
Solutions for Problem Set 5.

A. Let G = A×B, where A and B are groups. Define a map ϕ : G→ B by

ϕ
(

(a, b)
)

= b

for all elements (a, b) ∈ G. Prove that ϕ is a surjective group homomorphism. Determine
the kernel of ϕ.

Solution. Let e denote the identity element of A and let f denote the identity element of
B. To show that ϕ is a homomorphism, suppose that g1, g2 ∈ G. Then g1 = (a1, b1) and
g2 = (a2, b2), where a1, a2 ∈ A and b1, b2 ∈ B. Then ϕ(g1) = b1 and ϕ(g2) = b2. We have

ϕ(g1g2) = ϕ
(
(a1, b1)(a2, b2)

)
= ϕ

(
(a1a2, b1b2)

)
= b1b2 = ϕ(g1)ϕ(g2) .

Therefore, ϕ is a homomorphism from G to B. The fact that ϕ is surjective follows by
noticing that, for any b ∈ B, if we let g = (e, b), then g ∈ G and ϕ(g) = b.

The kernel of ϕ has the following description

Ker(ϕ) = { (a, b) ∈ G
∣∣ ϕ((a, b)) = f} = { (a, b) ∈ G

∣∣ b = f} = { (a, f)
∣∣ a ∈ A} .

B. Let G = A× A, where A is a nonabelian group. Consider

H = { (a, a)
∣∣ a ∈ A} .

Prove that H is a subgroup of G, but that H is not a normal subgroup of G. Prove that H
is isomorphic to A. Does G have any normal subgroups which are isomorphic to A?

Solution. Let e denote the identity element of A. Since A is nonabelian, there exists
elements b, c ∈ A such that bc 6= cb. It then follows that cbc−1 6= b. (Reason: We have
the implication cbc−1 = b =⇒ cb = bc.). Let d = cbc−1. Then d 6= b. Consider the element
h = (b, b). By definition, h ∈ H. Let g = (c, e). Then g ∈ G and g−1 = (c−1, e).
Furthermore, we have

ghg−1 = (c, e)(b, b)(c−1, e) = (cbc−1, ebe) = (d, b) .
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Since d 6= b, it follows that (d, b) 6∈ H. Thus, h ∈ H, but ghg−1 6∈ H. As discussed in class,
a normal subgroup N of a group G must have the following property:

If n ∈ N and g ∈ G, then gng−1 ∈ N . More succinctly, gNg−1 ⊆ N for all g ∈ G.

However, with the above choice of g and h, we have h ∈ H, but ghg−1 6∈ H. Therefore H is
not a normal subgroup of G.

The fact that H ∼= A can be verified by considering the homomorphism ψ : H → A
defined by

ψ
(
(a, a)

)
= a

for all elements (a, a) in H. The fact that ψ is a homomorphism is easily verified. In fact,
if one uses the result from problem A, and one takes B = A, then ψ = ϕ|H . The fact that ϕ
is a homomorphism implies that ψ is a homomorphism. The fact that ψ is a bijection from
H to A is clear. Therefore, ψ is an isomorphism from H to A.

Finally, G does have a normal subgroup which is isomorphic to A. The following is such
a subgroup:

K = { (a, e)
∣∣ a ∈ A } .

One can verify directly that K is a normal subgroup of G. Alternatively, one can also notice
that if one takes B = A in problem A, then K = Ker(ϕ) and therefore K must be a normal
subgroup of G. The fact that K is isomorphic to A can be seen by considering the map
ρ : A→ K defined by ρ(a) = (a, e).

C. Suppose that G is a finite group and that M and N are normal subgroups of G. Suppose
also M ∩N = {e}, where e is the identity element of G. Suppose also that |G| = |N | · |M |.
Consider the map ϕ : G→ (G/M)× (G/N) defined as follows:

ϕ(g) =
(
gM, gN

)
for all g ∈ G. Prove that ϕ is an isomorphism from the group G to the group (G/M)×(G/N).

