The Derivative Formula for Kubota-Leopoldt
p-adic L-functions at Trivial Zeros

Ralph Greenberg

University of Washington
Seattle, Washington, USA

June 21st, 2012

DA



Suppose that v is an even Dirichlet character and that p is an odd
prime. The Kubota-Leopoldt p-adic L-function L,(s,) is an
analytic function of a p-adic variable characterized by the
interpolation property

LP(]' - n7¢) = (1 - wn(p)pn_l)L(l - "ﬂ/)n)

for all integers n > 1. Here 9, = 9w ™", where w is the Dirichlet

character of conductor p satisfying w(a) = a (mod pZ,) for all
integers a.

In particular, we have L,(0,%) = (1—1(p))L(0,%1). Thus,
Ly(s,) vanishes at s = 0 when 91(p) = 1. This talk will mostly
be about the derivative L},(0,) in that case.
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L,(s,v) as a function on a family of Galois representations

In terms of Galois representations, one can think of L(1 — n, ;) in
the above interpolation property as L(0, V,,—1), where V,_1 is the
1-dimensional vector space over Q, on which Gq = Gal(Q/Q)
acts by

z/Jan—l :ww—nxn—l :ww 1 1— n n—1 ’(/Jl(XW l)n—l :wlﬁn_l ’

where x : Gq — Z is defined by the action of Gq on the group
pipoe of p-power roots of unity and x = xw L. One defines
L(z, Vp—1) by an Euler product as usual.

Notice that s is a homomorphism from Gq to 1+ pZ,. Thus, it
makes sense to write V_g for s € Z,,, the 1-dimensional space on
which Gg acts by 1)1x7°. One can then regard L,(s,7)) as a
function of the family of Galois representations V_g. They all have
the same residual representation as ;. Furthermore, notice that
Gq acts on V{ by 1.



The homomorphism & factors through Gal(Qo/Q), where Qoo
denotes the cyclotomic Z-extension of Q, a subfield of Q(zpe).
Let I = Gal(Qx/Q). Thus, =1+ pZ, = Z,,.

If K is a finite extension of Q and p 1 [K : Q], then Koo = KQ« is
a Galois extension of K and Gal(K./K) is canonically isomorphic
to I'. We will regard x as the corresponding homomorphism

Gk — Gal(Koo/K) — T =Gal(Qs/Q) — 1+ pZ, .

Then { x° | s € Z, }is a subset of Homco,,t(GK,6: }
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Let d be the conductor of 1);. Assume that p{ d. Bruce Ferrero
and | proved the following formula in 1977

Ly(0,9) = Zwl

c)logp(Fp(c/d)) + Lp(0,)logp(d)

Here 'p(x) is Morita's p-adic Gamma function and /log,, is the
p-adic log function (defined on 1+ pZ, and extended to ZX). The
interpolation property for I',(x) is

n—1
= (-)"]] a

pta
This extends to a continuous function for x € Z
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L,(0, 1) when 91(p) =1

At precisely the same time that Ferrero and | proved the above
formula, Gross and Koblitz proved a formula relating certain
products of the [';(c/d)'s to Gaussian sums for F ¢, where f is the
order of p+ dZ in (Z/dZ)*. If 1(p) = 1, then those products
show up in the above formula for L},(0,1), which is then a linear
combination of p-adic logs of algebraic numbers. As a
consequence, one can prove that L},(0,¢1) # 0 by using a theorem
from transcendental number theory (the Baker-Brumer theorem).

In the above, one extends log, to a homomorphism

logp : Q5 — Z,, by taking log,(p) = 0. The kernel of log), is
z

Hp—1P~-



Suppose 11 has order 2. Let F be the corresponding imaginary
quadratic field. Since 11(p) = 1, we have p" = 77 where 7 € Of

L;J(()? djl) =

and h = hg, the class number of F. Then the formula becomes

- logp(T) = L(¢1) - L(0,¢1)
|OF|
where the “L-invariant” L£(v1) is defined by

fw) = 2

The nonvanishing of L},(0,1) becomes clear in this case.
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New proofs.

Another quite different proof of the above derivative formula has
been given in a recent paper by Dasgupta, Darmon, and Pollack.
The proof works even for the p-adic L-functions over totally real
number fields constructed by Deligne and Ribet.

