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1 Introduction.

Suppose that p is a prime and that n ≥ 1. Let GQ = Gal(Q/Q) be the absolute Galois group of
Q. Our objective in this paper is to construct continuous representations

ρ : GQ −→ GLn(Zp)

whose image is open. Continuous n-dimensional representations ρ arise naturally in algebraic
geometry for every value of n, but it seems difficult to find such examples where the image is open
when n ≥ 3. The construction described in this paper is not at all geometric in nature. It depends
on the structure of certain Galois groups and of certain subgroups of GLn(Zp). We assume always
that p is an odd prime. One typical result is the following.

Proposition 1.1. Suppose that p is a regular prime and that p ≥ 4[n2 ] + 1. Let K = Q(µp) and
let M denote the maximal pro-p extension of K which is unramified outside of p. Then there exist
continuous representations ρ : Gal(M/Q) → GLn(Zp) with an open image.

A theorem of Shafarevich shows that if p is a regular prime, then Gal(M/K) is a free pro-p
group on p+1

2 generators. On the other hand, it turns out that a Sylow pro-p subgroup S
0

of
SLn(Zp) requires only n generators topologically. One can then define a surjective homomorphism
σ

0
from Gal(M/K) to S

0
if p ≥ 2n − 1. There are many choices. However, one must make the

definition carefully enough so that σ
0

can be extended to Gal(M/Q), giving a homomorphism
ρ

0
: Gal(M/Q) → GLn(Zp). If n is even, one needs the slightly stronger inequality p ≥ 2n + 1 to

make that possible. The image of ρ
0

will then contain S
0

as a subgroup whose index divides p− 1.
Tensoring ρ

0
by the cyclotomic character gives a representation ρ with open image. It turns out

that the construction gives uncountably many such ρ’s with distinct kernels.
One can prove a similar result for more pairs (n, p) by making different choices for the field

K. A crucial assumption in our construction is that Gal(M/K) is a free pro-p group, where M is
defined just as above. Such a field K is said to be “p-rational”. We discuss this notion in some
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detail in sections 3 and 4. One interesting choice is to take K to be a compositum of quadratic
fields. We state a certain conjecture in section 4.2 about the p-rationality of such fields. Assuming
that conjecture, we can then construct representations ρ with open image for any n ≥ 4 and any
odd prime p. (See proposition 6.2.2.) If n = 3, one can make the construction work for a very large
(and undoubtedly infinite) set of primes by choosing K = Q(µ5). There is a very simple criterion
involving Fibonacci numbers for the p-rationality of that field. (See section 4.4.)

Proposition 1.1 is a special case of proposition 6.1.1, the main theorem of this paper. The proof
describes a construction of representations ρ with open image which have the following property:
the residual representation ρ is reducible. More precisely, the image of ρ consists of upper trian-
gular matrices. The construction is group theoretic in nature and depends crucially on the results
proved in section 5 concerning the pro-p group S

0
. We wonder whether one can prove proposition

6.1.1 by using deformation theory of Galois representations. This is not clear since the residual
representation must be chosen carefully and is reducible. However, having made such a choice, it
may conceivably be possible to translate our argument into the language of deformation theory.

We discuss some possible examples where ρ is irreducible in section 7. The main result is
proposition 7.1.1. Unfortunately, part of the hypothesis in that result is that some number field
K of large degree is p-rational, something which would be difficult to verify in practice. We again
approach this question from a group theoretic point of view. However, there is a close relationship
between our approach here and results in [Bos] concerning deformation theory for the special case
where the image of ρ has order prime to p. One can prove proposition 7.1.1 from either point of
view, but the deformation theory approach requires a somewhat weaker hypothesis. We compare
the two approaches in section 7.2.

One specific type of example where ρ is irreducible is the following. It is discussed in detail in
section 7.3. Suppose that K is a totally complex Galois extension of Q such that Ω = Gal(K/Q)
is isomorphic to the symmetric group Sn+1. If p > n + 1, then Ω has an absolutely irreducible
representation ω over Qp of degree n. It is a direct summand in the obvious permutation represen-
tation of Ω of degree n+ 1. One can realize ω over Zp and ω, the reduction of ω modulo p, is still
absolutely irreducible. Under the assumption that K is p-rational, we will show that there exists
an n-dimensional representation ρ of Gal(M/Q) over Zp with open image such that ρ ∼= ω. Here
M is defined just as in proposition 1.1. Although it would be difficult to verify the assumption that
K is p-rational when n ≥ 3, it is reasonable to believe that it is satisfied for all but an extremely
sparse, infinite set of primes. Many extensions K of Q exist with the specified Galois group, and
varying that choice certainly increases the chance that one of them will be p-rational for any given
prime p.