Solution. First of all, we verify that ϕ is a homomorphism. To see this, let g1, g2 ∈ G.
Then

ϕ(g1g2) = (g1g2M, g1g2N) = (g1Mg2M, g1Ng2N) = (g1M, g1N)(g2M, g2N) = ϕ(g1)ϕ(g2) .

This shows that ϕ is a homomorphism.
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The identity element in (G/M)× (G/N) is (M, N). If g ∈ Ker(ϕ), then

ϕ(g) = (gM, gN) = (M, N)

and hence gM = M and gN = N . It follows that g ∈M and g ∈ N . Therefore, g ∈M ∩N .
Since we are assuming that M ∩ N = {e}, it follows that g = e. Thus, Ker(ϕ) = {e}.
Therefore, ϕ is injective.

Finally, we will use the assumption that |G| = |N | · |M |. Thus,

|G/M | = [G : M ] =
|G|
|M |

= |N | and |G/N | = [G : N ] =
|G|
|N |

= |M |

and hence the group (G/M)× (G/N) has order

|G/M | · |G/N | = |N | · |M | = |G|

The map ϕ : G→ (G/M)× (G/N) is an injective map and the sets G and (G/M)× (G/N)
have the same cardinality. It follows that ϕ is surjective.

We have proved that ϕ is a bijective homomorphism and hence ϕ is an isomorphism.

D. Let σ be the following element in S9:

σ =

(
1 2 3 4 5 6 7 8 9
2 3 4 5 1 8 9 7 6

)
.

(a) Find the cycle decomposition of σ.

Solution. We notice the following orbits under the action of powers of σ:

1 7→ 2 7→ 3 7→ 4 7→ 5 7→ 1, 6 7→ 8 7→ 7 7→ 9 7→ 6

and hence the cycle decomposition of σ is

σ = (1 2 3 4 5)(6 8 7 9) .

(b) Let H = 〈σ〉, the cyclic subgroup of S9 generated by σ. Determine |H| and [S9 : H].
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Solution. We know that |H| = |σ|. The cycle decomposition for σ tells us that the order
of σ is the least common multiple of the cycle lengths 5 and 4. Thus, |σ| = lcm(5, 4) = 20.
Therefore, |H| = 20. The index of H in S9 is given by

[S9 : H] =
|S9|
|H|

=
9!

20
.

(c) Does there exist an element τ ∈ S9 such that τστ−1 = τ 3 ? If so, find such a τ . If not,
explain why.

Solution. Multiplying the stated equation by tau−1 on the left and by τ on the right, we
obtain the equation σ = τ 3. The group H is a cyclic group of order 20. Suppose that r is
an integer such that gcd(r, 20) = 1. As explained in class, the map ϕ : H → H defined by
ϕ(h) = hr is an automorphism of H. In particular, ϕ is a bijection of H to itself. Take r = 3.
Obviously, gcd(3, 20) = 1. Thus, there must exist an element τ ∈ H such that ϕ(τ) = σ.
Since H is a subgroup of S9, we have τ ∈ S9.

Alternatively, and explicitly, we can simply notice that τ = σ7 works. Indeed, for that
choice of τ , we have

σ = σ21 = (σ7)3 = τ 3 .

(d) Does there exist an element τ ∈ S9 such that τστ−1 = τ 2 ? If so, find such a τ . If not,
explain why.

Solution. As in part (c), the stated equation is equivalent to σ = τ 2. If such a τ ∈ S9

exists, then we claim that |τ | = 40. To see this, let m = |τ |. It is clear that

τ 40 = (τ 2)20 = σ20 = e

and hence m divides 40. However,

σm = τ 2m = (τm)2 = e2 = e .

