Solutions for Problem Set 5.

A. Let G = A x B, where A and B are groups. Define a map ¢ : G — B by

o((a, b)) = b

for all elements (a, b) € G. Prove that ¢ is a surjective group homomorphism. Determine
the kernel of .

Solution. Let e denote the identity element of A and let f denote the identity element of
B. To show that ¢ is a homomorphism, suppose that ¢, g» € G. Then g; = (a;, b) and
g2 = (ag, by), where ay, as € A and by, by € B. Then ¢(g1) = by and ¢(g2) = be. We have

e(g192) = @((a1, bi)(az, by)) = @((araz, biba)) = biby = @(g1)¢(g2) -

Therefore, ¢ is a homomorphism from G to B. The fact that ¢ is surjective follows by
noticing that, for any b € B, if we let g = (e, b), then g € G and (g) = b.

The kernel of ¢ has the following description

Ker(p) = {(a, b) €G | ¢((a, 1) =f} = {(a, b)) €G |b=[} = {(a, f) |a€ A} .

B. Let G = A x A, where A is a nonabelian group. Consider
H ={(a, a)|acA} .

Prove that H is a subgroup of G, but that H is not a normal subgroup of G. Prove that H
is isomorphic to A. Does GG have any normal subgroups which are isomorphic to A?

Solution. Let e denote the identity element of A. Since A is nonabelian, there exists
elements b, ¢ € A such that bc # cb. It then follows that cbc™' # b. (Reason: We have
the implication cbc™! = b = cb = bc.). Let d = cbe™!. Then d # b. Consider the element
h = (b, b). By definition, h € H. Let g = (¢, ¢). Then g € G and g7' = (¢!, e).
Furthermore, we have

ghg™ = (c, e)(b, b)(c™, e) = (cbc™?, ebe) = (d, b) .



Since d # b, it follows that (d, b) € H. Thus, h € H, but ghg™' ¢ H. As discussed in class,
a normal subgroup N of a group G must have the following property:

Ifne N and g € G, then gng~' € N. More succinctly, gNg=* C N for all g € G.

However, with the above choice of g and h, we have h € H, but ghg~* ¢ H. Therefore H is
not a normal subgroup of G.

The fact that H = A can be verified by considering the homomorphism ¢ : H — A
defined by

w((a, a)) = a

for all elements (a, a) in H. The fact that ¢ is a homomorphism is easily verified. In fact,
if one uses the result from problem A, and one takes B = A, then ¢ = ¢|y. The fact that ¢
is a homomorphism implies that v is a homomorphism. The fact that v is a bijection from
H to A is clear. Therefore, ¢ is an isomorphism from H to A.

Finally, G does have a normal subgroup which is isomorphic to A. The following is such
a subgroup:
K ={(a,¢)|acA} .

One can verify directly that K is a normal subgroup of G. Alternatively, one can also notice
that if one takes B = A in problem A, then K = Ker(y) and therefore K must be a normal
subgroup of G. The fact that K is isomorphic to A can be seen by considering the map
p: A — K defined by p(a) = (a, e).

C. Suppose that G is a finite group and that M and N are normal subgroups of G. Suppose
also M NN = {e}, where e is the identity element of G. Suppose also that |G| = |N| - |M].
Consider the map ¢ : G — (G/M) x (G/N) defined as follows:

e(g) = (gM, gN)

for all g € G. Prove that ¢ is an isomorphism from the group G to the group (G/M)x(G/N).

Solution. First of all, we verify that ¢ is a homomorphism. To see this, let g1, g2 € G.
Then

©(9192) = (919:M, g1g2N) = (9:MgoM, g1NgoN) = (1M, g1N)(92M, g2N) = 0(g1)(92) -

This shows that ¢ is a homomorphism.



The identity element in (G/M) x (G/N) is (M, N). If g € Ker(y), then

©(g) = (gM, gN) = (M, N)

and hence gM = M and gN = N. It follows that g € M and g € N. Therefore, g € M N N.
Since we are assuming that M NN = {e}, it follows that ¢ = e. Thus, Ker(y) = {e}.
Therefore, ¢ is injective.

Finally, we will use the assumption that |G| = |N|-|M|. Thus,
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G/ = [0 M] =

= |N]| and |G/N| = [G:N|] = — = |[M|
and hence the group (G/M) x (G/N) has order
|G/M|-|G/N| = [N|-|M] = |G|

The map ¢ : G — (G/M) x (G/N) is an injective map and the sets G and (G/M) x (G/N)
have the same cardinality. It follows that ¢ is surjective.

We have proved that ¢ is a bijective homomorphism and hence ¢ is an isomorphism.

D. Let o be the following element in Sg:
(1
7= 2

(a) Find the cycle decomposition of o.
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Solution. We notice the following orbits under the action of powers of o:
1—-2—=3—=4—5—1, 6—~8—7—9—6
and hence the cycle decomposition of ¢ is

o= (12345)(6879) .

(b) Let H = (o), the cyclic subgroup of Sy generated by ¢. Determine |H| and [Sy : H].



Solution. We know that |H| = |¢|. The cycle decomposition for o tells us that the order
of o is the least common multiple of the cycle lengths 5 and 4. Thus, |o| = lem(5, 4) = 20.
Therefore, |H| = 20. The index of H in Sy is given by

|50 9!

