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1 Introduction

Suppose that K is a finite Galois extension of Q. Let A = Gal(K/Q). Consider an irre-
ducible representation

p: A — GLk(Q)
where Q is an algebraic closure of Q and d > 1. Let y denote the character of p. If we
fix an embedding o, of Q into C, then we obtain a d-dimensional representation of A over
C. One can then define the corresponding Artin L-function L. (s, x). It is defined by an
Euler product for Re(s) > 1 and can be analytically continued as a meromorphic function
on the complex plane. Conjecturally, L. (s, ) is an entire function if y is nontrivial. We
will assume that x is nontrivial throughout this paper.

Now suppose that p is a prime and that we fix an embedding o, of Q into Qp, an algebraic
closure of the field Q, of p-adic numbers. Then p becomes a d-dimensional representation
of A over Qp. Its character x now has values in Qp. One can ask whether there is a natural
way to define a function L, (s, x) attached to p and the fixed embedding, where s is now a
p-adic variable.

This question has been studied previously when K is totally real. In that case, the
values of L (s, x) at negative odd integers are nonzero algebraic numbers. Using the fixed
embeddings o0, and o0, one can regard those values as elements of Q and then as elements
of Qp. Such a p-adic L-function L,(s,x) can then be defined by an interpolation property
involving those elements of Q,,. First of all, if d = 1, then x can be identified with an even
Dirichlet character and the construction of such a function L, (s, x) was done by Kubota and
Leopoldt [24]. If d > 1, then there is a definition described in [11] which is based on the
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Deligne-Ribet construction of p-adic L-functions for Hecke characters of the intermediate
fields for the extension K/Q given in [6]. Furthermore, still assuming that K is totally real,
one can give a precise interpretation of the zeros of L,(s,x). This is a generalization of a
famous conjecture of Iwasawa (for the case where d = 1) and has been proven by Wiles [33].

Let v denote an archimedian prime of K and let K, denote the v-adic completion of K,
which we identify with either R or C. As usual, we identify Gal(K,/R) with a subgroup A,
of A. Let d™ denote the multiplicity of the trivial character of A, in p|a,. This does not
depend on the choice of v. Of course, if K is totally real, then d* = d. Our main objective
in this paper is to study the case where d* = 1 and d > 1. Under certain assumptions, we
will define certain p-adic L-functions and discuss a conjectural interpretation of the zeros of
those functions. Our theory reduces to the classical case where d* = d when d = 1.

We will usually make the following three-part assumption. In the last part, A, denotes
the decomposition subgroup of A for a prime p lying over p.

Hypothesis A: The degree [K : Q] is not divisible by p. Also, d* = 1. Furthermore, there
exists a I-dimensional representation e, of A, which occurs with multiplicity 1 in p|a,.

Our theory depends on choosing one such character €, of A,. Also, if d > 1, then K must
be totally complex and hence of even degree. We will therefore assume that p is odd from
here on.

Since dt = 1, Frobenius Reciprocity implies that p occurs with multiplicity 1 in the
Q-representation of A induced from the trivial representation of A, for any archimedian
prime v of K. It follows that p itself can be realized by matrices with entries in Q(x), the
field generated by the values of x . Let F be the field generated over Q, by the values of
x and of ,. We can then regard p as a representation of A over F (via 0,). Let V' denote
the underlying representation space. Thus, dimz(V) = d. Also, the last part of Hypothesis
A means that the maximal F-subspace V) of V' on which A, acts by the character ¢, has
dimension 1.

The theory described in this paper depends not just on y, but also on the choice of the
character e, of A, satisfying Hypothesis A. Suppose that p’ is another prime of K lying over
p. Then p’ = §(p) for some § € A. Thus, A, = §'A,d. Conjugation by §' defines an
isomorphism A, — A,. One then obtains a character ey of A, from €, by composing with
this isomorphism. One sees easily that €, is well-defined and occurs with multiplicity 1 in
pla,, - In effect, we have a family of characters {e }y|, for the decomposition subgroups which
are compatible under conjugation.

Let IC denote the completion of K at p. Then K is a certain finite Galois extension of
Q,. Consider the restriction map Gal(K/Q,) — A,. It is an isomorphism. Composing this
map with the character ¢, of A, determines a character ¢ of Gal(K'/Q,). It has values in F.



If p’ is another prime of K lying over p, then the completion K, is isomorphic to K. The
character ¢ then determines a character of Ay. In fact, this character does not depend on
the isomorphism and is just ey as defined above. Thus, the family {e,},|, is determined by
the single character € of Gal(}C/Q,).

We will first describe the algebraic side of our theory. We assume that Hypothesis A is
satisfied. Let O denote the ring of integers in F. Let T' denote an (O-lattice in V' which is
invariant under the action of A. Since |A| is prime to p and p is irreducible over F, T is
determined up to multiplication by an element of F*. Let D = V/T. Thus, D is isomorphic
to (F/O)4 as an O-module and has an O-linear action of A. Furthermore, for every prime
p of K lying above p, we will denote the image of V) in D by D). It is the maximal
Ap-invariant O-submodule of D on which A, acts by ¢, and is isomorphic to F/O as an
O-module.

We now define a “Selmer group” associated to y and € which we denote by S, .(Q). It
will be a certain subgroup of H(Ggq, D), where Gq = Gal(Q/Q). As usual, we will write
H'(Q, D) instead of H'(Gq, D). A similar notation will be used for other fields and Galois
modules. Suppose that £ is a prime. Let Q, be an algebraic closure of Q,. Pick (arbitrarily)
an embedding of Q into Q,. We can then identify Gq, = Gal(Q,/Q,) with a subgroup of
Gq. Let Qj™ be the maximal unramified extension of Q, in Q,. The inertia subgroup of
Gq, is Gqrr and is also identified with a subgroup of Gq.

Note that if £ = p, then the chosen embedding of Q into Qp determines a prime of K
lying above p, which we denote simply by p. Our Selmer group is defined by

$e(Q) = ker(H'(QD) — ] H'(Qi™.D) x H'(Q)",D/D) )
l#p

The “global-to-local” map occurring in this definition is induced by the restrictions maps,
where we identify the Gqu»~’s with subgroups of Gq as above. However, as our notation
suggests, S, -(Q) is completely determined by the F-valued character x of A (of degree d)
and by the F-valued character ¢ of Gal(K/Q,) (of degree 1). It doesn’t depend on the chosen
embeddings and identifications.

The above definition of our Selmer group is suggested by the general notion of a Selmer
group which was studied in [12] and which also depends on having a filtration on a repre-
sentation space V' for Gq when restricted to the local Galois group Gq,. In that paper, the
local condition at the prime p is defined in terms of a certain subspace denoted by F™V.
That paper primarily considers the so-called p-critical case in which the dimension of F*V
is equal to d*. And so, if d* = 1, then F*V should be of dimension 1. In the definition
given above, the role of £V is now being played by V().



Now S, .(Q) is a subgroup of H'(Q, D). Since D is an O-module, so is H'(Q, D). Tt is
clear that S, .(Q) is an O-submodule. The restriction map

HY(Q,D) — HY(K,D)* = Homa(Gal(K"/K), D)

is an isomorphism. Here K is the maximal abelian extension of K in Q. Also, the notation
Homa (-, -) will always denote the group of continuous, A-equivariant homomorphisms. The
above isomorphism follows from the assumption that |A| is not divisible by p and the fact that
Gk acts trivially on D. Thus, we can identify S, .(Q) with its image under the restriction
map which we will now describe.

Let ¢ € Homa(Gal(K®/K), D). Let K¢ be the fixed field for ker(¢). Thus, K is a
finite, abelian extension of K, Galois over Q, and ¢ defines a A-equivariant isomorphism of
Gal(K¢/K) to a subgroup of D. For £ to be in the image of S, .(Q), the local conditions
defining S, .(Q) are equivalent to the following conditions on £. First of all, the extension
K¢/K is unramified at all primes of K not dividing p. Furthermore, if p is a prime of K
lying over p, then the image of the corresponding inertia subgroup of Gal(K,/K) under the
map ¢ is contained in D). By using the above identification, we will prove the following
result.

Theorem 1. S, .(Q) is finite.

The proof of this theorem uses the Baker-Brumer theorem concerning the linear independence
over Q of the p-adic logarithms of algebraic numbers and is reminiscent of the proof of
Leopoldt’s conjecture for abelian extensions of Q. Leopoldt’s conjecture is usually formulated
as a statement about the p-adic independence of units in a number field K. But, if K is
Galois over Q, then it has an equivalent formulation as a statement about the p-components
of the unit group, where p varies over the absolutely irreducible Artin representations of
Gal(K/Q). As we will show in section 2, the Baker-Brumer theorem provides a proof of
that conjecture when d* = 1. However, theorem 1 is a stronger statement and not just
a consequence of Leopoldt’s conjecture for such a p. The proof requires a somewhat more
refined application of the Baker-Brumer theorem and depends on Hypothesis A.

Let Qo be the cyclotomic Z,-extension of Q. For n > 0, let Q,, denote the subfield
of Qo of degree p™ over Q. One can define Selmer groups S, .(Q,) for all n > 1 and
Sye(Quo) in a similar way to the definition of S, .(Q) (the case n = 0). We will actually
prove that S, .(Q,,) is finite for all n > 0. Let I' = Gal(Q/Q) and let Ap = O[[I']]. Now I'
acts naturally on S, .(Qs) and the action is O-linear. Thus, we can regard S, .(Qw) as a
discrete Ap-module. Let X, .(Qo) denote the Pontryagin dual of S, .(Qs). We can regard
X,:(Qx) as a compact Ap-module. The following result is a straightforward consequence
of the finiteness of the S, .(Q,)’s.



Theorem 2. The Ap-module X, -(Qo) is finitely-generated and torsion.

Alternatively, we would say that S, .(Qw) is a cofinitely-generated, cotorsion Ap-module.

We will next state a result on the algebraic side concerning the characteristic ideal of
X,:(Qx). We will prove this result in a sequel to this paper (part II). By definition, the
characteristic ideal is a principal ideal in Ap. We will prove that it has a generator with an
interpolation property of a certain form. To simplify the statement and explanation, we will
assume here that F = Q,. Thus, we are assuming that both x and ¢ have values in Q,,.

Let Ko = KQ, the cyclotomic Z,-extension of K. We can identify Gal(K./K) with
I' = Gal(Qw/Q) by the obvious restriction map, noting that K N Q. = Q because [K : Q]
is prime to p. We may assume that K contains p,. Then K, = K(ju,~). The action of
Gal(Ko/K) on pip defines an isomorphism « : I' — 1+ pZ, (since p is odd). Recall that K
denotes the completion of K at any one of the primes of K lying above p. We let K, denote
the cyclotomic Z,-extension of . We can also identify Gal(K./K) with I". For n > 0,
the n-th layers in K,,/K and in K, /K will be denoted by K, and IC,, respectively. We
also will identify Gal(K/Qs) with A by the restriction map. We then have a canonical
isomorphism Gal(K/Q) = A xI'. Similarly, Gal(K«/Q,) = G xI', where G = Gal(K/Q,).
We will denote Gal(K,,/Q) by A,.

For each n > 0, let U,, denote the group of principal units in IC,,. Let U, denote the
group of units in K, which are principal in all the completions of K, at primes above p.
Thus, we can pick embeddings K,, — K, in a compatible way and thereby obtain natural
injective homomorphisms U,, — U,,. The lack of uniqueness will not affect the statement of
the next theorem. Those homomorphisms commute with the natural global and local norm
maps U,, — U, and U,, — U,, for m > n > 0.

Since we are regarding G as a subgroup of Gal(K/Q,), and the U,’s are abelian pro-p
groups and hence Z,-modules, we can consider the U,,’s as Z,[G]-modules. For each n > 0,

let U denote the e-component of U,,. We can then define the projection map U,, — Z/ly(f),
which is a surjective I'-equivariant map. We will use the somewhat peculiar notation | - |.
for this projection map. Our motivation for this notation is to suggest an analogy with the
classical Stark conjecture which involves the complex log of the absolute value of so-called
Stark units. Theorem 3 below involves instead the p-adic log of | - |. applied to certain units.