Galois representations with open image have already been constructed by S. Hamblen for n = 3
and p ≡ 8 (mod 21). Such examples come from his main theorems in [Ham] showing that n-
dimensional representations ρ of GQ over Fp can be lifted to representations ρ over Zp under
certain hypotheses. Then, for certain choices of ρ, Hamblen shows that there exist liftings ρ with
open image. The representation ρ is unramified outside a finite set of primes. His specific examples
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are at the end of [Ham]. The field K is the splitting field of a certain polynomial of degree 7 and
Ω = Gal(K/Q) is the simple group of order 168. The representation ρ is absolutely irreducible, one
of the two such representations of Ω of degree 3. His construction of ρ’s provides examples with
certain specified local properties. We discuss a similar situation from our point of view in section
7.4.

Another interesting source of examples has been found by M. Upton [Upt]. Her examples are
3-dimensional Galois representations of GF , where F is any number field containing Q(µ3). They
arise in a geometric way, namely from the action of GF on the p-adic Tate module Tp(J), where J is
the Jacobian variety of a Picard curve C defined over F . The genus of C is 3 and EndF (J) contains
Z[µ3]. Thus, Tp(J) can be viewed as a free module of rank 3 over the ring R = Z[µ3] ⊗Z Zp.
There is an R-linear action of GF on Tp(J). Choosing a basis, one obtains a homomorphism
r : GF → GL3(R). If p ≡ 1 (mod 3), then R ∼= Zp × Zp and one obtains a representation
ρ : GF → GL3(Zp) by projection to either factor. Upton shows that if EndF (J) = Z[µ3], then ρ
is surjective for all but finitely many such p’s. It is likely that the image of ρ is open for all such
primes p.

The topic of this paper originally arose in connection with a project concerning Iwasawa theory
for elliptic curves. It was of interest to construct examples of Galois extensions of Q whose Galois
group is isomorphic to a certain open subgroup H∞ of PGL2(Zp). Such extensions play a role in
the illustrations in chapters 8 and 13 of [Gr1]. The proof of proposition 1.1 for the special case
n = 2 provides many such examples when p is a regular prime. The representation theory for the
finite quotient groups of H∞ is described rather precisely in proposition 7.4.4 in the above paper.
Realizing H∞ as a Galois group over Q provides infinite families of irreducible Artin representations
over Q whose degrees and modular properties are known. Many of those Artin representations are
self-dual, and that makes them especially interesting to study. The main results in this paper
can be viewed in a similar way. They provide constructions of a variety of examples of p-adic Lie
extensions of Q. The corresponding Lie algebras are sln(Qp) or gln(Qp). Although we have not
yet examined the question carefully, we would not be surprised if p-adic Lie extensions of Q exist
with any specified finite-dimensional Lie algebra over Qp.

I am grateful to Robert Pollack for asking me if the construction that I found for n = 2 could
be extended to similarly defined subgroups of PGLn(Zp), which led to proposition 1.1. I also want
to thank Sourav Sen Gupta and Robert Bradshaw who carried out searches for compositums of
quadratic fields which are 3-rational. Bradshaw also showed me how to use Sage for carrying out
a search concerning the p-rationality of Q(µ5). Finally, I want to acknowledge support for this
research from the National Science Foundation.

3



2 Pro-p groups with operators.

Assume that Π is a pro-p group. We will always assume that Π is topologically finitely generated.
This means that we can find a finite subset Σ = {π1, ..., πt} of Π such that the subgroup 〈π1, ..., πt〉
generated by Σ is dense in Π. Let Φ(Π) denote the Frattini subgroup of Π, which is defined to be
the intersection of all closed subgroups of Π of index p. We will refer to the quotient Π̃ = Π

/
Φ(Π)

as the Frattini quotient of Π. Note that Π̃ is an abelian group of exponent p. We regard Π̃ as
a vector space over Fp. If π ∈ Π, then its image in Π̃ will be denoted by π̃. It is clear that if

{π1, ..., πt} is a topological generating set for Π, then {π̃1, ..., π̃t} generates Π̃ as an Fp-vector space.
The Burnside Basis Theorem is the converse:

BBT: If {π̃1, ..., π̃t} generates Π̃, then {π1, ..., πt} generates Π topologically.

