
Solutions for the practice questions for the midterm

1. Suppose that G is an abelian group and that a, b ∈ G. Suppose that |a| = 3 and |b| = 5.
Prove that |ab| = 15.

Solution. Let e be the identity element in G. Let k ∈ Z. Since |a| = 3, it follows that
ak = e if and only if 3 divides k. Also, since |b| = 5, it follows that bk = e if and only if 5
divides k. In particular, we have a15 = e and b15 = e. Since G is abelian, we have

(ab)15 = a15b15 = ee = e

Since (ab)15 = e, it follows that |ab| divides 15. That is, we have

|ab| ∈ { 1, 3, 5, 15 } .

However, notice that

(ab)3 = a3b3 = eb3 = b3 6= e, and (ab)5 = a5b5 = a5e = a5 6= e ,

the reason being that 5 does not divide 3 and 3 does not divide 5, respectively. It follows
that |ab| does not divide 3 and that |ab| does not divide 5. This leaves just one possibility.
Namely, it follows that |ab| = 15, which is the statement we wanted to prove.

2. Suppose that G is a group and that c ∈ G. Suppose that |c| = 15. Prove that there
exist elements a, b ∈ G such that |a| = 3, |b| = 5, and ab = c.

Solution. Let H = 〈c〉, the cyclic subgroup of G generated by c. We will find elements
a, b ∈ H with the desired properties. Notices that

〈c5〉 = { e, c5, c10 } and 〈c3〉 = { e, c3, c6, c9, c12 },

and that all the elements in the first group (except for e) have order 3, and that all the
elements in the second group (except for e) have order 5. Furthermore, notice that

c = c16 = c10c6 .

We can choose a = c10 and b = c6. Then a, b ∈ G, and |a| = 3, |b| = 5, and ab = c, as we
wanted.

3. Let G = S8. Show that there exist elements a, b ∈ G such that |a| = 3 and |b| = 5, but
|ab| 6= 15.
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Solution. We pick a = (1 2 3) and b = (1 2 3 4 5), considered as elements of S8. Then

c = ab = (1 3 4 5 2)

In fact, we have |a| = 3 and |b| = 5, but |ab| = 5 6= 15.

It is worth remarking that S8 contains the following subgroup

H = { σ ∈ S8

∣∣ σ(6) = 6, σ(7) = 7, and σ(8) = 8 }

which is isomorphic to S5. We decided to choose a, b ∈ H. Hence ab ∈ H too. But S5 has
no elements of order 15. (Consider the possible cycle decomposition types for elements in
S5.) Since H ∼= S5, it follows that H also has no elements of order 15. Therefore, ab could
not possibly have order 15.

4. Let σ be the following element in S9:

σ =

(
1 2 3 4 5 6 7 8 9
2 3 4 5 1 8 9 7 6

)
.

(a) Find the cycle decomposition of σ.

Solution. We notice the following orbits under the action of powers of σ:

1 7→ 2 7→ 3 7→ 4 7→ 5 7→ 1, 6 7→ 8 7→ 7 7→ 9 7→ 6

and hence the cycle decomposition of σ is

σ = (1 2 3 4 5)(6 8 7 9) .

(b) Let H = 〈σ〉, the cyclic subgroup of S9 generated by σ. Determine |H|.

Solution. We know that |H| = |σ|. The cycle decomposition for σ tells us that the order
of σ is the least common multiple of the cycle lengths 5 and 4. Thus, |σ| = lcm(5, 4) = 20.
Therefore, |H| = 20.

(c) Does there exist an element τ ∈ S9 such that τστ−1 = τ 3 ? If so, find such a τ . If not,
explain why.
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Solution. Multiplying the stated equation by τ−1 on the left and by τ on the right, we
obtain the equation σ = τ 3. The group H is a cyclic group of order 20. Suppose that r is
an integer such that gcd(r, 20) = 1. As explained in class, the map ϕ : H → H defined by
ϕ(h) = hr is an automorphism of H. In particular, ϕ is a bijection of H to itself. Take r = 3.
Obviously, gcd(3, 20) = 1. Thus, there must exist an element τ ∈ H such that ϕ(τ) = σ.
This means that τ 3 = σ. Since H is a subgroup of S9, we have τ ∈ S9.

Alternatively, and explicitly, we can simply notice that τ = σ7 works. Indeed, for that
choice of τ , we have

σ = σ21 = (σ7)3 = τ 3 .