Suppose that ¢ : I' — Q: is a continuous group homomorphism. Then we can extend ¢ to
a continuous Z,-algebra homomorphism A — Qp, which we also denote by . Thus, its image
©(A) is a compact subring of some finite extension of Q,. The elements of Homcom(F,Q: )
of finite order will be of particular interest. If ¢ has order p", then ¢(A) = Z,[pym]. One
can also consider the elements of Homcom(F,Q; ) of the form &, where ¢t € Z,. They have
values in 1+ pZ, and we have k'(A) = Z,,.



Now ¢ factors through the Galois group of a cyclic extension of Q, of degree prime to
p. We have a canonical factorization ¢ = w8, where 0 < a < p — 1 and § is unramified.
Let b denote the order of 3. Thus, 3 factors through Gal(Q,(x;)/Q,) where f = p®—1 and
is a faithful character of that Galois group. Also, w denotes the Teichmiiller character and
factors through Gal(Q,(1,)/Qp)- If ¢ is a character of I" of order p”, then w®y factors through
Gal(Qp(ppm+1)/Qp). Thus, ¢ can be regarded as a character of Gal(Qp(ffm+1)/Q,p). We

choose a generator (y for y15 so that its image ¢ 7 in the residue field F» for Q,(uy) is part of

a normal basis for F; /F,. Of course, this just means that {@’j }o<j<b is linearly independent
over F,. The existence of such an element (; is a theorem of Lenstra and Schoof (in [25]).
For n > 0, we choose generators (sn+1 for pism+1 such that (Jﬁ’pn“ = (pn. We define a
“Gaussian sum” by
s(ep) = Y ep(o o ((ppn)

where o varies over Gal(Qp(pspm+1)/Qp). The nonvanishing of s(ep) can be proved using
our choice of (y. The next theorem will not be proven here, but will be the main result in
the sequel. It gives an interpolation property for a generator of the characteristic ideal. As
we will discuss in the sequel, we can also give an interpolation property for ¢, (6, ) in most
cases, where ¢, is the trivial character of I'.

Theorem 3. Suppose that d = 2 and that assumption A is satisfied. Then the characteristic
ideal of X, (Qwx) has a generator 6, . with the following property. There exists a norm-
compatible sequence {n,}, where n, € U, for all n >0, such that

LS (6 log, (I6(n)1)

) T &

for alln>1 and all p € Homcom(F,Q;) of order p".

The proof of this theorem involves extending a classical result of Iwasawa to this setting.
Indeed, we prove a certain four-term exact sequence involving the module X, .(Q.) and
certain inverse limits of local unit groups and global unit groups. The sequence {7, } defines

an element 7., in the A-module U, = l&n U,,. The e-component uéi) has A-rank 1, and is

usually just isomorphic to A. The projection of 7, to U generates a A-submodule of U of
rank 1. The corresponding quotient module has the same characteristic ideal as X, . (Qeo)-
All of this will be discussed in the sequel.

We are not entirely satisfied with the above interpolation property. For one thing, it
depends on the choice of (y. However, since we are free to multiply 6, . by an arbitrary unit
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in Ap, we are hoping to find more natural interpolation factors, perhaps depending on x
and € in some canonical way. In a previous version of this paper, we had the simpler (and
canonical) factors 7(w%p)/p" ™!, where 7(w?p) is the standard Gaussian sum. However, that
previous interpolation property corresponds to choosing a generator for the characteristic
ideal in a large ring Ao/, where (0’ is the ring of integers in a certain unramified extension

F' of F.

Now we will discuss the analytic side of our theory. Our most general results concern
the case where d = 2. Since d* = 1, we have d- = 1 and p has odd determinant. The
action of A, on V/V() is given by a character gy © Ay = F*. As before, we can define
a character ¢’ : Gal(/Q,) — F*. We assume the Artin conjecture for p and all of its
twists by one-dimensional characters so that we can associate to p a certain modular form
f, of weight 1. We will define a p-adic L-function L, (s, x,€) as the restriction of a 2-variable
p-adic L-function to a certain line.

For simplicity, we will assume here that &’ is unramified. In general, we can reduce to that
case by twisting by some power of w. By using the fixed embeddings o, and o, we can regard
the g-expansion of f, as having coefficients in F. One can then apply a theorem of Wiles to
prove the existence of a Hida family of modular forms with the following property. They will
be given by g-expansions with coefficients in some finite extension of F. Roughly speaking,
in each weight k£ > 2, the corresponding p-adic Galois representation has an unramified
quotient (when considered as a representation of Gg,) and the action on that quotient is
given by a character ), of Gq,. As the weight k& approaches 1 p-adically, ), approaches ¢'.

The two-variable p-adic L-function for a Hida family was first constructed by Mazur
under certain assumptions and then by Kitagawa in [23], and later by a different method
in [19]. Under some mild restrictions on p, the Hida family is uniquely determined by the
choice of ¢’. However, since p is 2-dimensional, the choice of € determines ¢’, and we will use
€ in our notation. The corresponding two-variable p-adic L-function that we consider here is
defined using the so-called canonical periods, following [7]. The restriction to k = 1 defines
a function L,(s, x,¢) for s € Z,. Furthermore, there is an element " in Ay such that

XH€
(1) Ly(s,x,€) = &' *(05")

for all s € Z,. We conjecture that this element is a generator of the characteristic ideal
of X, -(Qs). In fact, when d = 1, one of the equivalent forms of Iwasawa’s classical Main
Conjecture can be formulated in precisely this way. (See the introduction of [10].) In that
case, one has g, = x|a, and L,(s, x,€) should be taken to be L,(s, x), the Kubota-Leopoldt
p-adic L-function for y.

We now denote the element 6, . occurring in Theorem 3 by 0;{8. Our conjecture asserts
that the principal ideals in Ap generated by 9;{5 and by 67", are equal. Neither 6", nor 9;‘2{5 is
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actually uniquely determined. They are only determined up to multiplication by an element
of O for 0" or an element of A} for 9;{8. In addition, although 9;{5 is nonzero, we cannot
prove in general that 6", is nonzero.

2 Galois cohomology for Artin representations

We will be quite general at first. Suppose that K is a finite Galois extension of Q, that
A = Gal(K/Q), and that p: A — GL4(F) is any absolutely irreducible representation over
F. We even allow [K : Q] to be divisible by p. Let x denote the character of p. We use x
consistently in our notation. We assume that F is a finite extension of Q,. Let O be the
ring of integers in F. Let D = V/T, where V is the underlying F-vector space for p and
T is a A-invariant O-lattice in V. Let X be any finite set of primes containing p, oo, and
the primes which are ramified in K/Q. Thus, K C Qy, where Qg is the maximal extension
of Q unramified outside of ¥. We can regard D as a discrete O-module with an O-linear
action of Gal(Qx/Q). We denote d by d(x) and write d(x) = d*(x) + d (x), reflecting the

action of the decomposition subgroup A, for an archimedean prime v of K.

We first discuss the Galois cohomology groups H(Qs/Q, D) for i > 0. They are O-
modules. Of course, if p > 3, then H'(Qx/Q, D) = 0 for i > 3. For p = 2, those cohomology
groups are finite and have exponent 2. Thus, we just consider ¢ € {0,1,2}. We will be
primarily interested in the O-corank of H'(Qs/Q, D). The Poitou-Tate formula for the
Euler-Poincaré characteristic gives

coranko (H'(Qx/Q, D)) = d (x) + coranko (H*(Qx/Q, D)) + coranko (H%(Qx/Q, D))

If x is the trivial character, then one sees easily that H°(Qx/Q, D) and H'(Qx/Q, D) both
have O-corank 1, and hence H*(Qx/Q, D) has O-corank 0. If we assume that y is not the
trivial character, then coranko(H%(Qs/Q, D)) = 0. The following result is an immediate
consequence of the above remarks.

Proposition 2.1. Assume that x is nontrivial. Then coranko (H'(Qs/Q, D)) > d~(x) and
equality holds if and only if coranke (H2(QE/Q, D)) =0.

In general, it is reasonable to conjecture that coranke (Hz(QE/Q,D)) = 0. This is
closely related to Leopoldt’s conjecture, as we now explain. Let

U, = [ 4 .



where U, is the group of principal units in the completion K. Let Uk consists of the units
of K which are principal units at all p|p. Thus, Uk is a subgroup of the unit group of K of
finite index. Consider the natural diagonal map

(2) UK —>Z/{p .

The U,’s, and hence U, are Z,-modules. The map (2) is obviously injective and extends to
a map

(3) At Ux @72, — U, .

which is Z,-linear. The image of ), is the closure of the image of the map (2) and will
sometimes be denoted simply by Uy, Furthermore, A acts naturally on both Uy ®g Z,
and U,. The map A, is A-equivariant. Tensoring the above objects with F, we again get
a A-equivariant map which we denote by A, r. Then, restricting to the y-component, we
obtain a A-equivariant map

(@) N s (U ea )Y (g, F)Y

Leopoldt’s conjecture (for K and p) asserts that ), is injective. It is equivalent to saying that

Ap.F s injective. For each x, one can conjecture that )\](ff} is injective. This obviously follows

from Leopoldt’s conjecture. Conversely, if )\I(j‘} is injective for all the absolutely irreducible
character y of A, then Leopoldt’s conjecture holds for K and p. Here one should choose F
so that all of the absolutely irreducible representations of A = Gal(K/Q) are realizable over
F.

Let r(x) denote the multiplicity of x in the A-representation space Ux ®z F. The proof
of Dirichlet’s Unit Theorem allows one to determine (). In fact, if x is nontrivial, then
r(x) = d*(x). If x is trivial, then r(x) = 0. On the other hand, the A-representation space
U, ®z, F is isomorphic to the regular representation of A over F and hence x has multiplicity

d(x). The image of )\2‘} is the y-component of Im(\, ). Let r,(x) denote the multiplicity

of x in Im(A, 7). The conjecture that )\I(i‘} is injective can be equivalently stated as follows.
LC(x,p):  We have r,(x) = r(x).

It is obvious that r,(x) < r(x). One can reformulate LC(x, p) in terms of Galois cohomology.

Proposition 2.2. The assertion LC(x, p) holds if and only if coranke (HQ(QE/Q, D)) =0.



Proof. Consider the restriction map
o H'(Qs/Q,D) — H'(Qs/K,D)* .

Since A is finite, it follows that the kernel and cokernel of « are both finite. Hence
HY(Qx/Q, D) and H'(Qyx/K, D)® have the same O-corank. Furthermore,

HY(Qs/K, D) = Homa(Gal(M/K), D) ,

where M is the maximal abelian pro-p extension of K contained in Qyx. Clearly, M is Galois
over Q and so A acts naturally on Gal(M/K). Also, Gal(M/K) can be considered as a
Z,-module and is finitely generated.

Let K denote the compositum of all Z,-extensions of K. Then K C K C M and M / K

is a finite extension. Furthermore, K is Galois over Q and hence A also acts naturally on
Gal(K/K). These remarks imply the first of the following equalities. The second equality
is easily verified.

coranko (H'(Qx/Q, D)) = corankO(HomA(Gal([?/K) ®z, O, D))

= dim;(HomA(Gal(f?/K) ®z, F, V))

Hence, the O-corank of H'(Qyx/Q, D) is just the multiplicity of y in the A-representation
space Gal(K/K) ®z, F. We next describe that multiplicity in terms of 7,(x).
By class field theory, there is a homomorphism

U,/Tm(),) — Gal(K/K)

whose kernel and cokernel are finite. The multiplicity of x in U, ®z, F is d(x). The
multiplicity of x in Im(),) ®z, F is 7,(x). Hence the multiplicity of x in Gal(K/K) ®z, F
is d(x) — rp(x)-

On the other hand, as mentioned above, if x # X, then one has r(x) = d*(x). This
follows from the well-known fact that

Uk ®z Q = Iﬂdﬁv(eo)/%

where v is an archimedean prime of K, 6y is the trivial character of the decomposition
subgroup A,, and Vj is the underlying Q-representation space for the trivial character yo of
A over Q. If x # xo, then Frobenius Reciprocity implies that r() is equal to the multiplicity
of 6y in p|a,, which is indeed equal to d* (). Of course, we have r(xg) = 0.
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Using the formula for the Euler-Poincaré characteristic, we obtain

coranke (H*(Qs/Q, D)) = (d(x) —r,(x)) — d"(x) — coranko (H°(Qs/Q. D)) .

