
Solutions for Assignment 2

Solutions for Problem 46 from section 3.4.

The statement is false. We will give two counterexamples to the statement in this prob-
lem.

Suppose that G is the quaternion group Q8. Let H = {1,−1, i,−i} and let K =
{1,−1, j,−j}. Both are subgroups of G. Then

H ∪K = {1,−1, i,−i, j,−j}

But this set is not closed under the group operation for G. For example, we have

i, j ∈ H ∪K, but ij = k 6∈ H ∪K .

As a second counterexample, let G = Z, which is a group under the operation +. Let
H = 5Z and K = 7Z. Both H and K are subgroups of G. But H ∪K is not a subgroup of
G. It is not closed under the group operation for G. For example, 5 ∈ H∪K and 7 ∈ H∪K,
but 5 + 7 = 12 and 12 6∈ H ∪K.

Solution for Problem 48 from section 3.4.

Let G be a group. Consider the following subset of G:

Z(G) = { z ∈ G
∣∣ zg = gz for all g ∈ G } .

We will prove that Z(G) is actually a subgroup of G.

Let e be the identity element of G. By definition, we have eg = g and ge = g for all
g ∈ G. It follows that eg = ge for all g ∈ G. Hence e ∈ Z(G).

Suppose that a, b ∈ Z(G). Let g be any element of G. Then we have

ag = ga and bg = gb .

It follows that
(ab)g = a(bg) = a(gb) = (ag)b = (ga)b = g(ab)

and hence we have (ab)g = g(ab). This is true for all g ∈ G. Therefore, we have proved that
if a, b ∈ Z(G), then ab ∈ Z(G).
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Finally, suppose that a ∈ Z(G). Let g be any element of G. We have ag = ga. Also,
implicitly using the associative law repeatedly

ag = ga =⇒ a−1ag = a−1ga =⇒ eg = a−1ga =⇒ g = a−1ga

=⇒ ga−1 = a−1gaa−1 =⇒ ga−1 = a−1ge =⇒ ga−1 = a−1g .

This is true for all g ∈ G. Therefore, if a ∈ Z(G), then a−1 ∈ Z(G).

We have shown that Z(G) is indeed a subgroup of G.

Solution for Problem 53 from section 3.4.

The argument is very similar to the argument presented in the solution to problem 48.
In fact, we can take H to be any subset of G. Define

C(H) = { x ∈ G
∣∣ xh = hx for all h ∈ H } .

Since eh = h = he for all h ∈ H, it follows that e ∈ C(H).

Suppose a, b ∈ C(H). Let h be any element of H. Then ah = ha and bh = hb. As in
the solution to problem 47, it follows that (ab)h = h(ab). This is true for all h ∈ H. Hence
ab ∈ C(H).

Suppose a ∈ C(H). Let h be any element of H. Then ah = ha. As before, it follows
that a−1h = ha−1. This is true for all h ∈ H. Hence a−1 ∈ C(H).

We have shown that C(H) is indeed a subgroup of G.

Solution for Problem 1b,c,d from section 4.4.

(b) In fact, U(8) is not cyclic. To see this, note that

U(8) = { 1 + 8Z, 3 + 8Z, 5 + 8Z, 7 + 8Z } .

Furthermore, the identity element is 1 + 8Z. We have

(1 + 8Z)1 = 1 + 8Z, (3 + 8Z)2 = 9 + 8Z = 1 + 8Z,

(5 + 8Z)2 = 25 + 8Z = 1 + 8Z, (7 + 8Z)2 = 49 + 8Z = 1 + 8Z .

The group U(8) has order 4, but the elements in U(8) have order 1 or 2. It follows that U(8)
is not a cyclic group.
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(c) The group Q is the group of rational numbers under the operation of addition. We will
show that Q is not a cyclic group.

Suppose that r ∈ Q. Let H = 〈r〉. If r = 0, then H = 〈r〉 = {0} which is a proper subset
of Q. Hence H 6= Q in that case.

Now suppose that r 6= 0. We can write r =
m

n
, where m,n ∈ Z. Both m and n are fixed,

nonzero integers. Suppose that h ∈ H = 〈r〉. By definition, it follows that h = kr =
km

n
,

where k ∈ Z. Consequently, we have nh = km ∈ Z. Thus, for some fixed nonzero integer n,
we have nh ∈ Z for all h ∈ H.

Consider s =
1

2n
. Then s ∈ Q. However, notice that ns =

1

2
6∈ Z. Using the observation

in the previous paragraph, it follows that s 6∈ H. Therefore, H 6= Q.