In the rest of this talk, we describe a new proof of the formula for
L;,(0,%1) when 91(p) = 1 (due to Benjamin Lundell, Shaowei
Zhang, and myself). In place of the Gross-Koblitz formula, it uses
properties of a certain p-adic L-function of two-variables, including
the so-called Main Conjecture for that function (proved by Karl
Rubin).

We begin by briefly outlining a proof of a derivative formula for
another p-adic L-function using a two-variable approach.



Ly(s, E), where E is an elliptic curve defined over Q

For an elliptic curve E/Q with good, ordinary or multiplicative
reduction at p, a p-adic L-function L,(s, E) can be defined.

Mazur & Swinnerton-Dyer (1974),

Mazur, Tate, & Teitelbaum (1985).

Just as for the Kubota-Leopoldt p-adic L-function, the
interpolation property for Ly(s, E) sometimes forces that function

to have a zero. This happens when E has split, multiplicative
reduction at p. In that case, one always has L,(1, E) = 0.



The formula proposed by Mazur, Tate, and Teitelbaum is

1,E
L) = o) 05
where log, (qe)
O8p\qE
L(E) =
(B)= ordy(ae)
and ge € Q; is defined by
JE =

— + 744 + 196884qr +
de
It is the "Tate period” for E



Therefore, L(E) # 0.

It was proved by K. Barré-Sirieix, G. Diaz, F. Gramain, and G.
Philibert that gg is transcendental.
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A proof of the formula, briefly and inaccurately sketched

We briefly outline the proof by Glenn Stevens and myself for the
formula.

The paper of Mazur, Tate, and Teitelbaum constructs p-adic
L-functions Ly(s, f) for modular forms f of arbitrary weight. The
function L,(s, E) is Ly(s, fe), where fg is the modular form of
weight 2 corresponding to E.

By Hida Theory, there is a Hida family of modular forms f,, where
k > 2, such that fy is of weight k and f, = fg.

The main ingredient in our proof: There is a two-variable p-adic
L-function L,(s, k) (constructed by Kitagawa-Mazur) such that,
when k is an integer > 2, we have

Lp(s, k) = cklp(s, fx)

for some constants ¢, with ¢ = 1.



1. Assuming that L(z, E) has an even order zero at z =1, L,(s, E)
has an odd order zero at s = 1 and so does Lp(s, i) at s = &

2
when k > 2. Thus, L,(%,k) =0 for all k € Z,,.

2. Lp(s,2) = Lp(s, E)

3. Lp(1,k) = (1 — ap(k) 1Y) Ls(k) for k € Zp,, where ap(k) and
Ly(k) are analytic functions for k € Z,. Furthermore,

ap(2) =1, and Ly(2) = (1 E)
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The properties on the previous slide imply that

L(1,E)

L;,(l, E)= —204;,(2)L:(2) = —2a;,(2) QO

Thus, one must prove that a/,(2) = —1L(E). This is proved by a

Galois cohomology argument . It involves the Galois representation
attached to the Hida family. The Tate period enters the argument
since the extension class associated with the exact sequence

0 — ppe — E[p™] — Qp/Z, — 0
is given by the Kummer cocycles defined by p-power roots of gg.
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The two-variable p-adic L-function of Katz. Its domain of
definition.

Suppose that K is an imaginary quadratic field and that p splits in
K. There are two prime ideals p and p lying over p. The map

k: Gk — 14 pZ, was defined before. It factors through
Gal(Kw/K) , where Ky is the cyclotomic Z,-extension of K.

Let L denote the unique Z,-extension of K in which p is
unramified. The prime p is ramified in Lo, /K. We choose X so
that it factors through Gal(L~/K) and defines an isomorphism

Gal(Loo/K) —> 1+ pZ, .

We can make the choice of A unique by requiring that it be the
Galois representation corresponding to a Grossencharacter for K of
type Ao with infinity type (1,0).

Homco,,t(GK,as) contains { k°AX | (s,k) € Z, x Z, }



The two-variable p-adic L-function of Katz

Let 1)1 = 9w ™! be as before. We assume from here on that
11(p) = 1. Let F be the cyclic extension of Q cut out by ;.
Thus, p splits completely in F/Q.

Choose any imaginary quadratic field K in which p splits
completely and such that KN F = Q. Let p = WGK-

The two-variable p-adic L-function L,(-) is defined on the following
domain: Homcont(GK,QZ). We will consider the restriction of
that function to

{ oA} | (s,k) €ZpxZp } .