If x # xo, then we obtain corankey (HQ(QE/Q, D)) = r(x) — rp(x). This gives the stated
equivalence in proposition 2.1. For xy = x¢, the result is obvious. |

Remark 2.3. If p is an odd prime, then the p-cohomological dimension of Gal(Qyx/Q) is 2.
Hence H*(Qx/Q, Dlp]) = 0. Since D is divisible by p, it follows that H?(Qx/Q, D) is also
divisible by p. Thus, its Pontryagin dual is a finitely-generated, torsion-free Z,-module, and
hence is free. Tt is free as an O-module. In particular, if the O-corank of H*(Qx/Q, D) is 0,
then we actually have H*(Qx/Q, D) = 0. If p = 2, one can just show that pH?*(Qx/Q, D)
is 0.

One useful positive result concerning LC(x, p) is the following.
Proposition 2.4. If r(x) > 1, then r,(x) > 1.

The proof makes use of _the following lemma. We regard Uk ®z Q as a module over the
group ring Q[A], where Q is the algebraic closure of Q in Q,. We regard Im(},) ®z, Q,, as
a module over Q,[A] and hence over the subring Q[A].

Lemma 2.5. Suppose that 0 € Q[A] and that 6 does not annihilate Ux @7 Q. Then 0 does

not annihilate Im(\,) ®z, Q,.

Proof. Let F be a finite extension of Q, containing the coefficients of 6. As before, we let
KC be the completion of K at one of the primes of K lying above p. Let U be the group of
principal units in . We consider the corresponding projection map

prio U@z, F = [[ th®z, F) — Uz, F
plp
It suffices to show that Im(\, 7)? has a nontrivial image under the map pr.

By assumption, there exists an n € Uy such that 7? is nontrivial (as an element in
Uk ®z F). Now 0 = > 5.5 as0, where the a;’s are in FNQ. Choose a maximal subset A’ of
A so that {0'(n)}sear is a multiplicatively independent set. Thus, replacing 6 by an integral
multiple if necessary, we have
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where ¢ = ) 5, A B50" and the B5’s are in F N Q. Since n¥ is nontrivial, the fB5’s are not all
Zero.

The map log, : U — K extends to an F-linear map from U ®z, F to K®z, F. The image
of n¥ under the map

logyoproX,7: Uk @z F — K®gz, F .

sy =2 scn logy (5’(77)) ® Bs. The inclusions K, F C Qp induce a map from K ®z, F to
Q,- The image of v is Y 5cn Bsrlog,(6'(n)). The Baker-Brumer theorem [2] implies that
v # 0. It follows that the image of 7’ under A,  is nontrivial. Since ), 7 is A-equivariant,
it indeed follows that 6 is not an annihilator of Im(\,) ®z, Q,,- [

Remark 2.6. The proof of the above lemma shows that if 6 € F[A] has coefficients in
F N Q and does not annihilate Ux ®7z F, then pr (Im()\n ;)9) is a nontrivial F-subspace of
U ®z, F. This will be important later.

Proposition 2.4 follows from lemma 2.5. One takes 6 to be the idempotent for x in F [A]
which does have coefficients in F N Q. The following corollary follows immediately since

7(x) = d*(x) when x # xo.

Corollary 2.7. If d*(x) =1, then LC(x, p) is true.

A very closely related result is proved in [8]. The above corollary is implicit in that work.
In addition, those authors give an interesting class of examples where Leopoldt’s conjecture
can be proved. In fact, their examples are an illustration of the above corollary. Suppose
that A = Ay, the alternating group of order 12. Suppose also that K is not totally real.
Then Uk has rank 5. There are four absolutely irreducible representations of A, up to
isomorphism, three of dimension 1 and one of dimension 3. One finds easily that the three
nontrivial representations are the constituents in Ux ®z F as a representation space for A,
two of dimension 1 and the one of dimension 3, and that they all satisfy d* = 1. And so
Leopoldt’s conjecture for K and p follows from the above corollary.

The rest of this section concerns the Galois cohomology groups H'(Qsx/Qu, D). They
are discrete O-modules with a continuous action of I' = Gal(Q.,/Q) and so can be regarded
as discrete Ap-modules, where Ap = O[[I']]. They are cofinitely generated as Ap-modules.
Their Ap-coranks can be determined without assuming any conjectures. The results below
are essentially consequences of theorems of Iwasawa, notably theorems 17 and 18 in [22]. We
also refer to [12] and [16].
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Proposition 2.8. The Ap-corank of H'(Qs/Qeo, D) is equal to d=(x). If p is odd, then
H*(Qx/Qoc, D) = 0. If p =2, then pH*(Qs/Qo, D) = 0.

Proof. The theorems of Poitou and Tate imply a formula for the Euler-Poincaré characteristic
involving the Ap-coranks of the H'(Qs/Qq, D)’s. The alternating sum of those Ap-coranks
for 0 <4 < 2is —d~(x). (See proposition 3 in [12].) Since the Ap-corank of H(Qsx/Qe, D)
is clearly 0, one obtains the formula

coranka, (H'(Qs/Qoe, D)) = d~(x) + coranky, (H*(Qs/Qoc, D))

The proposition amounts to the assertion that H%(Qs/Qe, D) has Ap-corank 0.

Let Ko = KQo, the cyclotomic Z,-extension of K. Consider the restriction map

HQ(QZ/QOO: D) —>H2(QE/K007 D) :

Note that Gal(Qyx/K) acts trivially on D. Thus, as a Gal(Qx/K)-module, D is isomor-

phic to DZ;(X). Furthermore, the kernel of the above map has exponent dividing the degree
[K : Qo and hence has A-corank 0.

Now H'(Qs/Kw, D,,) = Hom(Gal(MZX/K,),D,,). Here M2 denotes the maximal,
abelian pro-p extension of K., contained in Qx. One can regard Gal(MZX/K.,) as a A-
module. According to a well-known theorem of Iwasawa, the A-rank of Gal(MZ/K.,) is
equal to r9(K), the number of complex primes of K. (See Theorem 17 in [22] for the case
where X is the set of primes ¥y lying above p or oo. For larger Y, one can use the fact
that there are only finitely many primes of K., lying above primes in ¥ — ¥, to show that
Gal(M*/M*°) has finite Z,-rank and hence is a torsion A-module. Thus, the Ap-corank
of HY(Qs/Kw, Dy,) is m2(K). Again, the Poitou-Tate Duality Theorems imply that the
Euler-Poincaré characteristic (which involves the alternating sum of the Ap-coranks of the
H (Qs/Kw, D)’s for 0 < i < 2) is equal to —ro(K). It follows that H?(Qs/Ks, D,,) has
Ap-corank 0. Therefore, H*(Qs/Qoo, D) indeed has Ap-corank 0.

If p is odd, then proposition 4 in [12] asserts that the Pontryagin dual of H%(Qs/Qu, D)
is a free A-module. Since its rank is 0, it must vanish. Hence H?(Qs/Qs, D) = 0. By
considering the restriction map to an imaginary quadratic extension of Q.,, the argument
in [12] shows that H?*(Qyx/Qu, D) has exponent 1 or 2 when p = 2. |

One other basic result about the structure of the Ap-module H'(Qsx/Qs, D) concerns
the phenomenon of purity, namely that the torsion submodule of the Pontryagin dual of
that Ap-module has support which is purely of codimension 1. This is the content of the
following proposition.
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Proposition 2.9. Assume that p is odd. Then the Pontryagin dual of H'(Qs/Qu, D) has
no nontrivial, finite Ap-submodules.

Proof. This follows immediately from proposition 5 in [12], the crucial assumption being that
H?(Qsx/Qu, D) vanishes. If the image of p has order prime to p, one could alternatively use
the fact that the A-module Gal(MZ /K.,) has no nontrivial, finite A-submodules. This is a
consequence of theorem 18 in [22]. |

3  Selmer groups for Artin representations 1

We will prove theorem 1 in this section. More generally, we prove the finiteness of the Selmer
group over Q,, for all n > 0. Suppose that p is an irreducible Artin representation of G'q
over F satisfying Hypothesis A in the introduction. Since d* = 1, one sees easily that p
is absolutely irreducible. We assume that p factors through A = Gal(K/Q), where K is a
finite Galois extension of Q of degree prime to p. We consider the Selmer groups S, (Q)
for all n > 0. The definition of the above Selmer groups can be described as follows. As
usual, the description of the local condition at a prime v of a number field of residue field
characteristic ¢ always implicitly involves choosing a fixed embedding of Q into Q, which
induces the prime v on the number field. The Selmer group is independent of those choices.

If ¢ is any finite prime and v is a prime of Q,, lying over ¢, we denote the completion of
Q. at v by Q.. If v is a prime of Q4 lying over ¢, then we let Qs , = UnZO Q... Note
that if ¢ # p, then Q. , C Qp"™". For such a prime ¢, we define

Ho(Qu D) = [ T (H(Qu,, D) — H(Q}™, D))

v|¢

for all n > 0. There is a unique prime 7 of Qo lying over p. Thus, our chosen embedding
of Q into Q, induces ™ on Q. Let p be the prime of K induced by that embedding. We
then define

(5) H,(Qn, D) = Im (H(Qu, D) — HY(Q"™, D/D) .

n,m)

We can then define the Selmer groups to be considered by

(6) S+(Qu) = Ker (H'(Qs/Qu, D) — [] #Qu. D)) .

lex
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for any n > 0. Here X is a finite set of primes of Q containing p and oo chosen so that
K C Qx. The global-to-local map occurring in this definition is defined by the various
restriction maps. Since we are taking p to be odd, the 1-cocycle classes are certainly trivial
at the archimedean primes of Q,. And so the product in (6) is just over the nonarchimedean
primes in .

Note that if x is trivial, then ¢, is trivial and D) = D. Tt is then obvious that

(7) Hom(Gal(Qo/Qn), D) S Sy(Qn)

and this Selmer group is therefore infinite. Actually, one can easily show that equality holds
in (7). However, as we stated in the introduction, we are assuming throughout this paper
that x is nontrivial. We will now prove the following result.

Proposition 3.1. Assume that Hypothesis A is satisfied. Then S, .(Q,) is finite for all
n > 0.

Proof. Since p t [K : Q], we have K N Q,, = Q. Let K,, = KQ,, the n-th layer of the
cyclotomic Z,-extension of K. Then we can identify Gal(K,/Q,) with A and Gal(K,/K)
with Gal(Q,/Q), which in turn can be identified with I'/T,,. Here I',, = T'*" = Gal(Qu./Q,).
Let A, = Gal(K,,/Q). We have a canonical isomorphism A, = A x I'/T',. Each prime p
of K lying over p is totally ramified in K, /K. Let p, be the unique prime of K, lying
over p and let U, , denote the group of principal units in the completion of K, at p,. The
decomposition subgroups of Gal(K,/Q,) and A, for p, are then identified with A, and
A, x I'/T,, respectively. Both of these decomposition groups act on U, ,. There is a natural

action of A,, on
Uy = 1] Uns -
plp

As in section 2, we have a natural A,-equivariant map
Ap: U@z 2y — Uy,

where U, is the group of units of K,, which are principal units at p, for all p|p. The image
of \,, will be denoted by U,,,. It is just the closure of the image of U,, under the natural
diagonal map from U, into U,, .