We have proved that every cyclic subgroup of Q is a proper subgroup of Q. Therefore,
Q is not a cyclic group.

(d) This statement is false. The quaternion group Q8 is a counterexample. As found in
homework assignment 1, there are six distinct subgroups of Q8. The five proper subgroups
of Q8 are:

{1} = 〈1〉, {1, − 1} = 〈−1〉, {1, − 1, i, − i} = 〈i〉,

{1, − 1, j, − j} = 〈j〉, {1, − 1, k, − k} = 〈k〉
They are all indeed cyclic. But Q8 is not cyclic because none of the elements in Q8 has order
equal to 8. Those elements all have order 1, 2, or 4.

Solution for Problem 4a from section 4.4.

The identity element in the group GL2(R) is I2 =

(
1 0
0 1

)
. Let A =

(
0 1
−1 0

)
. We find

that

A1 = A 6= I2, A2 =

(
−1 0
0 −1

)
= −I2 6= I2,

A3 = A2A = −I2A =

(
0 −1
1 0

)
6= I2, A4 = A2A2 = (−I2)(−I2) = I2

It follows that A has order 4 and that

〈A〉 =

{
I2 =

(
1 0
0 1

)
,

(
0 1
−1 0

)
,

(
−1 0
0 −1

)
,

(
0 −1
1 0

) }
.
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Solution to problem 31 from section 4.4.

Let e be the identity element in the group G. An element a in G has finite order if and
only if there exists a positive integer k such that ak = e. Let T denote the set of elements of
G which have finite order.

Notice that e1 = e and hence e has finite order. Therefore, e ∈ T .

Suppose that a ∈ T . Then a positive integer k exists such that ak = e. By the law of
exponents, we have (

a−1
)k

= a−k =
(
ak
)−1

= e−1 = e

and therefore we have a−1 ∈ T .

So far, we have not assumed that G is abelian. But for the next step, we will need that
assumption.

Suppose that G is abelian and that a, b ∈ G. Then we will first show that if k is any
positive integer, then

(1) (ab)k = akbk .

We will use Mathematical Induction. Obviously, (1) is true for k = 1. Assume it is true for
k = n, where n ∈ N. We then have

(ab)n+1 = (ab)n(ab) = (anbn)(ab) = an(bna)b = an(abn)b = (ana)(bnb) = an+1bn+1

and hence (1) is true for k = n + 1. By Mathematical Induction, it follows that (1) is true
for all k ∈ N.

Now suppose that a, b ∈ T . Then there exist positive integers s and t such that as = e
and bt = e. Let k = st. Then k is a positive integer and we have

ak = ast = (as)t = et = e and bk = bst = (bt)s = es = e .

Using (1), it follows that
(ab)k = akbk = ee = e .

It follows that ab ∈ T . We have proved that if a, b ∈ T , then ab ∈ T .

The above observations show that if G is abelian, then T is indeed a subgroup of G.

Solution for Problem A.
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First of all, note that i4 = 1. Hence the order of i must divide 4. The positive divisors
of 4 are 1, 2, and 4. But i2 = −1 6= 1. Thus, the order of i cannot divide 2. The only
possibility left is that the order of i is equal to 4.

Let β =
√
2
2

+
√
2
2
i. Note that

β2 =

(√
2

2
+

√
2

2
i

)(√
2

2
+

√
2

2
i

)
=

(
1

2
− 1

2

)
+

(
1

2
+

1

2

)
i = i .

Therefore,
β8 = (β2)4 = i4 = 1

Therefore, the order of β must divide 8. Thus, the order of β is 1, 2, 4, or 8. But

β4 = (β2)2 = i2 = −1

and so β4 6= 1. Therefore, the order of β cannot divide 4. The only possibility is that the
order of β is exactly 8.

Let γ = 1
2

+
√
3
2
i. Then

γ2 =

(
1

4
− 3

4

)
+

(√
3

4
+

√
3

4

)
i = − 1

2
+

√
3

2
i

and

γ3 = γ2γ =

(
− 1

2
+

√
3

2
i

)(
1

2
+

√
3

2
i

)
=

(
− 1

4
− 3

4

)
+

(
−
√

3

4
+

√
3

4

)
i = −1 .

It follows that
γ6 = (γ3)2 = (−1)2 = 1

and hence the order of γ must divide 6. Thus the order of γ is 1, 2, 3, or 6. However,
neither γ2 nor γ3 is equal to 1. Thus, the order of γ cannot divide 2 or 3. This leaves just
one possibility. The order of γ must be 6.