In particular, if d = dimFp
(Π̃), then Π has a topological generating set with d elements, but not

fewer. Note that d = dimFp

(
H1(Π,Fp)

)
, where Π acts trivially on Fp.

Suppose that Π1 and Π2 are pro-p groups, both topologically finitely generated. Suppose that
σ : Π1 → Π2 is a continuous group homomorphism. Then σ induces a homomorphism from Π̃1

to Π̃2 which we denote by σ̃. It follows easily from BBT that σ is surjective if and only if σ̃ is
surjective.

We will need the profinite version of the Schur-Zassenhaus theorem in this paper. It will
be used several times in the following form. The group G will sometimes be a Galois group,
sometimes a subgroup of GLn(Zp), and sometimes a subgroup of Aut(Π), the group of continuous
automorphisms of a pro-p group Π.

SZT: Suppose that G is a profinite group, that N is a normal pro-p subgroup of G, and that
G/N is a finite group of order prime to p. Then G contains a subgroup H such that G = HN and
H ∩N = {idG}. Furthermore, all such subgroups of G are conjugate.

The usual form of the Schur-Zassenhaus theorem concerns finite groups and can be found in [Gor],
theorem 2.1. Extending it from finite to profinite groups is not difficult. Note that if G,N , and H
are as in SZT, then we obviously have H ∼= G/N . The theorem means that G is isomorphic to a
semidirect product N ⋊H, where H acts on N by conjugation. Furthermore, it follows that if H
and H ′ are two such subgroups, then we have H ′ = nHn−1 for some n ∈ N .

2.1. The Ω-type. Now suppose that Ω is a finite group of order prime to p. Let Aut(Π)
denote the group of continuous automorphisms of Π. Suppose that we are given a homomorphism
Ω −→ Aut(Π). We will then refer to Π as an Ω-group. We can view Π̃ as a finite-dimensional
Fp-representation space for Ω. It must be completely reducible because p ∤ |Ω|. We will refer to

the isomorphism class of Π̃ as the “ Ω-type” of Π. Let Irr
Fp

(Ω) be the set of isomorphism classes

of Fp-irreducible representations of Ω. For each χ in Irr
Fp

(Ω), let mχ(Π̃) denote the multiplicity

of χ as a constituent in Π̃. The Ω-type of Π is determined if one knows those multiplicities for
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all χ ∈ Irr
Fp

(Ω). Note that if Π is an Ω-group, then so is its maximal abelian quotient Πab. The

Ω-types of Π and of Πab are obviously the same.

An important hypothesis in most of our results will be that Ω satisfies the following property:

Assumption A: Ω is an abelian group and every element of Ω has order dividing p− 1.

If this assumption is satisfied, then Irr
Fp

(Ω) can be identified with Ω̂ = Hom(Ω,F×
p ). There is a

canonical homomorphism F×
p → Z×

p since every coset in (Zp/pZp)
× contains a unique (p − 1)-st

root of unity. If χ ∈ Ω̂, then composing with that canonical homomorphism gives a character of Ω
with values in Z×

p . We will simply use the same letter χ for that lifting. If π ∈ Π and a ∈ Zp, then
one can define πa. It is an element in the closure of the subgroup 〈π〉 generated by π, which we
denote by 〈π〉. Thus, it makes sense to write πχ(α) if π ∈ Π, α ∈ Ω, and χ ∈ Ω̂.

Assume that Π is a pro-p Ω-group and that Ω satisfies assumption A. We will describe a useful
refinement of the Burnside Basis Theorem in this case. For α ∈ Ω and π ∈ Π, we write α(π) for
the image of π under the automorphism of Π corresponding to α. Let χ ∈ Ω̂. A nontrivial element
π ∈ Π will be called a “χ-element” if α(π) = πχ(α) for all α ∈ Ω. We will also refer to such an
element π ∈ Π as an Ω-element if we don’t specify the character χ. This simply means that 〈π〉
is invariant under the action of Ω. One can find an Fp-basis for Π̃ consisting of Ω-elements. The
following result together with BBT implies that one can lift such a basis to a set of topological
generators for Π consisting of Ω-elements.

Proposition 2.1.1. Suppose that Ω satisfies assumption A. Suppose that χ is a character of Ω
and that z is a χ-element in Π̃. Then there exists a χ-element x in Π such that x̃ = z.

This result can be found in [Bos]. It is a special case of proposition 2.3 in that paper, as is
noted on page 184. We also had discovered it prior to learning that it was already in [Bos] since we
needed it for proving proposition 1.1. It plays a central role in this paper and so we will give our
proof. It is somewhat different than the argument found in [Bos], although essentially as simple.