We consider the Selmer groups S, (Q,) for n > 0. The restriction map
H'Y(Q,,D) — H'(K,,D)* = Homa(G?,D) ,

is an isomorphism and the image of S, .(Q,,) is contained in Homa (Gal(M,,/K,,), D), where
M, is the maximal abelian pro-p extension of K, unramified outside of the set of primes
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lying over p. This assertion captures the local conditions defining S, .(Q,) at all primes
¢ # p. Suppose that £ € Homa (Gal(M,,/K,,), D). Noting that the local degree [K,,,, : Q.|
is prime to p, one sees that ¢ is in the image of S5, .(Q,) if and only if the image of the
inertia subgroup I,, of Gal(M,/K,) for p, under £ is contained in D), Note that if this
condition is satisfied for one p|p, it is satisfied for all those p’s. Also, I,, is Ap-invariant.
Now we can extend the map £ to a A-equivariant map

foZGal(Mn/Kn)o — D s

where the subscript O here (and elsewhere) denotes the tensor product over Z, with O, a
ring which is finite and flat over Z,. The map {p is continuous and O-linear. Furthermore,
with this notation, we have a A,-decomposition

_ [(Ep)

Lnpo = Lo X Jupo

where J,, , 0 is the direct product of all of the Ay,-components of I,,, o apart from the e,-
component. In terms of this decomposition, £ is in the image of S, .(Q,,) under the restriction
map if and only if fo( n.p, @) = 0 for one (and hence for all) primes p lying over p. Thus, the
Selmer condition for £ is that o factors through the quotient Gal(M,,/K,)o / In.p,0, Where
Jnpo denotes the O-submodule of Gal(M,,/K,,)o generated by all the J, , o’s for p|p.

For each p|p, we have U, , 0 = 7(5;,)0 X Vnpo, where the second factor is the di-

rect product of the Ay-components of U, , » apart from the e,-component. We then have

Unpo = Z/{ELO X Vn,p,o, where we use the following notation:
(ep
,p(’) - H Z/{ n.p, O ) Vip,o = H Vi p,0
plp plp

The projection map from U, , o to L{ e Wlll be denoted by 7, .. We should point out that

A,, acts naturally on U, , » and that both L{ po and V, , 0 are invariant under the action of
A,,. The map 7, . is A,-equivariant and O- hnear

Let L, denote the p-Hilbert class field of K,,, the maximal, abelian, unramified p-
extension of K,. We have K,, C L, C M,. Class field theory gives an exact sequence

(8) 1 — Upp — Unp — Gal(M,/K,) — Gal(L,/K,) — 1 .

The image of U, , (as a factor in U, ,,) under the reciprocity map « is I,,. Tensoring the
above exact sequence with O, the O-submodule J,, ,, o of Gal(M,,/K,,)o is the image of V,, , 0
under the map «a,. The above observations then give us an exact sequence

0 — H}p(Qu, D) — 5,2(Qu) — Homopa) (Unpo/VapoUnpo, D) —0 .
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Note that Gal(Q,/Q) = I'/T, acts naturally on H., (Q,, D) and S, .(Q,). Also, since A,
is identified with A x I'/T",, there is also an action of I'/I',, on the next term of the above
sequence. The maps are I'/T",,-equivariant.

The restriction map defines an isomorphism H., (Q,,, D) = Homa (Gal(L,/K,), D) and
this group is finite. We also have a canonical isomorphism

Un,p,O/Vn,p,(’)Un,p,O = u[;, (’)/ﬂ-n,s (Un,p,O)

as O[A,]-modules. For brevity, we will denote m, . (Un,p,o) by Uf}p’o. Thus,

It is an O[A,,]-submodule of U, [e]

In summary, S, .(Q,) contains the finite O- submodule H&m(Qn, D) and the correspond-

[e]

ing quotient module is isomorphic to Hompja, ( . O/Unp 0>

finite if and only if (U L]p o)X has finite index in (L{ S ) . We will verify this by showing

that both O-modules have the same O-rank. To have a more compact notation, we will
denote the y-components (Uf}p,o)(X) and (Ur[ﬂ) ) 00 by e

. In particular, S, .(Q,,) is

n p 0 and U [E]p ©, respectively.

Let p,, denote the torsion subgroup of U, ,. The p-adic log map on U, , is Gal(K,,/Q,)-
equivariant and its image is open in the additive group of KC,. Its kernel is fi,,,. Thus,
Upp @z, Q, is isomorphic to the regular representation of Gal(K,/Q,) over Q,. Recall
that Gal(K,/Q,) is identified with A, x I'/T',,. Since ¢, is 1-dimensional, it follows that

UfLE;)O ®o F is isomorphic to the regular representation of I'/T",, over F. In particular, one

sees that the rank@( n;)O) =p".
A subscript F will indicate tensoring over O with F. For example, we denote U, , 0 @0 F
by U, , 7. With this notation, we have

(ep
ur[zif - H U,pf :
plp

As a representation space for A, = A x I'/T', over F, one can view Z/{ . s an induced
representation. For this purpose, we single out one choice of p|p as in the introduction. The
decomposition subgroup of A, for p is A, x I'/T',,, which we denote by A, ,. Furthermore,
Uusr (ep o, f is a representation space for A, , of dimension p" and is isomorphic to ¢, ® r 0,,, where
o, denotes the regular representation of I'/T’,, over F. We denote this representation of A, ,
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more briefly by e,0,. We can also regard o,, as a representation of A, over F factoring
through A, /A. Then we have

Z/lr[ﬂjf = Indﬁzyp (epan) = Indﬁ:p (ep) RF op .

One can regard Indﬁzp (ep) as the representation Indﬁp (ep) composed with the restriction
map A, — A.

Since €, occurs with multiplicity 1 in x|a,, Frobenius Reciprocity implies that p occurs
with multiplicity 1 in Indﬁp (5,,). Now F is generated over Q, by roots of unity of order
prime to p and hence is unramified. The irreducible representations of I'/T',, over F are 7;
for 0 < j < n, where 7; has kernel I';/T,,. Then 7; has degree d; =p’ —p/ ' for 1 < j<n
and degree dy = 1 for j = 0. We have

n
D
§=0

which has degree p". These remarks imply that each of the irreducible representations p ® 7;

occurs in L{EL’ + with multiplicity 1. These are precisely the irreducible constituents in Z/{E}p%‘g

which therefore has F-dimension dp”. In contrast, recall that U, , r is isomorphic to the
regular representation of A, over F. The multiplicity of each p ® 7; in U, , r is d and

therefore L{T(Lﬁ + has F-dimension d*p".

Now consider the A, -representation space U, r = U,, ®z F. The absolutely irreducible
constituents ¢ of each o, are 1-dimensional. Since Q,, is totally real, each such ¢ is an even
character. Hence d*(y¢) = 1 and hence x¢ occurs with multiplicity 1 in U, ®Z6p' It follows
that x7; occurs with multiplicity 1 in U, 7 for each j, 0 < j <n. Let e, be the idempotent
for x7; in F[A,] (and actually in the center of F[A,]). Then e, does not annihilate U, .
Furthermore, if one restricts x7; to A, one obtains a multiple of x. Suppose that p is a prime
of K lying above p. It follows that e, occurs as a constituent in x7;|a,. Let e., € F[A,] be
the corresponding idempotent. We can regard e., as an element of F[A,]. For 0 < j < n, let
0; = €. eyr,- Thus 0; € F[A,]. Also, the coefficients of ; are in Q. Furthermore, the above
remarks show that 6; does not annihilate U,, . According to remark 2.6, it follows that the
projection of Im(\,, )% to U, , 7 is nontrivial. Note that the image of that projection is

actually contained in L{f;)f

The above remarks show that, for 0 < j < n, there exists an element ay, ; of U, such
that 8, ; = /\np(an) i has the following properties. Clearly, 3;,, is in L{ ~ for the action of
A and, more precisely, in the x7; component of U, , » for the action of A Also, the image
of B;, under the composite map

Uppr — Ush 7 — U,
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is nontrivial. Here the first map is 7, . » and the second map is the obvious projection map.
It follows that m, . #(8;,) is nontrivial. It must be in the x7;-component of Z/{ p e Since

x7; has multiplicity 1 in U, <l

npr the image of the XTj-COInpODeIlt of U, r under the map

Tne,F © App 7 Must coincide with the y7;-component of Z/{ i Since this is so for all j, it
follows that the image of U XF under that map is precisely Z/{7[1 L(xf This proves that the image
[6] )

of U o under 7, o A\, p o has the same O-rank as U, and hence has finite index. That

means that U, Ut ]( (9 indeed has finite index in Uf;’g |

One of the key observations in the proof of proposition 3.1 is the following result con-
cerning the structure of S, .(Q,) as an O[I'/T';]-module.

Proposition 3.2. We have the following exact sequence of finite O[I' /T, ]-modules:

0— H,im(Qn, D) — S,.(Q,) — Hom@[A]< EL’Q/U?IJO, > — 0 .

In the classical case where d = d™ = 1, x is just an even character of Gal(K/Q) of order
prime to p, where K is a cyclic extension of Q. One can omit the € everywhere in this case
because x determines €. Note that x does not occur as a constituent in V), ,  when d = 1.
The exact sequence in proposition 3.2 follows immediately from (8) by tensoring with O and
taking the y-component of each term.

4  Selmer groups for Artin representations 2

We will prove theorem 2 in this section. Here Q.. = UnZO Q,, is the cyclotomic Z,-extension
of Q and Q,, is the subfield of degree p™ over Q. We can define the Selmer group either as
a direct limit or as the kernel of a global-to-local map. That is,

Se(Qu) = lim 8,2 (Qu) = ker(H'(Qs/Qu. D) — [ He(Qw. D))

lex

where the direct limit is induced by the restriction maps H*(Qx/Q,, D) — H (Qs/Qun, D)
for m > n > 0. Note that, for £ # p, Gal(Qu" /QOO ») has profinite order prime to p and so
an element in H'(Qx/Qu, D) is locally unramlﬁed at v|¢ if and only if it is locally trivial.
Thus, we can define

Ho(Qoo, D) = [] H'(Quen, D

v|l
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for ¢ # p. For £ = p, one defines
M,)(Que, D) = Im (H'(Quor, D) — H'(Q%, D/D®)) = H'(Quor; D)/ L(Quor, D)
where L(Qoor, D) is a Ap-submodule of H'(Qu , D) which sits in the exact sequence

0 — Hl(QOO,THD(Ep)) — L(QOO,THD) — Hl (QOOJ”D/) — 0 ’

unr

Here we write D' for D/D) for brevity and H. (Quox, D') denotes the kernel of the
restriction map H*(Quor, D') — HY QW D'). Also, since p 1 |A,|, we have D =2 D) @ D'

00,7

This implies the injectivity in the above sequence and also implies that the above sequence
splits. Thus, L(Qw x, D) can be identified with

H'Y(Qoor, D) & HY, (Qoor, D)

considered in the obvious way as a Ap-submodule of H'(Qu x, D).

Our study of S, .(Qu) will be based on the following control theorem.

Proposition 4.1. Assume that Hypothesis A is satisfied and that x is not the trivial char-
acter. For anyn > 0, we have an exact sequence of O[I'/T,]-modules:

0 — S(Qn) — S,c(Qu)'™ — H(A,, D/DE)) — 0 .

Note that H(A,, D/ D)) = (.F/O)t, where t is the multiplicity of the trivial representation
of A, in V/VE) and the action of T'/T,, of (f/(?)t is trivial.

Proof. We exclude the case where y is the trivial character. We apply the snake lemma to
the following commutative diagram.