Finally, we consider δ = 1 + i. Note that δ2 = (1 + i)(1 + i) = −2i and

δ4 = (δ2)2 = (−2i)2 = −4 and δ8 = (δ4)2 = (−4)2 = 16.

Thus, 16 ∈ 〈δ〉 . Thus, 〈16〉 is a subgroup of 〈δ〉. It is clear that 16k = 1 holds if and only
if k = 0. Thus, 16 has infinite order. Thus, 〈16〉 is an infinite group. It is a subgroup of 〈δ〉
and hence that group must also be infinite. Therefore, δ has infinite order.
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Solution for Problem B.

|G| = 4: The solution for problem 1b above gives us an example. Take G = U(8). It has
order 4 and is noncyclic as explained above.

|G| = 6: Let G = S3. The |G| = 6. As discussed in class, there is one element in G of
order 1, three elements of order 2, and two elements of order 3. There are no elements of
order 6. Hence G is not cyclic.

One can also point out that G = S3 is a nonabelian group. However, every cyclic group
is abelian. Hence G cannot be cyclic.

|G| = 8. We can take G = Q8. Since Q8 is nonabelian, it cannot be cyclic.

Before finishing this problem, we make the following helpful observation. Suppose that
A and B are groups. Let e be the identity element of A and let f be the identity element of
B. Suppose that m and n are positive integers with the following property: am = e for all
a ∈ A and bn = f for all b ∈ B. Let G = A × B, which is the direct product of A and B
defined in class one day. Then G is a group and the identity element of G is (e, f). Notice
that for any element (a, b) ∈ G, we have

(a, b)mn = (amn, bmn) =
(
(am)n, (bn)m

)
= 9en, fm) = (e, f)

and hence every element g ∈ G satisfies gmn = (e, f)

Now we continue the solution to this problem. We will use the notation in the above
observation.

|G| = 12. Let G = A × B, where A is cyclic of order 3 and B = U(Z8). Note that B
has order 4, but every element in B has order 1 or 2. Thus, we have a3 = e for all a ∈ A
and b2 = f for all b ∈ B. We can take m = 3 and n = 2 in the notation of the observation.
Thus, if g ∈ G, then g6 = (e, f). Thus, every element of G has order dividing 6. However,
|G| = |A||B| = 12. Since G has no element of order 12, it cannot be a cyclic group.

|G| = 49. Now we take A and B to be cyclic groups of order 7. Let G = A × B. Then
every element of A has order 1 or 7. Every element of B has order 1 or 7. Thus, if a ∈ A
and b ∈ B, then a7 = e and b7 = f . Thus,

(a, b)7 = (a7, b7) = (e, f)
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which is the identity element in G. Hence every element in G has order dividing 7. However,
|G| = |A||B| = 7 · 7 = 49. This group G is not cyclic because G has no element of order 49.

|G| = 64. One could take G = A× B where A and B are cyclic groups of order 8. Then
just as in the previous case, every element of G has order dividing 8. But |G| = 64. The
group G cannot be cyclic because it has no element of order 64.

Another example is G = Q8 ×Q8. It is a nonabelian group of order 8 · 8 = 64 and hence
cannot be cyclic.

Solution for Problem C.

We are assuming that a, b ∈ G and that ab = ba. Let e be the identity element of G. We
are also assuming that

a2 = e, b3 = e and a 6= e, b 6= e, b2 6= e .

To prove that ab has order 6, let c = ab and let m denote the order of c. Since ab = ba, we
have

c6 = (ab)(ab)(ab)(ab)(ab)(ab) = a6b6 = (a2)3(b3)2 = e3e2 = e

Suppose k ∈ Z. According to a result proved in class, ck = e if and only if m divides k. It
follows that m divides 6. This means that m ∈ {1, 2, 3, 6}. However,

c3 = a3b3 = a3e = a3 = aa2 = ae = a 6= e, c2 = a2b2 = eb2 = b2 6= e

and therefore m doesn’t divide 3 or 2. Thus, m 6∈ {1, 2, 3}. It follows that m = 6, as stated
in the problem.

Solution for Problem D.

The statement is false. Consider the group G = S3. Let

a =

(
1 2 3
1 3 2

)
and b =

(
1 2 3
2 3 1

)
.

Then a has order 2 and b has order 3. However,

ab = =

(
1 2 3
1 3 2

)(
1 2 3
2 3 1

)
=

(
1 2 3
3 2 1

)
which has order 2. Thus, ab has order 2, and not 6.

7