Proof. First of all, assume that Π is abelian. Then Φ(Π) = Πp. We can regard Π and Π̃ =
Π/Πp as Zp[Ω]-modules. We will use an exponential notation for the action of Z[Ω] on Π, writing

xθ for x ∈ Π and θ ∈ Zp[Ω]. We use the same notation for Π̃. Let eχ ∈ Zp[Ω] denote the
idempotent for χ. Then Πeχ is a direct summand of Π as a Zp[Ω]-module. We refer to Πeχ as the
χ-component of Π. The χ-elements of Π are the non-trivial elements in Πeχ . The natural map
Π → Π̃ induces a homomorphism Πeχ −→ Π̃eχ which is clearly surjective. Thus, the stated result is
true if Π is abelian. Furthermore, if Ψ is a subgroup of Πp and Π′ = Π/Ψ, then we have surjective
homomorphisms Π → Π′ → Π̃. The corresponding homomorphisms on the χ-components are also
surjective. Thus, for any χ-element x′ of Π′ which maps to z, there exists a χ-element x of Π which
maps to x′, and hence to z.

Now assume that Π is a finite p-group, but not necessarily abelian. We prove by induction on
|Π| that there exists a χ-element x ∈ Π such that x̃ = z. We may suppose that |Φ(Π)| > 1. Let
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Z denote the center of Π and let Ψ = Z ∩ Φ(Π). Then Ψ is a normal, Ω-invariant subgroup of Π,

Ψ ⊆ Φ(Π), and |Ψ| > 1. Let Π′ = Π/Ψ. Then we can identify Π̃′ with Π̃. Assume (inductively)
that we can find a χ-element x′ in Π′ whose image in Π̃ is z. Then x′ = yΨ, where y ∈ Π and
α(y) ≡ yχ(α) (mod Ψ) for all α ∈ Ω. The image of y in Π̃ is z. The subgroup 〈Ψ, y〉 generated by
Ψ and y will be Ω-invariant and abelian. As already shown, one can find a χ-element x ∈ 〈Ψ, y〉
such that x ≡ y (mod Ψ), establishing the lemma if Π is finite.

We use a similar argument if Π is infinite. We can find a descending sequence of open, normal,
Ω-invariant subgroups Ψj of Π, all contained in Φ(Π), such that

⋂
j Ψj = {idΠ} and Ψj/Ψj+1 is

contained in the center of Π/Ψj+1. We obtain x ∈ Π with the desired properties as a compatible
sequence of suitable elements xj ∈ Π/Ψj . �

Apart from Boston’s paper mentioned above, the existence of a generating set consisting of
Ω-elements has been pointed out elsewhere in the special case where Ω has order 2. For example,
Herfort and Ribes [HeRi] show that if Π is a pro-p-group with an involution, and p is an odd prime,
then Π has a set of topological generators which are either fixed or inverted by the given involution.

Assumption A will prevail throughout most of this paper. However, we sometimes will want to
make the following weaker assumption, especially in section 7.

Assumption B. The order of Ω is not divisible by p.

Roughly speaking, the role of this assumption is partly that it makes the relationship between
representation theory for Ω in characteristic 0 and in characteristic p quite simple. Also, it allows
us to apply the SZT in several situations, e.g., the proof of proposition 2.3.1 below.

2.2. Free pro-p Ω-groups. Returning to the case where Ω is any finite group of order prime
to p, suppose that Γ is a free pro-p group on d generators and that one is given a homomorphism
ψ : Ω → Aut

Fp

(
Γ̃
)
. Of course, that homomorphism is just a d-dimensional representation of Ω

over Fp. We want to now show that ψ can be lifted to a homomorphism ϕ : Ω → Aut
(
Γ
)
. As a

consequence, one can find a free Ω-group Γ with any specified Ω-type.

First of all, observe that any automorphism α̃ of Γ̃ can be lifted to a continuous automorphism
α of Γ. That is, the natural map