S (Q) HY(Qs/Qn, D) —2>,ey, He(Qu, D)

- - -

0—— Sx,s(Qoo» D)Fn e Hl(QE/Qoo» D)Fn - Hggg Hf(QOO? D)Fn

0

where the vertical maps are the obvious restriction maps and ¢,, is the global-to-local map
defining S, -(Qn)-

We first show that the O-corank of H!(Qx/Q,, D) is equal to d p" = (d — 1)p". To
see this, we have an isomorphism H'(Qs/Q,, D) & H'(Qs/Q, Indg (D)) by Shapiro’s
Lemma. . One can identify Indgn(D) with D ®o O[['/T',,] and its O-corank is dp™. Let
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Fn = F(ppn) and let O,, denote the ring of integers in that local field. Tensoring with O,
over O, it suffices to show that H* (QE/Q, D ®o On[F/Fn]) has O,-corank equal to d~p".
Now Indgn (V) ®# F, is isomorphic to the direct sum of the irreducible representations
p ® @ over F,, where ¢ varies over the characters of I'/T',, all of which are d-dimensional
and have d* = 1, d~ = d — 1. For brevity, we let V, and T, denote the corresponding
F-representation spaces and Galois invariant O,-lattices. Let D, = V,/T,. Propositions
2.1 and 2.2 and corollary 2.7 imply that the O,-corank of H'(Qsx/Q, D) is d~ for all ¢.
Hence the O,-corank of H'(Qs/Q,®,D,) is d”p". There is a A-equivariant surjective
homomorphism from D ®¢ O,[I'/T,] to &,D, with finite kernel. It follows that the O,-
corank in question is indeed equal to d~p".

We now show that #H,(Q,, D) also has O-corank equal to d~p" and that H,(Q,, D) is
finite for all ¢ € X, ¢ # p. We use the Poitou-Tate formulas for the local Euler-Poincaré
characteristics . Let 7™ denote the compact Galois module Hom(D, i,0<). It is free as an
O-module. For any prime /¢, let £ be a finite extension of Q,. Then Poitou-Tate duality
implies that H?(L, D) is dual to H°(L,T*). Since the action of G on D factors through a
finite quotient and through an infinite quotient on e, it follows that H°(L,T*) = 0 and
hence H?(L, D) = 0. The only assumption we need is that G, acts on D through a finite
quotient group.

As before, let D' denote D/D ). Then corankp(D’) = d — 1 = d~. The Euler-Poincaré
characteristic formulas for D" imply that

coranko (H'(Qyx, D)) = d™p" + coranke (H*(Qnr, D'))

where 7 is the unique prime above p in Q, (or Q. as before). Here we are using the
vanishing of H*(Q,, , D'). Since Gq, acts on D’ through a finite quotient of order prime to
p, it follows that

HO(Qn,mD/) = HO(QP,D/) = (]:/O)t

which is O-divisible and has O-corank ¢. However, letting Q"7 denote the unramified
Z,-extension of Q,, , the inflation-restriction sequence shows that

ker(H'(Qur, D') = H(Q!, D)) = ker(H'(Qur, D') — H'(Q', D'))

n,m ) n,mw

= Hl( Z,n;’p/Qn,m HO(QVULz::’pa Dl)) - Hl( Zﬁ:’p/Qn,m H0<QP7 D,)) )
where the last equality follows again because the Galois action on D’ is through a quotient
group of order prime to p. It follows that this kernel has O-corank t and therefore that
H,(Q,, D) indeed has O-corank equal to d~p".
Now suppose ¢ # p and let v be a prime of Q,, above . In this case, we have the formula

corankp (H1 (Qunvs D)) = corankp (HO(QTW, D)) )
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This O-corank could be positive. But, just as above, the inflation-restriction sequence shows
that the O-corank of the kernel of the restriction map H'(Q,,, D) = H'(QW", D) is the
same as the O-corank of H°(Q,,,, D) and hence the image of the restriction map is finite.
The finiteness of H,(Q,,, D) follows.

Thus, both H'(Qx/Q,, D) and [],.s; He(Qun, D) have the same O-corank. Further-
more, the kernel of the global-to-local map ¢, is S, .(Q,) which is finite by proposition
3.1. Therefore, the cokernel of ¢, has O-corank 0 and must be finite. This is one of the
hypotheses in proposition 3.2.1 in [17]. Another hypothesis is called LEO(D) there, but that
follows immediately from corollary 2.7 and proposition 2.2. A third hypothesis is that no
subquotient of D[p| = T'/pT is isomorphic to y, as a Gq,-module. However, this is satisfied
because A has order prime to p, hence the reduction of p modulo p is still irreducible as
a representation space over the residue field O/(p), and has no subquotient which is odd.
Consequently, proposition 3.2.1 in [17] implies that ¢, is surjective. We can now apply the
snake lemma to the commutative diagram at the beginning of this proof.

First of all, ker(h,) = H'(T',, H(Quo, D)). Since the action of Gq, on D factors through
a quotient of order prime to p and y is nontrivial and irreducible, it follows that H°(Q,, D) =
H°(Q,D) = 0. Therefore, h, is injective, and so is s,. Also, since I',, = Z,, it has p-
cohomological dimension 1. This implies that coker(h,) = 0. The snake lemma implies that
coker(s,) = ker(r,). For each ¢ € ¥, consider the restriction map

Tne - Hf(QnaD) — Hf(Qoo;D) :

Now, if ¢ # p, then ¢ is unramified in Q.,/Q. It follows that, for v|¢, Q' = Qu" . This

n,v oo,V*

implies that r,, is injective. To determine ker(ry ), let us write I';"" for Gal(Q?/Qu. )
and ['%¢ for I'), = Gal(Qoor/Qun.x). Just as before, we have

ker(H'(Qup: D) = H' (Qoor Q. D)) = ker(H'(Qup, D) = H' (QuorQun ", D))

= H'(QoorQun?/Qur H(Qp, D)) = Hom(T7¥ x I, HY(Q,, D'))
>~ Hom (I, H°(Qp, D)) x Hom(I'y", H(Q,,D")) .
The second factor is the kernel of the restriction map H'(Q,, ., D) — H'(Q", D') and

n,m )

therefore ker(r,,) is isomorphic to the first factor, and hence isomorphic (non-canonically)
to H°(Q,, D') = H°(A,, D'). It is a cofree O-module of corank ¢ and I'/T’, acts trivially.
We have proved that s, is indeed injective and has cokernel as stated in the proposition. B

As always, we exclude in the above proposition the case where x is the trivial character.
In that case, one easily shows that S, .(Qs) = 0. This is so even though S, .(Q,,) is infinite
for all n > 0 according to (7). And so, ker(s,,) is infinite when x is the trivial character.
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The next result is theorem 2 in the introduction.

Proposition 4.2. Suppose that Hypothesis A is satisfied. Then S, .(Quo) is a cofinitely
generated, cotorsion Ao-module.

Proof. By definition, S, .(Qw) is a Ap-submodule of H'(Qs/Qu, D) and hence its Pon-
tryagin dual X, . is a quotient of the Pontryagin dual of H'(Qs/Qw, D) as a Ap-module.
Proposition 3 in [12] asserts that H'(Qsx/Qu, D) is cofinitely generated as a A-module,
where A = Z,[[I']]. Hence its Pontryagin dual is finitely generated as a A-module and hence
as a Ap-module. Therefore, X, . is also a finitely generated Ap-module.

If X is a finitely generated Ap-module of rank r, then

ranko(Xr,) = rp" + O(1)

as n — oo. If S is the Pontryagin dual of X, then coranko(S™) = rank(Xr, ). Thus, r =0
if and only if corankp(S™) is bounded. Considering S = S, (Qu), propositions 3.1 and 4.1
imply the boundedness of these O-coranks. Hence » = 0 and that means that S, .(Qx) is
Aop-cotorsion. [ |

Remark 4.3. This remark concerns so-called trivial zeros or exceptional zeros. Suppose
that the trivial character of A, occurs as a constituent in x|a, with multiplicity ¢, but that
gp is nontrivial. Proposition 4.1 then implies that S, . (Qu)" is infinite and that its O-corank
is equal to t. Thus, (X, .)r has O-rank t. As in the introduction, let 6, . be a generator

of the characteristic ideal of the Ap-module X, .. If o : ' — Q; is a continuous group
homomorphism, then ¢ can be extended uniquely to a continuous O-algebra homomorphism
v:No— Qp. In particular, if ¢ is the trivial character of I', then one obtains a continuous
surjective O-algebra homomorphism ¢, : Ap — O whose kernel is generated by 79 — 1. Here
Yo is a fixed topological generator of I'. The fact that (X, .)r has O-rank ¢ implies that
(70 — 1)* divides 6, . in Ap. Thus, ¢o(f,) = 0. One would say that ¢ is a zero of 0, . of
order > t. It seems reasonable to conjecture that the order of vanishing is exactly .

As usual in Iwasawa theory, the O-algebra Ay is isomorphic to the formal power series
ring O[[T]]. One defines such an isomorphism by sending 7o —1 to T'. Thus, 6, . corresponds
to a power series fy<(7T") in O[[T]. Under the above assumption about x|a.,, it follows that
fre(T) =T'g,(T), where g, (T) € O[[T]]. The conjecture is that g, .(0) # 0.

One interesting example is discussed in detail in [13], pages 227-231. The representation
p in that example is the 2-dimensional irreducible representation of A = Gal(K/Q), where
K is the splitting field over Q for 2> — x + 1. In fact, A = S; and p is realizable over Q.
We can take F = Q, and O = Z,,. We take p = 23. Then A, is a subgroup of order 2. In
[13], the case where ¢, is the nontrivial character of A, is discussed. Then A, acts trivially
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on V/VE) and ¢ = 1. Tt is shown there that S, .(Qu.) = Q,/Z,. Of course, I' acts trivially.
And so, the characteristic ideal of X, . is generated by 7. The calculation in [13] is rather
subtle and depends on calculating something which one could call the L-invariant for the
representation p and p = 23. In particular, the £-invariant turns out to be nonzero. It would
be tempting to extend such a calculation to more general p’s satisfying Hypothesis A, but
we have done nothing in that direction.

Remark 4.4. One can ask whether H! (Q., D) can be infinite. Let ¢ be as in remark

unr

4.3. If t = 0, then S, .(Qs)" is finite and hence so is H},, (Qs, D). Suppose now that
t = 1. Let gy denote the trivial character of Gal(K/Q,). Hypothesis A is then satisfied and
hence S, ¢, (Qoo) is Ap-cotorsion by proposition 4.2. Actually, proposition 4.1 implies that
Sy.c0(Qoo)t is finite. Since HY, (Qe, D) C Sy, (Quo), it follows that H. (Qs, D) is finite

unr unr

in that case too. However, if ¢ > 2, then it turns out that H! (Q.,D)" is infinite. Its

u

O-corank will be at least t — 1. We will discuss this in the sequel to this paper.

Another basic result concerning S, .(Qs) is the following purity result concerning the
Ao-module X, . and asserts equivalently that S, .(Qx) is an almost divisible Ap-module in
the sense of [16].

Proposition 4.5. Assume that Hypothesis A is satisfied. Then the Pontryagin dual X, -(Q)
of Sy(Qs) has no nontrivial, finite Ao-submodules.

Proof. This result follows from 4.1.1 in [18]. However, that proposition is formulated in
terms of a Galois representation over Ay instead of over O, namely the so-called cyclotomic
deformation of p discussed in section 3 of [14]. Proposition 3.2 in that paper provides the
Aop-module isomorphism between S, .(Qs) and the Selmer group over Q associated to the
cyclotomic deformation of p. It is not difficult to verify the hypotheses (some of which
were already discussed in proving the surjectivity of ¢, in the proof of proposition 4.1.)
One hypothesis is that L(Qeor, D) (which was defined above) is almost divisible as a Ap-
module. This just means that L(Qer, D) has no proper Ap-submodules of finite index.
Now H.. (Qoor, D) is isomorphic to (F/O)" and is divisible as an O-module. Furthermore,

HY(Qeoox, D) is also divisible as an O-module because D) is divisible and Gq__ . has
p-cohomological dimension 1. [

Remark 4.6. The conclusion in proposition 4.5 means that S, .(Qu) is an almost divisible
Aop-module. One variant of the Selmer group S, .(Qx) is the so-called strict Selmer group
S3(Qoo) Where we continue to require elements of H'(Qs/Qo, D) to be locally unramified
at all v|¢ for ¢ # p, but for £ = p, we require those elements to have trivial image in
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H (Qux, D) (rather than in H*(QU"  D')). However, this just means that we replace

00,

L(Qur D) = H'(Qoor, D) & H,,, (Quor, D)

by L (Quor, D) = H'(Quoor, D). Since this is an almost divisible Ap-module, it again
follows that it S3'f(Q) is almost divisible as a Ap-module. In section 5, it will be useful to

know the same thing for the variant where we replace L(Quo r, D) by

L/(QOOJH D) = Hl(QOOJ” D(Ep)>Aofdz‘u EB H;nr<QOO,7T7 D/)

Here, for a discrete Ao-module H, we let H, _,,, denote the maximal Ap-divisible submodule

of H. As we point out in section 5, H'(Quor, D)) fails to be Ap-divisible just in the case
where ¢ = w. We denote the corresponding Selmer group by S} _(Qo). Since the Ap-module
L'(Qoox; D) is almost divisible, it will again follow that S| _(Q) is also an almost divisible
Ao-module.