Since |σ| = 20, it follows that m is divisible by 20. It follows that m ∈ {20, 40}. On the
other hand,

τ 20 = (τ 2)10 = σ10 6= e

since 10 < 20 and |σ| = 20. Thus, m 6= 20. Therefore, m = 40, as claimed.
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Thus, τ ∈ S9 and |τ | = 40. But no such τ exists. To verify that, consider the cycle
decomposition of τ . There are many possibilities. The length of each k-cycle in the cycle
decomposition of τ must divide 40 and the sum of the lengths is 9. If there is no 8-cycle in
that decomposition, then the lengths will not be divisible by 8. The lcm of the lengths will
not be divisible by 8 and cannot equal 40. However, if there is a cycle of length 8, then τ
is a product of an 8-cycle and a 1-cycle, and will have order 8 instead of order 40. We have
proved that S9 has no elements of order 40. It follows that the equation σ = τ 2 cannot hold
for any τ ∈ S9.

(e) Determine the cardinality of the conjugacy class of σ in S9.

Solution. The conjugacy class of σ in S9 consists of all elements of S9 of the form

(a b c d e)(f g h i) .

Here a, b, c, ..., h, i is any permutation of 1, 2, 3, ..., 8, 9. There are 9! such permutations.
But the 5-cycle can be expressed in 5 different ways and the 4-cycle can be expressed in 4
different ways. Thus, the number of conjugates of σ in S9 is 9!/20.

There is a reason why this answer is the same as the index [S9 : H] given in part (b) of
this problem. In fact, it turns out that H is the centralizer of σ in S9. Proposition 5 on
the Conjugacy handout states that the cardinality of a conjugacy class of an element a in a
group G is equal to the index [G : C(a)].

E: Suppose that G is a group of order 35. We will prove in class that G must have at least
one normal subgroup N of order 7. You may use that fact in this problem. Prove that if H
is any subgroup of G such that |H| = 7, then H = N . (Thus, it follows that G has exactly
one subgroup of order 7.)

Solution: We will assume that G has a normal subgroup N of order 7. Consider the quotient
group G/N . Then ∣∣G/N ∣∣ = [G : N ] = |G|

/
|N | = 35/7 = 5 .

Thus, G/N is a group of order 5. Every element of G/N must have order 1 or 5.

Suppose that H is a subgroup of G and that |H| = 7. Since 7 is a prime, we know that
H must be cyclic. That is, H = 〈h〉 for some h ∈ H. Thus, h7 = e, the identity element in
G. Consider the element hN in the group G/N . We have

(hN)7 = h7N = eN = N
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which is the identity element in G/N . Therefore, the order of the element hN must divide 7.
Thus, the order of hN is 1 or 7. However, every element of G/N has order 1 or 5. Therefore,
hN must have order 1 or 5. It follows that hN has order 1. This means that hN = N .
Hence h ∈ N . Since N is a subgroup of G, any power of h is also in N . Therefore,

H = 〈h〉 ⊆ N .

Finally, since both H and N have the same cardinality (namely, 7), it follows that H = N ,
as claimed.

F. Suppose that G is a finite, abelian group. Let n = |G|. Suppose that k ∈ Z and that
gcd(k, n) = 1. Consider the map ϕ : G→ G defined by

ϕ(g) = gk

for all g ∈ G. Prove that ϕ is an automorphism of the group G.

Solution. If a, b ∈ G, then

ϕ(ab) = (ab)k = akbk = ϕ(a)ϕ(b) .

The second equality follows from the assumption that G is an abelian group. Hence ϕ is a
homomorphism from G to G.

Let N = Ker(ϕ). Suppose that a ∈ N . Then ϕ(a) = e, where e is the identity element
in G. Thus, ak = e. It follows that |a| divides k. However, we also know that |a| divides
n = |G|. Therefore, |a| is a common divisor of k and n. Since gcd(k, n) = 1, it follows that
|a| = 1. Hence, a = e. Therefore, Ker(ϕ) = {e}. It follows that ϕ is injective.

Finally, we use the fact that G is finite. Since ϕ : G → G is an injective map and G is
a finite set, it follows that ϕ is also surjective. Thus, ϕ is a bijective homomorphism and
therefore an isomorphism of G to itself. That means that ϕ is an automorphism of G.
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