(1) Aut(Γ) −→ Aut(Γ̃)

is surjective. To see this, suppose that Γ is the free pro-p group on the set Σ = {γ1, ..., γt}. The uni-
versal mapping property for (Γ,Σ) implies that we can at least define a continuous homomorphism
α : Γ → Γ lifting α̃. The surjectivity of α follows from BBT. The inflation-restriction sequence
together with the fact that H2(Γ,Fp) = 0 implies easily that H1(ker(α),Fp) = 0. Since ker(α) is
a pro-p group, it follows that ker(α) is trivial and hence that α is injective. The continuity of α−1

also follows easily.
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Let N denote the kernel of the map (1). It is known that N is a pro-p group. In fact, this
is true if Γ is any topologically finitely-generated pro-p group. (See proposition 5.5 in [DSMS].)
Let G ⊂ Aut(Γ) be the inverse image of ψ(Ω) under the map (1). Thus, G contains N and the
corresponding quotient group G/N is isomorphic to ψ(Ω). Since ψ(Ω) has order prime to p, SZT

tells us that G is a semi-direct product. That is, G contains a subgroup H such that G = HN and
H ∩ N = {idG}. Thus, the obvious map H → G/N is an isomorphism and therefore we have a
uniquely determined surjective map ϕ : Ω → H which induces the map ψ : Ω → G/N → Aut(Γ̃),
as we wanted. Since H ⊂ Aut(Γ), the map ϕ makes Γ into an Ω-group.

Remark 2.2.1. A theorem in modular representation theory asserts that if Ω has order prime to
p, then any homomorphism ω : Ω → GLd(Fp) can always be lifted to a homomorphism ω : Ω →
GLd(Zp). In fact, the same argument as above shows this. The map GLd(Zp) → GLd(Fp) is easily
seen to be surjective. That is all one needs in the above argument. Alternatively, in the above
notation, one can choose an Fp-basis for Γ̃ and identify ω with ψ. One can lift the chosen basis

for Γ̃ to a set of topological generators Σ for Γ. The homomorphism ϕ induces a homomorphism
ϕab : Ω → Aut(Γab). The set Σ maps to a Zp-module basis for Γab and one can then identify Γab

with Zdp. Then ϕab defines a homomorphism ω which lifts ω.
If Ω has order prime to p and L is a free Zp-module of finite rank on which Ω acts, then L is

a Zp[Ω]-module. It is a projective module and its isomorphism class determines and is determined
by the isomorphism class of L/pL as an Fp[Ω]-module. Furthermore, the isomorphism class of the
Qp[Ω]-module L ⊗Zp

Qp determines and is determined by the isomorphism class of L as a Zp[Ω]-
module. One can find these useful results in [Ser], specifically in proposition 43 and in corollary 2
to theorem 34.

One consequence that we will need is the following. Suppose that Γ is a free pro-p Ω-group.
Let V = Γab ⊗Zp

Qp. One can regard Γab as an Ω-invariant Zp-lattice in V . Then the Ω-type
of Γ determines and is determined by the isomorphism class of the Qp-representation space V =
Γab ⊗Zp

Qp for Ω. ♦

The simplest examples of free pro-p Ω-groups occur when d = 1 and Ω is an abelian group of
exponent dividing p− 1. Let χ ∈ Ω̂. Regarding χ as having values in Z×

p , we let Γχ denote a group
isomorphic to Zp on which Ω acts by χ. We can obviously take direct products of such groups,
obtaining Ω-groups which are free, abelian pro-p groups and which have any specified Ω-type. One
can also take a free product of finitely many such groups, which gives an explicit way of obtaining
a free pro-p Ω-group with any specified Ω-type in the special case where Ω satisfies assumption A.

2.3. A universal mapping property. We only assume that Ω satisfies assumption B. Suppose
that Π is a finitely-generated pro-p group which is also an Ω-group. The following result gives the
existence of surjective Ω-homomorphisms from a free pro-p Ω-group Γ to Π if the Ω-type of Π is
“bounded above” by the Ω-type of Γ.
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Proposition 2.3.1. Suppose that Γ is a free pro-p Ω-group on a finite number of generators, that
Π is a pro-p Ω-group, and that there exists a surjective Ω-homomorphism

τ : Γ̃ → Π̃ .

Then there exists a surjective Ω-homomorphism σ : Γ → Π such that σ̃ = τ .

Note that such a τ exists if and only if mχ(Π̃) ≤ mχ(Γ̃) for all χ ∈ Irr
Fp

(Ω).

Proof. The structure of Γ as an Ω-group is given by a homomorphism ϕ : Ω → Aut(Γ). Let H
denote the image of ϕ. Let ψ : Ω → Aut(Γ̃) be the homomorphism induced by ϕ. Note that H
is mapped injectively into Aut(Γ̃) and that the image of H under that map coincides with ψ(Ω).
The structure of Π as an Ω-group is given by a homomorphism κ : Ω → Aut(Π). Let J denote the
image of κ. Let λ : Ω → Aut(Π̃) be the homomorphism induced by κ. With this notation, we have
τ ◦ ψ(α) = λ(α) ◦ τ for all α ∈ Ω.