There is one case where one can prove the analogue of proposition 4.1 even if d* # 1,
namely the case where d* = d — 1. Then d~ = 1. We use the same notation as before, i.e.,
p, V., T,D,F,O, etc.. Just as in Hypothesis A, we will assume that V has a A,-invariant
subspace W, such that dimz(1W) = d* and that the A,-representation spaces W and V/W
have no irreducible constituents in common. Now A, acts on V/W by a character ¢, and the
assumption means that ¢, has multiplicity 1 in V. Let ¢, = x — €, which is the character of
W as a Ap-representation space. We will denote W by V() even though €p is not necessarily
an irreducible character of A,. We use a similar notation for D. Thus, D = DE) @ D),
where the two summands have O-coranks d — 1 and 1, respectively. With this notation, we
can define S, .(Qu) exactly as in the introduction. It turns out that we can use proposition
4.2 (for a different Artin representation) to prove the following result.

Proposition 4.7. Under the above assumptions, Sy (Qx) is a cofinitely generated, cotor-
sion Ap-module.

Proof. The fact that the Selmer group is cofinitely generated as a Ap-module follows from
the fact that the same is true for H'(Qx/Q, D). We can assume that p, C K. Let
F(w) be the 1-dimensional F-representation space where A acts by character w. Here w
gives the action of A on p, and its values are the (p — 1)-st roots of unity (which are
in F). Welet U = Hom(V7 F (w)) which is the underlying F-representation space for
an Artin representation o factoring through A. Let ¢ be the character of ¢. Note that
dt(¢) = d (x) = 1. Furthermore, the orthogonal complement of W is the Ap-invariant
subspace U%) of U where 0p = we{jl. We let § denote the corresponding character of
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Gal(K/Q,). Both dimz(U®)) and d* (1) are equal to 1. Furthermore, d, is not a constituent
in U/U) . And so we are in the situation considered previously. Proposition 3.4 implies that
Sy.6(Qoo) 1s a cotorsion Ap-module. We will use arguments in [12] to deduce that S, (Qo)
is also Ap-cotorsion. In fact, there is a close relationship between the structures of Sy 5(Qoo)
and Sy . (Qw) as Ap-modules.

The action of Gq on iy is given by wk, where w and x are as defined in the introduction.
The character k factors through I' = Gal(Q./Q). We have D = V/T as usual. We define
T* = Hom(D, pipe ), which is a free O-module of rank d = dimz(V). Let V* = T* ®o F,
and let D* = V*/T*. The representation space V* of Gq is not an Artin representation.
However, if we let F(wr) and F () denote the 1-dimensional vector spaces over F on which
Gq acts by the cyclotomic character wk and by &, respectively, then we have

V* = Homgz(V, F(wk)) = U@z F(k) .

We will just write V* = U ® k which we think of as the twist of the Artin representation U by
k. We have a filtration 0 C W C V and the orthogonal complements give a filtration on U
and on U®k. Proposition 11 in [12] deals with an analogous situation, although the filtrations
used there are defined in a different way. The Selmer groups denoted by Sy,r(Q«) and
Sv+/1+(Qoo) in that paper are also defined in terms of the filtrations, completely analogously
to the definitions here. Proposition 11 implies that if one of those Selmer groups is Ap-
cotorsion, then so is the other. However, x factors through I' = Gal(Q../Q) and so V* = U
as a representation space for Gq_ . It would then follow that Sp+(Qu) and Sy 5(Qo) are
the same as sets. More precisely, for the action of I', one has Sp+«(Qx) = Sy 5(Quo) @ K.
Therefore, the fact that Sy 5(Qs) is Ap-cotorsion implies the same for Sp-(Qo) and that
in turn implies that Sp(Qx) = Sy (Quo) is Ap-cotorsion. [ |

Remark 4.8. With the notation and assumptions as in proposition 4.7 and its proof, let
Xye(Qoo)y Xp+(Qoo), and Xy 5(Quo) denote the Pontryagin duals of S, . (Qe) = Sp(Q),
Sp+(Qo), and Sy 5(Qeo), respectively. They are finitely generated, torsion Ap-modules. Let
Oy, Op-, and 0, 5 denote generators for the corresponding characteristic ideals in Ap. The
first two are related (up to a unit) by the involution ¢ of the O-algebra Ay induced by the
automorphism v + y~! of T'. This is the content of theorem 2 in [12] whose proof applies
without change to the case at hand. Thus, we could simply chose 0, . to be 65,.. On the
other hand, we have Xp-(Qs) = Xy 5(Qo0) ® kL. Thus,

X'd),é(Qoo) = XD*(QOO) XK

as Ap-modules. There is an automorphism of Ay induced by the map v — () 1. If X is
any finitely generated, torsion Ap-module, that automorphism send the characteristic ideal
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of X to the characteristic ideal of X ® s. It follows that we can choose 0, 5 so that
P(0s5) = @r ' (0p:) = ¢ R(0yc)

for all p € Hom(F,Q;). In particular, if taking ¢ = k°, we have

(9) “1%(‘9)@6) = K (Ops)

for all s € Z,,. One especially interesting case is when d = 2. Then d*(x) and d* () are both
equal to 1. Assume that e, = w. Then A, acts on U/U®) trivially. As discussed in remark
4.3, it follows that ¢o(6ys) = 0. Therefore, taking s = 0 in (9), we find that x(6,..,) = 0 too.

Remark 4.9. We return to the case where d* = 1. The exact sequence in proposition 3.2
can be extended to Q. by taking direct limits. One obtains the following exact sequence of
discrete Ap-modules.

(10) 0— Hppo(Qooy D) — Sy.c(Qoo) — Homoya (Z/{[E](XO/UM D) —0 .

unr o,p 00,p, 0

The intervening Ap[A]-modules in the above sequence are defined by

— . — —=e] . 77
oop,O - H Epp)O ) UOOJLO = m U”7P70 ) Uoo,p,(’) = 1£1 Un,p,@ ’

plp " "

where the inverse limits are defined by the norm maps. One can then take the y-components
of those modules which will be finitely generated as Ap-modules.

The term H.,.(Qw, D) in (10) can be identified with

Homoya) ((Gal( o/ Eo)o)™, D)

where L., is the maximal abelian unramified pro-p-extension of K. Now Gal(L./K)
is a finitely generated, torsion A-module, a famous theorem of Iwasawa. An immediate
consequence is that the Pontryagin dual of H! (Q., D) is a finitely generated, torsion Ap-
module. Let 0., be a generator of its characteristic ideal. It is worth noting that the
characteristic ideal for the Ap-module (Gal(Loo/ Koo)@)(X) is then generated by 62

One can derive another exact sequence which is somewhat simpler than (10). It will lead
to the interpolation property stated in the introduction under certain assumptions. We will
discuss this carefully in the sequel to this paper and just state it here. Choose a prime p
lying above p. We will use the notation ‘ : ’5,, to denote the composite map

unr,x "

u 00,p,0 Z/{OO »,0 Z/{ ,p (@]
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where the two maps are the natural projection maps. The exact sequence is

(Qoo, D) — Sy :(Qoo) — Homp (Ugfg’o/‘ﬁg?p’o‘epj D(f—:p)) 50

Note that the Homp term in the above exact sequence is isomorphic to the Pontryagin dual
of ugfg,o/‘ﬁg?p,olep as a Ap-module.

5 The p-adic L-function of an Artin representation

We will discuss the construction of a p-adic L-function for the representation p in this section.
We assume that d = 2. The construction relies on Hida theory and on the existence of a
2-variable p-adic L-function. As before, we choose a finite set ¥ of primes containing p
and oo and all the primes ramified in K/Q. We can then regard p as a 2-dimensional
representation of Gal(Qx/Q). The basic idea is to embed p into a p-adic family of 2-
dimensional representations py of Gal(Qs/Q) for which a p-adic L-function is known to
exist, and then take the limit as p, tends towards p. Roughly speaking, for £ > 2, p, will
be the p-adic representation corresponding to a modular form of weight k£ which is ordinary
at p and the corresponding p-adic L-function is now classical. (See [26].)

Since d* = 1, it follows that p is odd. The Artin conjecture then implies that p is
associated to a modular form f of weight 1 for I'y(N), where N is the Artin conductor of p.
Thus, f is a normalized newform of weight 1 with g-expansion f =" a,¢" and level N. By
work of Langlands, Tunnell, Weil, and Hecke, this is known whenever the image of p inside
GL5(0O) is a solvable group. In the non-solvable case (i.e., when p is icosahedral), there are
also partial results of Buzzard, Dickinson, Sheppard-Barron, and Taylor. For all of this, see
[3] and the references there. We assume from now on that p is modular of level N in the
above sense.

Recall that we have fixed embeddings o, and o, of Q into C and into Qp, respectively.
The coefficients a,, of f are algebraic integers in C and can be regarded as elements of Qp.
In addition, if ¢ is any prime and q is a prime of K lying above ¢, and A, denotes the cor-
responding decomposition subgroup of A, then the restriction of a Frobenius automorphism
for q to the maximal subspace of V' on which the inertia subgroup for q acts trivially has
trace a,. Thus, the a,’s are in O for all primes ¢. Furthermore, for ¢ t IV, it is clear that
det (p(Froby)) is in O*. It follows that a, € O for all n > 1.

Since Hypothesis A is assumed to be satisfied, for our fixed prime p of K lying over p
and our choice of ¢, there is an exact sequence

(12) 0— O(gy) — T — O(g,) — 0,
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of O[Ay]-modules, where g, # ¢;. As in the introduction, €, and ¢, are determined by certain
characters € and &’ of G = Gal(K/Q,). We assume at first that p is ordinary in the sense
that ¢’ is unramified. Then there exists a modular eigenform f; = > b,¢" of weight 1 with
the property that b, = a, if (n,p) = 1, but b, = &'(p). The form f; will be a p-stabilized
newform in the sense of [32], meaning that it has level N if p|N or level Np otherwise. If
p divides N, then f = f;. Since the values of ¢, and hence €', are in O, it follows that the
b, € O for all n > 1.

The maximal ideal of O is pO. Since p is absolutely irreducible, and p 1 |Al, it follows
that the residual representation 7 obtained by the canonical reduction map GL2(O) —
GLy(O/p0O) is also absolutely irreducible. Using fundamental ideas due to Hida, Wiles
has constructed a deformation of p in this setting, whose description we briefly recall. For
background in Hida’s theory, we refer the reader to [20], [32], and [7].

(a) The local ring h,: Let h, denote Hida’s universal ordinary Hecke algebra of
level M, where M is the prime-to-p part of N. It is a finite flat algebra over the subring
N = Z,[[I"]], where I = 1 + pZ,, considered as a subgroup of the group of diamond
operators, and so A’ is isomorphic to a formal power series ring Z,[[T]]. Now f; determines
a maximal ideal m of h..; we write h,, for the completion of h,, at m. Since the coefficients
of f; generate the ring O and that ring is generated by roots of unity of order prime to p,
one sees that hy, contains O as a subring. Thus, h,, also contains the subring A}, = O[[I"]].