(c) Does there exist an element 7 € Sy such that o' = 73 ? If so, find such a 7. If not,
explain why:.

Solution. Multiplying the stated equation by tau=! on the left and by 7 on the right, we

obtain the equation o = 73. The group H is a cyclic group of order 20. Suppose that r is
an integer such that ged(r,20) = 1. As explained in class, the map ¢ : H — H defined by
©(h) = h" is an automorphism of H. In particular, ¢ is a bijection of H to itself. Take r = 3.
Obviously, ged(3,20) = 1. Thus, there must exist an element 7 € H such that ¢(7) = o.
Since H is a subgroup of Sy, we have 7 € Sy.

Alternatively, and explicitly, we can simply notice that 7 = ¢ works. Indeed, for that
choice of 7, we have

(d) Does there exist an element 7 € Sy such that 7o77! = 72 ? If so, find such a 7. If not,
explain why.

Solution. As in part (c), the stated equation is equivalent to ¢ = 72. If such a 7 € Sy
exists, then we claim that || = 40. To see this, let m = |7|. It is clear that

Since |o| = 20, it follows that m is divisible by 20. It follows that m € {20, 40}. On the
other hand,
P20 (10 = G0

since 10 < 20 and |o| = 20. Thus, m # 20. Therefore, m = 40, as claimed.
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Thus, 7 € Sy and |7| = 40. But no such 7 exists. To verify that, consider the cycle
decomposition of 7. There are many possibilities. The length of each k-cycle in the cycle
decomposition of 7 must divide 40 and the sum of the lengths is 9. If there is no 8-cycle in
that decomposition, then the lengths will not be divisible by 8. The lcm of the lengths will
not be divisible by 8 and cannot equal 40. However, if there is a cycle of length 8, then 7
is a product of an 8-cycle and a 1-cycle, and will have order 8 instead of order 40. We have
proved that Sy has no elements of order 40. It follows that the equation ¢ = 72 cannot hold
for any 7 € Sy.

(e) Determine the cardinality of the conjugacy class of o in Sy.

Solution. The conjugacy class of o in Sy consists of all elements of S¢ of the form

(abcde)(fghi)

Here a, b, c,...,h, i is any permutation of 1, 2, 3,....8, 9. There are 9! such permutations.
But the 5-cycle can be expressed in 5 different ways and the 4-cycle can be expressed in 4
different ways. Thus, the number of conjugates of o in Sy is 9!/20.

There is a reason why this answer is the same as the index [Sy : H| given in part (b) of
this problem. In fact, it turns out that H is the centralizer of ¢ in Sy. Proposition 5 on
the Conjugacy handout states that the cardinality of a conjugacy class of an element a in a
group G is equal to the index [G : C'(a)].

E: Suppose that G is a group of order 35. We will prove in class that G must have at least
one normal subgroup N of order 7. You may use that fact in this problem. Prove that if H
is any subgroup of G such that |H| = 7, then H = N. (Thus, it follows that G has exactly
one subgroup of order 7.)

Solution: We will assume that G has a normal subgroup N of order 7. Consider the quotient
group G/N. Then

|G/N| = [G:N] = |G|/IN| = 35/7 =5 .

Thus, G/N is a group of order 5. Every element of G/N must have order 1 or 5.

Suppose that H is a subgroup of G and that |H| = 7. Since 7 is a prime, we know that
H must be cyclic. That is, H = (h) for some h € H. Thus, h” = e, the identity element in
G. Consider the element AN in the group G/N. We have

(hN)" = hB'N = eN = N
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which is the identity element in G/N. Therefore, the order of the element ~N must divide 7.
Thus, the order of hN is 1 or 7. However, every element of G/N has order 1 or 5. Therefore,
hN must have order 1 or 5. It follows that AN has order 1. This means that hN = N.
Hence h € N. Since N is a subgroup of GG, any power of h is also in N. Therefore,

H = (h) CN .

Finally, since both H and N have the same cardinality (namely, 7), it follows that H = N,
as claimed.

F. Suppose that G is a finite, abelian group. Let n = |G|. Suppose that k& € Z and that
gcd(k, n) = 1. Consider the map ¢ : G — G defined by

olg) = g

for all g € GG. Prove that ¢ is an automorphism of the group G.

Solution. If a, b € GG, then

plab) = (ab)* = d*b* = p(a)p(b) .

The second equality follows from the assumption that G is an abelian group. Hence ¢ is a
homomorphism from G to G.

Let N = Ker(p). Suppose that a € N. Then ¢(a) = e, where e is the identity element
in G. Thus, a® = e. It follows that |a| divides k. However, we also know that |a| divides
n = |G|. Therefore, |a| is a common divisor of k and n. Since ged(k, n) = 1, it follows that
la| = 1. Hence, a = e. Therefore, Ker(yp) = {e}. It follows that ¢ is injective.

Finally, we use the fact that GG is finite. Since ¢ : G — G is an injective map and G is
a finite set, it follows that ¢ is also surjective. Thus, ¢ is a bijective homomorphism and
therefore an isomorphism of G to itself. That means that ¢ is an automorphism of G.