We will assume at first that τ is an isomorphism. Thus, τ induces an isomorphism from Aut(Γ̃)
to Aut(Π̃) which sends ψ(Ω) to λ(Ω). Since J is mapped injectively into Aut(Π̃), it is clear that
τ induces an isomorphism H → J . Also, BBT implies that there is a continuous, surjective
homomorphism δ : Γ → Π such that δ̃ = τ . Let ∆ = ker(δ). Let Aut(Γ,∆) denote the group of
continuous automorphisms of Γ fixing the subgroup ∆. Thus, Aut(Γ,∆) is a subgroup of Aut(Γ)
and we have a homomorphism

(2) Aut(Γ,∆) −→ Aut(Π)

whose kernel N ′ is a subgroup of the kernel of (1) and hence is a pro-p subgroup of Aut(Γ,∆). One
also sees easily that (2) is surjective, just as for the map (1). Let G′ denote the inverse image of
J under (2). Thus, G′/N ′ ∼= J . It follows from SZT that G′ contains a subgroup H ′ such that
G′ = H ′N ′ and H ′ ∩N ′ = {idG′}. It is clear that (2) maps H ′ isomorphically to J . Moreover, the
map κ : Ω → J determines a map ϕ′ : Ω → H ′. If we regard Γ as an Ω-group by using the map ϕ′

(instead of using ϕ), then δ becomes a surjective Ω-homomorphism from Γ to Π.

Note that ϕ and ϕ′ induce the same map from Ω to Aut(Γ̃), namely the map ψ. As previously,
let N be the kernel of (1) and let G be the inverse image of ψ(Ω). Then H ′ ⊂ G and G = H ′N . It
follows from SZT that H and H ′ are conjugate subgroups of G. More precisely, there is an element
η ∈ N such that H ′ = ηHη−1. Consequently, if α ∈ Ω, then ϕ′(α) ◦ η = η ◦ ϕ(α). Also, η induces
the identity map on Γ̃.

The above remarks show that σ = δ ◦ η is a surjective Ω-homomorphism from Γ to Π and that
σ̃ coincides with the isomorphism τ from Γ̃ to Π̃. To complete the proof, suppose now that τ is
not injective. Then one can define an isomorphism

τ1 : Γ̃ −→ Π̃ × ker(τ)
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of representation spaces for Ω such that composing τ1 with projection to the factor Π̃ gives the
map τ . Let Π1 = Π × ker(τ). Thus, Π1 is a pro-p Ω-group and the natural projection map from
Π1 → Π is a surjective Ω-homomorphism. Hence, as we have shown above, there is a surjective
Ω-homomorphism σ1 from Γ to Π1 such that σ̃1 = τ1. Composing with the projection map from
Π1 to Π gives a surjective Ω-homomorphism σ such that σ̃ = τ . �

Remark 2.3.2. Proposition 2.1.1 is a consequence of proposition 2.3.1. If Ω satisfies assumption
A, then we pointed out at the end of section 2.3 that one can construct a free pro-p Ω-group Γ with
any specified Ω-type as a free product. The construction gives us a set of generators {γ1, ..., γn} of
Γ consisting of Ω-elements. If χ is a Z×

p -valued character of Ω, then the number of distinguished

generators which are χ-elements for Ω is mχ(Γ̃).
For any Π, we can construct Γ so that Γ has the same Ω-type as Π. Furthermore, if we choose

a basis {π̃1, ...., π̃n} of Π̃-consisting of Ω-elements, and if we suitably modify the indexing for the
γi’s, then we can choose τ : Γ̃ → Π̃ so that τ(γ̃i) = π̃i for 1 ≤ i ≤ n. If we choose a lifting σ of τ as
in proposition 2.3.1, then πi = σ(γi) will be an Ω-element of Π whose image in Π̃ is π̃i for each i.
♦

Remark 2.3.3. This remark concerns the usual universal mapping property for a free pro-p group
Γ on a finite set Σ. If one replaces Σ by another set of topological generators S which has the same
cardinality as Σ, then the universal mapping property also holds for S and Γ. To justify this, first
note that if f : Σ → S is a bijection, then the unique continuous homomorphism ϕ : Γ → Γ such
that ϕ|Σ = f is a minimal presentation of Γ. Hence the number of relations is the Fp-dimension of
H2(Γ,Fp), which is zero. Hence ϕ is also injective and therefore is an isomorphism. The universal
mapping property for the pair (Γ, S) follows from that same property for the pair (Γ,Σ). ♦