(b) The Galois representation p : It follows from the work of Mazur, Ribet, Wiles,
and others (see [34], Ch. 2) that the localization hy, is a Gorenstein ring. Hida’s construction
then implies that there exists a representation p : Gal(Qx/Q) — GLa(hy,). Wiles has shown
in [32] that there exists a weight-one prime ideal P, = P, € Spec(hy,) such that p specializes
to p at the point P,. If ¢ f Np, then the trace of a Frobenius element Frob(g) for a prime
above ¢ is given by the Hecke operator T}, regarded as an element of hy,. Furthermore, we
identify Gq, with a subgroup of Gq by the fixed embedding o, (which determines p). Let T
denote a realization of p. Then T is a free hy,-module of rank 2 and there exists a Gq,-stable
h,,-submodule Ty C T such that T/T, is unramified at p. Both Ty and T /T, are free hy,-
modules of rank 1. The eigenvalue of Frob(p) on T/T, is given by the Hecke operator U,,.
Furthermore, the residual representations for Ty and T/T are ¢, and 5;, respectively. The
determinant of g is a homomorphism Gal(Qs/Q) — Ay .

(c) Specialization: Recall that a point ¢ : R — C, of a A’-algebra R is said to be
arithmetic of weight k € Z if the restriction ¢|,/ is the O-algebra homomorphism induced
by a character Z; — Q; of the form a ~ 1 (a)a®, where 1 is a finite-order character. Note
that if ¢ has values in O, then ¥ must have order prime to p. For each arithmetic point
o € Spec(hy,) of weight k& > 2, the specialization of p to ¢y is the representation associated
by Deligne to a certain p-ordinary modular form f = fi(¢x).
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(d) A-adic forms: Finally, we recall that a A’-adic form § of tame level M with
coefficients in a finite A’-algebra R is defined to be a formal power series

F=Y a@)d" € R[]

such that, for almost all arithmetic points ¢ € Spec(R) with k > 2, the specialization §(¢x)
is the g-expansion of a p-stabilized newform of weight k and level Mp", for suitable r. We
say that the form § contains the classical form f; of weight £ > 1 and level Mp" if there
exists an arithmetic point ¢y of weight &k such that §(¢y) is the g-expansion of fi. The form
$ is said to be ordinary if e§ = §, where e is Hida’s ordinary projector. From now on,
we only consider ordinary forms. In the ordinary case, a A’-adic eigenform with coefficients
in R is the same thing as a A’-algebra homomorphism h,, — R. We will assume that the
homomorphism factors through h,,. We can assume that R is generated by the coefficients
of § and hence that the homomorphism is surjective. We will also generally assume that R
is a domain and so R = h.,/a, where a is a prime ideal in hy, of height 0 (i.e., a minimal
prime ideal of h). Thus, R is an irreducible component in the A’-algebra h., . It obviously
has characteristic 0 and contains A’ as a subring.

We write 9y for the module of ordinary A’-adic modular forms with coefficients in the
N'-algebra R. Then Mz is a finite free R-module, and, if 9T = 9N,/, then there is an
isomorphism Mz = M®, R. The ring h, acts on M, and the module (Mg),, is canonically
isomorphic to the hy-module Hompg(h, ®5 R, R).

With these notions in hand, we can state a key result.

Theorem 5.1. (Wiles) Suppose that fy is the p-stabilized form associated to p and the
unramified character €. Then there exists an ordinary N -adic eigenform §, defined over an
extension R of N', which specializes to fi in weight 1.

Note that in the above theorem we can assume that R is a domain and is an irreducible
component in the Ay -algebra hy,. Now e # &’ since we are assuming that Hypothesis A
holds for p. If £ is unramified, then one can reverse the roles of ¢ and €', obtaining a different
AN'-adic eigenform (which would correspond to a different choice of m and a different R).
However, for our fixed choice of ¢, there is a uniqueness result which is very important for
our purpose.

Theorem 5.2. (Greenberg-Vatsal, Belldiche-Dimitrov) Suppose that a choice of ¢ is fized
and that Hypothesis A holds. Then the form § is unique.

In particular, m and R are uniquely determined by y and e. A version of this theorem
was discovered by the authors of this paper in 1997, but never published. We needed the
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restrictive assumption that €/ is not of order 2. It was subsequently rediscovered by
Belldiche-Dimitrov [1], who actually proved the result without that assumption.

It is important to observe that the residue ring of hy, at the prime ideal P, is exactly
equal to O, rather than some larger ring O'. Recall that O is generated over Z, by the
values of x and ¢, the ring of integers in F = Q,(x, ). We justify the claim as follows. The
Hecke algebra hy, is generated by the Hecke operators and the diamond operators. We must
show that the images of these generators are in O.

For the diamond operators, this is clear since the values of det o p are in that ring. Now
the image of any Hecke operator modulo P, is the eigenvalue of the corresponding Hecke
operator for the weight 1 form associated to p. We have to show that these eigenvalues lie
in O. For any prime ¢, let q be a prime of K lying over ¢. For the Hecke operator T; with
q 1 Np, the eigenvalue of T} is the trace of p(Frob(q)), which lies in O by definition. If ¢
divides Np, then we argue as follows. As explained in the introduction, p can be realized in
a 2-dimensional vector space V' over the field F. If ¢ { p, let I; be the inertia subgroup of A
for the prime q. Then V14 is an F-subspace of V of dimension < 1. If V14 is 1-dimensional,
then the eigenvalue of U, is equal to the eigenvalue of Frobenius on that subspace. That
eigenvalue obviously lies in F, and hence in O. If that subspace has dimension 0, then the
image of U, is 0. Finally, U, acts on f; with eigenvalue ¢, (Frob(p)). Since x|a, = &, + ¢, it
follows that the values of ¢, are in O. Thus, all the eigenvalues of the Hecke operators are
indeed in O.

The above discussion yields a representation p : Gal(Qx/Q) — G Lo(hy,) which special-
izes to p at an arithmetic specialization of weight 1. We can compose with the surjective
homomorphism h,, — R to obtain a representation

j: Gal(Qs/Q) — GLo(R)

Furthermore, there is a homomorphism ¢, : R — O such that ¢, o p = p. Here we are also
using the notation ¢, for the induced continuous group homomorphism GLg4(R) — GL4(O).
Such representation p and p are called deformation of p. The rings h, and R are the
corresponding deformation rings. Each deformation has infinitely many motivic points,
namely the points corresponding to forms of higher weight. The deformation p is the one
we will concentrate on. These motivic points have well-defined p-adic L-functions (up to
multiplying by units in the corresponding residue rings of R). We can therefore define a
p-adic L-function for p by continuity. We now explain this more precisely.

Thus we are led to describe the p-adic L-function associated to the representation p.
It will correspond to an element in R[[[']], where I' = Gal(Q../Q) is as in the previous
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sections. This L-function was constructed by Kitagawa [23] and by Greenberg-Stevens [19].
We want to recall the modular-symbol construction of Greenberg-Stevens, as this is the most
convenient for us. Our discussion here is only a summary, and we refer the reader to the
original paper of Greenberg and Stevens for a detailed exposition. For each positive integer
r, let T'. denote the group I'1 (Np"). Let M denote the inverse limit of the cohomology groups
eH;ar(FT, Z,); then M is a module over the Hecke algebra h,,. The matrix ¢ = ( é _01 )
induces a Hecke-equivariant involution on M, and we write M* for the +-eigenspaces under
this action. Evidently we have the decomposition M = M™ @ M™. Since the maximal ideal
m corresponds to an irreducible representation, it follows from Thm. 4.3 and Lemma 6.9 of
[19] that we have an isomorphism of hy,-modules

M,, = Symby (D),

where D is the space of Z,-valued measures on the set of primitive elements of le), and
Symby (D) denotes the group of modular symbols over the group I'; with values in D.
Furthermore, since hy, is Gorenstein, a duality argument shows that, for any choice a = +
of the sign, there are isomorphisms of Hecke modules 9,, = M7 = h,,.

Now let § be a A’-adic eigenform form, defined over the ring R, such that § specializes
to fi = f, in weight 1. The choice of &, made in (12) is implicit in the choice of §. Thus
we have a homomorphism h,, — R such that the kernel °P is a minimal prime contained in
the height 1 prime ideal P, of h,. Extending scalars via A" — R, we obtain isomorphisms
My O R = Mi ®p R =hy @5 R. Let 6%(F) be the image of § € MM @5/ R in the module
Mz @y R, and let 6(F) = 67 (F) + 6 (F). Finally, let £(F) = §(F)({0} — {0}) e D@y R
denote the special value ([19] Sec. 4.10). Then £(F) is an element of D ®, R, and the
construction of [19], equations 5.2a and 5.4, gives an element

(13) Ly(S) € R[[Z,]]

known as the standard two-variable p-adic L-function associated to §. The terminology
is justified as follows. Let P denote an arithmetic point in Spec(R), of weight k£ > 2.
Then P, induces a specialization map ¢ : R — O, as explained above. We may specialize
Ly(3) via ¢y to obtain a measure L,(§)(F%) on Z,; one sees from the definitions that, if f
denotes the specialization of F to Py, then the measure L,(§)(P) is a p-adic L-function for
fr- Specifically, if 1 is any finite order character of Z, then p, = L,(F)(Fx) satisfies the

property

L(fk ® w_la 1)
(—2mi) Q¢

(14 | b = eyl fi ) ()
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for certain periods (2. Here 7(1) is the standard Gauss sum for ¢ and

ep(fr ) = " (1 — oy "9 (p)),

where ay is the (unit) eigenvalue of the U, operator on fi.. The quantity L(f®v¢ !, 1) denotes
the standard L-function of f,, twisted by the finite order character 1! and evaluated at
s = 1. A similar but more complicated formula holds for the integral of ¥z/~!, where j is
any integer in the critical range 1 < 7 < k—1. It is essentially the formula in the proposition
of section 14 in [26].

It follows easily from Hida’s control theorems [20] that the periods Qf are the canonical
periods of fi introduced in [30]. These periods are defined up to p-adic units. The sign
a = =+ in the period is determined by the parity of .

We can identify Z* with Gal(Q(iy~)/Q) in the usual way. Then 1+ pZ, is identified
with I'. The characters ¢ of Z; can be regarded as characters of that Galois group. We
have 1) = w'e where 0 <t < p — 2 and ¢ is a character of finite order of T'.

The ring R[[Z)]] has a natural R-algebra involution ¢ defined by t(z) = 27" for all
z € ZX. For our purpose, we consider the element ¢(L,(§)) in R[[ZX]]. If we specialize via
¢, as above, we obtain a measure pj. Integrating v against pj, gives a formula like that in
(14), but with 1 replaced by ¥~! on the right side. In particularly, the L-value occurring in
the formula would now be L(fy @ ,1) = L(fx,,1). Now Zy = F x (1+ pZ,) and so one
has the decomposition

where e, is the idempotent for w'. Each summand is isomorphic to R[[1 + pZ,]] which we
identify with R[[T']]. If we project ¢(L,(F)) to the w'-component for a fixed ¢, we get an
element ©, € R[[[']]. Specializing via ¢x, we get an element 6;; € (R/P;)[[I']]. If we let
1) = w'p, where ¢ is a character of I, then integrating ¢ against pi, gives the value p(6; ).
Note that L(fy ® ¢,1) = L(fx @ w*, ¢, 1).

Recall that we assumed earlier that p is ordinary in the sense that there is an exact
sequence (12) with ¢, unramified. However, in general, the action of Ggq, on T/O(g,) might
be ramified. One could then replace p by p ® w™* for some t, 0 < t < p — 2, to obtain an
ordinary Artin representation. One can apply Wiles theorem to the corresponding weight 1
form f; and then tensor by w' obtaining the family f; ®w!’ of modular forms which specializes
in weight 1 to f, = f1 ® w’. With this motivation in mind, it is natural to define 6 to be
the image of ©, by the specialization map ¢, : R[[I']] = O[[I']] = Ap. This is the element
alluded to in the introduction and is well-defined up to multiplication by an element of O*.

Remark 5.3. As we have remarked several times already, the p-adic L-function L,(s, x, ¢)
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depends on the choice of €, in the case (N, p) = 1. Furthermore, the L-function is only defined
up to a p-adic unit, owing to the indeterminacy of the complex periods in the definition of
the 2-variable p-adic L-function. Finally, it is not at all clear that L,(s, x,€) is nonzero.
However, in view of Theorem 3 of the introduction, it seems reasonable to expect that
L,(s,x,¢) should be related to the Coleman series of the norm-compatible family of units
given in that theorem, and that a formula in terms of logarithms of global units similar to
the one in Theorem 3 should hold. We will take up this subject in the sequel to this paper.

