus, H0(K, T ∗
/
pϕT

∗) 6= 0 only
for ϕ = χ1−j . For that ϕ, we have H1(KΣ/K, T

∗)[pϕ] ∼= Λ/pϕ. This group is isomorphic to Zp.
Furthermore, one can easily show that H0(K, T ∗

/
p2

ϕT
∗) is also isomorphic to Zp. One then uses

propositions 2.2.2 and 3.1.1 to prove that ̂coker(φL) ∼= Λ/pϕ, and hence that (19) holds.

We briefly discuss another choice of specification for T , where T = Zp(j). Suppose that
L(Kv,D) = H1(Kv,D)Λ-div for all v ∈ Σ. In particular, for v ∤ p, L(Kv,D) = 0. Obviously,
we now have qL(K,D) = 0. The cokernel of φL is always Λ-cotorsion. Propositions 5.3.1 and 5.3.3
imply that φL is surjective if and only if either m ≥ 2 or m = 1 and j 6≡ 1 (mod w).

To continue illustration 5.2.7. we still assume that T = Tp(E), that K/Q is abelian, and that
C∞ ⊆ K∞. Since LEO(D) is satisfied, we have h1(K,D) = b1(K,D). Now (18) implies that
b1(K,D) = [K : Q]. If L is any specification for D and Σ, it follows that

cL(K,D) = 0 ⇐⇒ corankΛ

(
SL(K,D)

)
= [K : Q] − qL(K,D) .

If cL(K,D) = 0, then φL is surjective. This follows from proposition 5.3.1 if m ≥ 2. For m = 1, note
that remark 3.2.7 allows one to replace L by Ldiv. Furthermore, it is known that H0(C∞, E[p∞])
is finite. Since T ∗ ∼= Tp(E), it follows that H0(C∞, T

∗) = 0. One can then use proposition 5.3.3 to
see that φL is surjective.

If A is an arbitrary abelian variety, K is an arbitrary number field, and K∞ is ramified at
all the primes of K lying above p, then there is a natural choice for the specification L. As in
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section 4, the definition involves the local Kummer maps. One simply takes L(Kv,D) = 0 for v ∤ p.
There is a relatively simple description of L(Kv,D) even for v|p. This is based on the results in
[CG] and will be discussed in [Gr5]. An important feature of the definition is that the Λ-corank of
L(Kv,D) depends on the reduction type of A at v. In general, one only has qL(K,D) ≤ [K : Q]g.
One conjectures that the equality corankΛ

(
SL(K,D)

)
= [K : Q]g − qL(K,D) always holds. In the

case where K∞ = C∞, this conjecture was made by Mazur in [Maz] when A has good ordinary
reduction at all v|p. In that case, one has qL(K,D) = [K : Q]g and the conjecture is that SL(K,D)
is Λ-cotorsion. Schneider stated such a conjecture in [Sch2] when A is just assumed to have good
reduction at all v|p. If the reduction is not ordinary for at least one prime v|p, then one has
qL(K,D) < [K : Q]g and SL(K,D) cannot be Λ-cotorsion. As in the above discussion, those
conjectures imply that φL is surjective.
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