3 Properties of p-rational fields.

Suppose that K is a number field and that p is an odd prime. Let Σp be the set of primes of K
lying above p. We define the following three extensions of K: M is the compositum of all finite
p-extensions of K which are unramified outside of Σp, M

ab is the maximal abelian extension of
K contained in M , and L is the compositum of all cyclic extensions of K of degree p which are
contained in M . If we let Γ denote Gal(M/K), then Γ is a pro-p group, Γab ∼= Gal(Mab/K) is the
maximal, abelian quotient of Γ, and the Frattini quotient Γ̃ can be identified with Gal(L/K). If it
is needed to avoid confusion, we will include a subscript K, writing MK instead of M , ΓabK instead
of Γab, etc.

We can consider Γab as a Zp-module. It is known to be finitely-generated. The Frattini quotients
of Γ and Γab are the same and that gives the first of the following inequalities:

(3) dim
Fp

(
Γ̃
)

≥ rankZp
(Γab) ≥ r2(K) + 1

9



Here r2(K) denotes the number of complex primes of K. The second inequality is a well-known
result. (See [Was], section 13.5, for example.) Let r1(K) denote the number of real primes of K. If
K/Q is Galois, then there are two possibilities: Either r1(K) = 0, r2(K) = 1

2 [K : Q] (the totally
complex case) or r1(K) = [K : Q], r2(K) = 0 (the totally real case).

A number field K is said to be “p-rational” if dim
Fp

(
Γ̃
)

= r2(K) + 1. The simplest example
is K = Q. One can show by class field theory (or by using the Kronecker-Weber theorem) that
M = Q∞, the cyclotomic Zp-extension of Q. In general, a number field K is p-rational if and only
if the following two requirements are satisfied:

(i) rankZp
(Γab) = r2(K) + 1 ,

(ii) Γab is torsion-free as a Zp-module.

The first statement is Leopoldt’s conjecture for K and p. It is known to hold when K is an abelian
extensions of Q and p is any prime. In principle, one can check the second requirement by using
class field theory. We will discuss this for various types of number fields in section 4.

Consider the special case where K is totally real. Then K is p-rational if and only if Mab =
KQ∞, the cyclotomic Zp-extension of K. It then follows from BBT that Γ has one topological
generator and therefore that Γ is abelian. Thus, Γ = Γab ∼= Zp, a free pro-p group on one generator.
That is, a totally real number field K will be p-rational if and only if M = KQ∞.

3.1. Freeness. The importance of p-rationality for us is contained in the following result which is
proved in [MoNg]. The conclusion is one of their equivalent statements about p-rationality. It will
be useful to give an argument here.

Proposition 3.1.1. If K is p-rational, then Γ is a free pro-p group on r2(K) + 1 generators.

Proof. We have already explained this result if r2(K) = 0. In general, it turns out to be a
consequence of the fact that the global Euler-Poincaré characteristic for the trivial Gal(KΣ/K)-
module Z/pZ is equal to −r2(K). Here Σ consists of the primes lying over p or ∞ and KΣ is the
maximal extension ofK unramified outside of Σ. We obviously have dim

Fp

(
H0(KΣ/K,Z/pZ)

)
= 1.

Assuming that K is p-rational, we have

dim
Fp

(
H1(KΣ/K,Z/pZ)

)
= dim

Fp

(
H1(Γ,Z/pZ)

)
= r2(K) + 1

Using the Euler-Poincaré characteristic, it follows that H2(KΣ/K,Z/pZ) = 0. Furthermore, by
definition, M has no nontrivial Galois p-extension contained in KΣ. A result of Neumann (corollary
10.4.3 in [NSW]) implies that H i(KΣ/M,Z/pZ) = 0 for all i ≥ 1. Using that result and proposition
1.6.6 in [NSW], one sees that the inflation map

(4) H i(Γ,Z/pZ) −→ H i(KΣ/K,Z/pZ)

10



is an isomorphism for any i ≥ 1. In particular, we have H2(Γ,Z/pZ) = 0. It follows that Γ has a
minimal presentation with r2(K) + 1 generators and no relations, proving the stated result. �

Note that the converse of proposition 3.1.1 is clearly true. In fact, one has the following stronger
statement: If Γ is a free pro-p group, then K is p-rational. To see this, note that (4) implies that
the Euler-Poincaré characteristic for Z/pZ as a Γ-module is also equal to −r2(K). In particular,
if Γ is a free pro-p group, then H2(Γ,Z/pZ) = 0 and hence the Fp-dimension of H1(Γ,Z/pZ) is
r2(K) + 1. Therefore, Γ indeed has a topological generating set of that cardinality.