Remark 5.4. The modular cuspforms of weight one may be classified according to the
isomorphism class of the image of the associated representation p in PG Ls(C). The possible
image G of A is isomorphic to one of the following: a dihedral group, Ay, Sy, or As. In the
event that GG is dihedral, it is induced from a character of a quadratic extension of Q. Then p
is called CM (complex multiplication) or RM (real multiplication), according to whether it is
induced from an imaginary quadratic field or not. An alternative approach to the p-adic L-
function in this case is via the Katz 2-variable p-adic L-function; the connection with global
elliptic units is then given by the p-adic Kronecker limit formula (see [5], Theorem 5.2 and
the subsequent discussion). We refer the reader to Ferrara [9] for more details. When p has
real multiplication, Ferrara has also compiled numerical evidence relating ¢(9;@) to global
units (in fact, Stark units) in abelian extensions of real quadratic fields when ¢ has order
p. On the other hand, when p is an exotic form of non-dihedral type, absolutely nothing is
known.

Remark 5.5. As stated in the introduction, the natural formulation of an Iwasawa main
conjecture is the assertion that 6;{8 and 07", generate the same ideal in Ap. As mentioned
in remark 5.3, we cannot even rule out the possibility that 67", = 0. The fact that 0;{6 # 0
is the content of proposition 4.2. It seems reasonable to believe that the main conjecture in
weight 1 should follow from the main conjecture in higher weights. Some ideas in [27] would
possibly be useful in showing that. However, regrettably, the proof of the main conjecture in
higher weight by Urban-Skinner [28] does not apply to the case at hand because those authors
require the presence of a prime ¢|M such that ¢ is a prime of multiplicative reduction for §.
Theorem 5.6 below implies that the form § admits no such prime ¢. On the other hand, it
appears that the existence of such a ¢ is only required to ensure that a certain anticyclotomic
p-invariant vanishes, and this can also be proven when ¢ is a prime of supercuspidal reduction,
so it may be that the result of Skinner-Urban applies when there exists a prime ¢ such that
the image of a decomposition group at ¢ under p is non-abelian and irreducible. We have
not pursued this idea.

We have assumed d = 2 until now. We close this paper with some general comments
for arbitrary d. Let R be a complete Noetherian local ring with finite residue field of char-
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acteristic p. Assume that we have a continuous representation p : Gal(Qs/Q) — GL4(R),
together with a continuous, surjective ring homomorphism ¢, : R — O such that ¢,0p = p.
That is, p is a deformation of p. The ring R is the corresponding deformation ring. Since O
is generated over Z, by roots of unity of order prime to p, it is easy to see that R contains a
subring which we can identify with O. Therefore, R is an O-algebra and ¢, is an O-algebra
homomorphism. Furthermore, the residue ring of R is the same as that of O, namely O/pQO.

We write P, for the kernel of the ring homomorphism ¢,, a prime ideal in R. If P is any
other prime ideal of R such that R/P = O', where OO’ is a finite integral extension of O,
then composing p with the group homomorphism GLg4(R) — GL4(QO’) defined by reducing
modulo P gives a d-dimensional representation of Gal(Qys/Q) over O'. Thus, we get a family
of representations indexed by such prime ideals P of R. Of course, p mod P is not necessarily
an Artin representation. However, if R is a domain, then the following proposition implies
that it has one property in common with p. Namely, p mod P is potentially unramified at
all primes not dividing p. A similar result in the case d = 2 is contained in theorem 2.3 in
27].

Proposition 5.6. Let p be a deformation of the Artin representation p. Assume that the
corresponding deformation ring R is an integral domain. Suppose that q is a finite prime in
Y and that ¢ # p. Let I, be the inertia subgroup of Gal(Qs/Q) for a prime v of Qx lying
over q. Then the image of I, under p is finite.

Proof. Recall that p factors through Gal(K/Q). Thus, the residual representation for p also
factors through Gal(K/Q). It follows that the image of Gal(Qyx/K) under p is a pro-p group
and hence that p factors through Gal(M/Q), where M is the maximal pro-p-extension of K
contained in Qy. Therefore, since g # p, the restriction p|q,, factors through Gal(K!"*/K,),
where K™ denotes the maximal pro-p tamely ramified extension of K,. Enlarging K if
necessary, we can assume that K, and hence K, contains p,. Now K!? contains the
field K", the maximal unramified pro-p extension of K,. In fact, K"P = K,(up~)
and K!"? = K,(pp, *3/q). Furthermore, both Gal(K, " /K,) and. Gal(K[?/Ki"?)
are isomorphic to Z,. The Frobenius element of Gal(K!""?/K,) acts on Gal(K!"?/Ku""P)
by conjugation. This action is given by z + 2V® for all x € Gal(K!?/K*"?). Here
N(v) = ¢/, where f is the residue field degree for K,/Q,. Thus, Gal(K!?/K,) is an
extension of Z, by Z,(1).

Let 7 denote a topological generator of Gal(KL?/Ku"F). The restriction of p to the
inertia subgroup Gal(K!?/K!"?) is determined by the matrix p(7). The eigenvalues of
this matrix are in some extension of the fraction field of R. In addition, if « is one of those
eigenvalues, then so is a7 . Since the matrix has only finitely many eigenvalues, it follows
that these eigenvalues are roots of unity. Therefore, for some ¢ > 1, the matrix A = p(77) is
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unipotent. If we again enlarge the field K, we can assume that ¢ = 1 i.e., that the eigenvalues
of p(7) are all equal to 1. Of course, f may change t00.j

Let F denote the fraction field of R. Thus, Gal(Qx/Q) acts on V = F? via p. Let
N = A — I;, a nilpotent matrix with entries in R. There is a filtration on V defined by
the subspaces Wj, = Ker(N*) for k > 0. Here Wy = 0 and W, = V if ¢ is sufficiently
large. These subspaces are G, -invariant. The action of Gal(K?/K,) on the subquotients
W1 /W), factors through Gal(K'"?/K,). We will prove that W; = V, ie., that N
annihilates V.

Assume to the contrary that Wy is a proper subspace of W5. Then, NWj is a nontrivial
subspace of W;. We can lift the Frobenius element of Gal(K!""?/K,) to an element of
Gal(K!"P/K,) which then acts on V by a matrix B with entries in h. Furthermore, we have
BAB~' = A7 1t follows that

BNB™' = ¢/N + CN?

where C' is a matrix with entries in R. One sees easily that W; and Wy, are invariant under
multiplication by B and by N. Denoting the restrictions of B and N to W5 by By and N,
respectively, we have By Ny = ¢/ NyB,. One sees from this that if 3 is an eigenvalue for the
action of B on Wy/W, then ¢/ is an eigenvalue for the action of B on W;. Thus, B has
two eigenvalues whose ratio is ¢/.

Applying the homomorphism ¢, to B, we obtain a matrix with entries in O which again
has two eigenvalues whose ratio is ¢/. However, this matrix is in the image of p, a finite
subgroup of GL4(O), and its eigenvalues are roots of unity. This is a contradiction and so
we have W, = V. It follows that 7 acts trivially on V. Therefore, the image of the inertia
subgroup of G for v under p is trivial. In the proof, we have possibly replaced K by a finite
extension. Hence, for the original K, the image of I, is finite. ]

In general, if we try to imitate the d = 2 case, there are some natural restrictions on
the kinds of deformations of p we consider. We are assuming that p satisfies Hypothesis A.
The underlying F-representation space V' contains a Gq-invariant O-lattice T'. Fix a prime
p of K lying over p. Then T = O(e,) as O[A,]-modules. Since p { |A,|, T/T) is a free
O-module of rank d — 1.

It is natural to consider deformations of 7" which simultaneously deform T»). To be
precise, let p be the prime of K induced by the fixed embedding of Q into Qp, as in the
introduction. We can then identify Gq, with a subgroup of Gq and restrict p to that
subgroup. If T is the underlying free R-module of rank d for p, we make the following
hypothesis.

Hypothesis A: There exists a Gq,-invariant R-submodule Ty of T with the following
properties:
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(1): Ty is a free R-module of rank 1,
(i1): T/Tq is also a free R-module,
(#di): the image of Ty under the map ¢, is T©v).

Note that the residual representations of Gq, for Ty and for T /T, are the same as for ()
and for T/T») | respectively, and that they have no irreducible constituents in common.

Remark 5.7. Assuming that R is a domain, hypothesis A is not as stringent as it might
seem at first. As mentioned in the proof of proposition 5.6, the image of Gal(Qyx/K) under
p is a pro-p group. It follows that the action of Gal(Qx/Q) on T factors through a group G
which has a normal pro-p subgroup N and corresponding quotient group G/N = A. Since
|A| is prime to p, this group extension splits and G has a subgroup D which is mapped
isomorphically to A under the map G — G/N. The subgroup D is not unique, but, for
simplicity of notation, we make a choice and identify D with A by that isomorphism. Then
pla is closely related to p. To be precise, the reduction of p|a modulo P, coincides with p.
We let F be the fraction field of R (as in the proof of proposition 5.6) and let V=T ®rF.
Since R contains O, F must contain F. The action of A on the F-vector space V is a d-
dimensional representation over F and the character of that representation must be y. Now
p is a representation of A over F and this F-representation of A must be just the extension
of scalars of p from F to F. It then follows that, for the restriction to the subgroup A,
there is a 1-dimensional Ap-invariant F-subspace V&) on which A, acts by g,. Of course,
that subspace is simply e.,V, where e., € O[A,] is the idempotent corresponding to e,. If
Hypothesis A is satisfied, then it is clear that To = e, T.

These observations lead to the following conclusion. It is sufficient to just assume that
T contains a Gq -invariant R-submodule T}, of rank 1 such that the action of A, on Tj is
given by €,. It then follows that V) s a G q,-invariant F-subspace of V. It is then clear
that one can take

Ty = TNV® = ¢ T .

It is Gq,-invariant and a direct summand in T and therefore is a free R-module. The
quotient is also free. One has T) C Ty C V). Hence Ty has rank 1. Furthermore, the
image of Ty under ¢, is just e.,T" which is T,

Assuming that such a Gq -invariant R-submodule does exist, note that the action of Gq,
on Ty is given by a continuous homomorphism

ép . GQP — RX

with the property that ¢, o &, = &,. In other words, &, is a deformation of the Gq,-
representation €,. It is natural to denote Ty by T, It is indeed the maximal R-submodule
of T on which Gq, acts by &,.
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In addition to Hypothesis A, we would need to assume that the deformation p of p has a
rich supply of “motivic” specializations so that one can reasonably expect the existence of a
suitable p-adic L-function. We have no way to ensure this in general. However, the remark
below describes one case for d = 3 where we do have an ample set of motivic specializations.

Remark 5.8. Let p be the 2-dimensional representation associated to a modular form
of weight 1. Assume that p factors through A = Gal(K/Q) and that p 1 |A|. Then
Ad°(p) = Sym?(p) ® det(p)~" is a 3-dimensional representation factoring through A which
satisfies d© = 1. It may or may not satisfy Hypothesis A; it will do so if and only if /&’
has order > 3. If it does satisfy Hypothesis A, then one can take the adjoint of the A’-adic
Galois representation associated to § to get a good deformation of Ad°(p). The algebraic
part of our theory goes through unchanged. The analytic side also goes through, but there
is one important difference: the p-adic L-function has to be defined via continuity from the
Schmidt L-function constructed in [4]. The details require more care, since in the dihedral
cases the symmetric square is reducible, and in the RM case the corresponding deformation
space is not smooth over the weight space at the weight one point of interest. However, it
seems reasonable to expect a relationship with units to hold in the CM and exotic Ay, Sy
and Aj cases. We omit the details here. Regrettably, this example, and the d = 2 example
of modular forms, are the only examples of which we are aware where d* = 1 and sufficiently
many motivic deformations exist.
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