Or, one can regard L,(-) as a function on the family Indgi(gm{s)\k)
of 2-dimensional Galois representations.



For fixed k € Z, k > 1,

1. Interpolation property : For (s, k) € Z x Z satisfying 1 < s < k.

Ly(s, k) = cky1-(the p—adic L—function for a CM form of weight k+1)
with precise constants cy1.

2. Gross Factorization Theorem: For the line k = 0. Let ¢ = the
quadratic character corresponding to K. We have

Lp(0.5) = Ly(os®) = Lp(s,¥)Lp(1 = 5,97 ")

So L,(0,0)=0 and dLy(s.0)

| = Lo,

[m]

=



dLP(O7 k)

3. For the line s = 0. Katz's Kronecker Limit Formula:
dk

k=0

L(0,41)Lp(1, e )
Thus, the ratio (M )/(dLP(Ov k)
s=0

ds dk

1(0.) / L(0, ).

) is equal
k=0

This should be L£(1)1).
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as + bk, where

The linear term in the power series expansion for Ly(s, k) is

~dLy(s,0) b— dL,(0, k)
o ds | - dk o
One should have a/b = L(v1).

p—1

We will now assume (for simplicity) that ¢; has order dividing
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This direction involves £(11). Let Dy be a Z,-extension of K.
Then

K C Dy C Kyl
Then Gal(KooLso/ Do) is isomorphic to Z,. Suppose 9 is a
topological generator.

Then x5AK factors through Gal(Ds/K) when 5\¥(8) = 1. The
set

{ (s, k) | K°A(8) =1}
is the line as + bk = 0, where a = log, (k(3)), b = logp(A(J)).
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3. The direction where Ly(s, k) has a double zero

Recall that 91 is an odd character of Gal(F/Q) and that p splits
completely in F/Q. There is a Z,-extension Fy, of F which is
Galois over Q and such that Gal(F/Q) acts on Gal(F/F) by the
character ;. Completing at a prime v above p, we have F, = Q,
and F, is a Zp-extension of Q.

Any Z,-extension of Q, is determined by its universal norm
subgroup which is of the form pp—1(q), where ordy(q) # 0 (except
for the unramified Z,-extension of Qp). Excluding the unramified
logy(q)

ordp(q)’

Z,-extension, a Z,-extension is determined by

In the special case where 1)1 has order 2, the universal norm
subgroup for F , contains /7. (Recall that 7 € Of and

7w = ph. ) In general, one applies an idempotent to some p-unit
min F.



There is one Z,-extension Dy, of K such that

DOO;E = FOO?‘/

One associates a Selmer group to the representation ¢ = wl‘GK

over any Z,-extension D, of K and also over the Z%—extension
KooLoo of K. The latter Selmer group has a characteristic ideal
generated (essentially) by L,(s, k). This is a special case of the
"Main Conjecture” formulated by Yager and proved by Rubin.
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5. The direction where Ly(s, k) has a double zero

For any Z,-extension Dy, /K, we denote the Selmer group for ¢ by
Sel,(Ds). There is a natural action of Gal(Ds/K) on that
object.

Let / denote the augmentation ideal in Z,[[Gal(Ds/K)]]. When
Dy is any Z,-extension of K, then Sel,(Dx)[/] has Z,-corank 1.

Usually, Sel,(Dw)[/?] also has Z,-corank 1. The one exception is
when D is chosen as above. Then Sel,(Dx)[/?] has Z,-corank 2.

The local condition at p is that cocycle classes be unramified. For
the exceptional Z,-extension Do, (and none of the others

Z -extensions of K), the elements of Sel (D )[/] are actually
locally trivial at p, and not just locally unramified. This is what
allows one to show that Sel,(Dxo)[/?] has Z,-corank 2.

The corresponding line as + bk = 0 is the direction where L (s, k)
has a double zero.



One can restrict £\ to the local Galois group GKF' One wants

this to factor through D, 5/Q,. By local class field theory, if g is
any universal norm for Doo’;—,/Qp, then one wants

K*N\*(Rec(q)) =1
This suffices to determine the line as + bk = 0.

In the special case where 1)1 has order 2, one can take g = /7.
One finds that

I
a/b = 985(

I EE)
S—r | N—

ord,( L(11)
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Thank you!
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