(d) Does there exist an element τ ∈ S9 such that τστ−1 = τ 2 ? If so, find such a τ . If not,
explain why.

Solution. As in part (c), the stated equation is equivalent to σ = τ 2. If such a τ ∈ S9

exists, then we claim that |τ | = 40. To see this, let m = |τ |. It is clear that

τ 40 = (τ 2)20 = σ20 = e

and hence m divides 40. However,

σm = τ 2m = (τm)2 = e2 = e .

Since |σ| = 20, it follows that m is divisible by 20. It follows that m ∈ {20, 40}. On the
other hand,

τ 20 = (τ 2)10 = σ10 6= e

since 10 < 20 and |σ| = 20. Thus, m 6= 20. Therefore, m = 40, as claimed.

Thus, τ ∈ S9 and |τ | = 40. But no such τ exists. To verify that, consider the cycle
decomposition of τ . There are many possibilities. The length of each k-cycle in the cycle
decomposition of τ must divide 40 and the sum of the lengths is 9. If there is no 8-cycle in
that decomposition, then the lengths will not be divisible by 8. The lcm of the lengths will
not be divisible by 8 and cannot equal 40. However, if there is a cycle of length 8, then τ
is a product of an 8-cycle and a 1-cycle, and will have order 8 instead of order 40. We have
proved that S9 has no elements of order 40. It follows that the equation σ = τ 2 cannot hold
for any τ ∈ S9.

5. Give an example of a nonabelian group G of order 42.
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Solution. Suppose that G = A×B, where A and B are groups. It is clear that G is abelian
if and only if both A and B are abelian. Also, we know that |G| = |A||B| if A and B are
finite groups. For this problem, let A = S3 and B = Z7. Thus, if we take G = A× B, then
|G| = 6 · 7 = 42. Also, since A is nonabelian, G must be nonabelian too.

6. Give two examples of non-isomorphic groups G such that G is nonabelian, but every
proper subgroup of G is cyclic.

Solution. One example is S3. It is a nonabelian group. Another example is the quaternion
group Q8 of order 8. By inspection, one can determine all the subgroups. The proper
subgroups of S3 are cyclic of orders 1, 2 or 3. The proper subgroups of Q8 are cyclic of
orders 1, 2, or 4.

7. Give an example of a group G such that G is nonabelian, every proper subgroup of G
is abelian, and at least one proper subgroup is not cyclic.

Solution. One example is D4, a group of order 8. The proper subgroups have order 1, 2,
or 4 and must be abelian. (We proved in class that any finite group of order ≤ 5 must be
abelian.). However, D4 has a subgroup of order 4 in which every element has order 1 or 2.
To describe such a subgroup, let us number the vertices of a square clockwise by 1, 2, 3, and
4. A rotation by 180 degrees is the element of S4 given by

ρ = (1 3)(2 4) .

A reflection through one line of symmetry is given by

τ = (1 2)(3 4) .

Notice that
ρτ = (1 4)(2 3) and τρ = (1 4)(2 3)

and so ρτ = τρ. Furthermore ,

ρ2 = e, τ 2 = e, (ρτ)2 = ρ2τ 2 = ee = e .

The set V = { e, ρ, τ, ρτ } is a subgroup of S4. It is easily seen to be closed under the
group operation of S4. Most cases are obvious. Two cases that are not immediately obvious
are

ρ(ρτ) = ρ2τ = eτ = τ, (ρτ)ρ = ρ(τρ) = ρ(ρτ) = ρ2τ = eτ = τ

and similarly, τ(ρτ) = (ρτ)τ = ρ. These products are in V .
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The subgroup V of S4 is quite important. It is explicity given by

V = { e, (1 3)(2 4), (1 2)(3 4), (1 4)(2 3) }

The subgroup V is called the Klein Four-Group.

8. Determine the center of the group Q8. Determine the center of the group D4. Determine
the center of the group G = A×B, where A and B are groups of order 4.

Solution. The center of Q8 is {1, − 1}. One checks easily that ±i, ± j and ±k are not in
Z(Q8). For example, i 6∈ Z(Q8) because ij 6= ji.

The center of D4 is {e, ρ}, where ρ is the element of D4 mentioned in the solution to
problem 7. One checks easily that ρσ = σρ for all σ ∈ D4. One checks easily that the
remaining six elements of D4 are not in Z(D4).

Finally, the groups A and B of order 4 must be abelian (as proved in class). Hence
G = A×B is abelian. Hence, the center of G is G itself.
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