Remark 3.1.2. There is a considerable literature concerning p-rational fields, including [Ngu],
[JaNg], [Mov], and [MoNg]. One additional equivalent statement which is found in those references
(e.g., proposition 2 in [Mov]) involves the subgroup Hp(K) of K× consisting of p-hyperprimary
elements. An element α ∈ K× is said to be “p-hyperprimary” if αOK = ap for some fractional ideal
a of K and if α ∈ (K×

v )p for all primes v of K lying above p. Then K is p-rational if and only if
the following two statements are satisfied:

(a) The map µ(K)p −→
∏
v∈Σp

µ(Kv)p is an isomorphism.

(b) Hp(K) = (K×)p .

In statement (a), µ(K)p and µ(Kv)p denote the groups of p-power roots of unity in the specified
fields. It is obviously satisfied if µp 6∈ Kv for all v|p. If the class number of K is not divisible by
p, then statement (b) means that if a unit α of K is a p-th power in the completions Kv for all
v ∈ Σp, then α is a p-th power in K itself. ♦

If K fails to be p-rational, it might still be useful to know if there exists a Galois extension N
of K such that Gal(N/K) is a free pro-p group on r generators for some reasonably large value of
r. For our purpose, we would also want N to be Galois over Q. Very little is known about this
question. Some comments can be found in [Yam] and [Hub].

3.2. The Ω-type of Γ = Gal(M/K). Assume now thatK is Galois over Q and let Ω = Gal(K/Q).
It is clear that M = MK will also be Galois over Q. We then have an exact sequence:

(5) 1 −→ Γ −→ Gal(M/Q) −→ Ω −→ 1 .

We will assume from now on that K is totally complex. If K → C is a field embedding, then the
restriction of complex conjugation to K is an element of order 2. We let Ω∞ denote the subgroup
that it generates. It may depend on the embedding, but the choice won’t matter.

There is a well-defined action of Ω on Γab. The next result is valid even if Ω has order divisible
by p. We let χ

0
denote the trivial representation of Ω.
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Proposition 3.2.1. Assume that K is a totally complex Galois extension of Q and that Leopoldt’s
conjecture holds for K and p. Let ε1 denote the nontrivial character of Ω∞. Then

Γab ⊗Zp
Qp

∼= IndΩ
Ω∞

(ε1) ⊕ χ
0

as representations spaces for Ω.

Proof. The argument is based on class field theory. Let V = Γab ⊗Zp
Qp. Note that V is a

Qp-representation space for Ω of dimension r2(K) + 1 since we assume that Leopoldt’s conjecture
holds for K and p. Let E denote the group of units of K. Then W = E ⊗Z Qp is another Qp-
representation space for Ω. Its dimension is [K : Q] − 1 if K is real, 1

2 [K : Q] − 1 if K is complex.
It is well-known that

W ⊕ χ
0

∼= IndΩ
Ω∞

(ε
0
)

as representation spaces for Ω, where ε
0

is the trivial character of Ω∞. This can be deduced from
the usual proof of Dirichlet’s unit theorem. If we replace E by a subgroup E′ of finite index, then
E′ ⊗Z Qp defines an isomorphic representation space for Ω.

Let K = K ⊗Q Qp. We can identify K with the product of the completions of K at the primes
above p. Let U be the product of the local unit groups in the completions. Thus, U is a compact
subgroup of K×. Let U ′ denote the maximal pro-p subgroup of U , which has finite index in U .
Then U ′ can be regarded as a Zp-module. The log maps for the completions of K at the primes
above p define a Zp-module homomorphism logU ′ from U ′ to K with finite kernel and open image.
Now Ω acts on K as a group of Qp-algebra automorphisms. Regarding K as a Qp-representation
space for Ω, it is isomorphic to the regular representation. The action of Ω on the multiplicative
group of K induces an action of Ω on U ′. Furthermore, logU ′ is Ω-equivariant. It follows that the
Qp-representation space U = U ′ ⊗Zp

Qp for Ω is isomorphic to the regular representation.

There is a canonical embedding E → U . Let E′ denote the maximal subgroup of E which is
mapped into U ′ by that embedding. For simplicity, we identify E′ with its image in U ′. Then we
get an induced map of E′ ⊗Z Zp → U ′ and the image of that map is the closure E′ of E′ in U ′.
Since Leopoldt’s conjecture is assumed to hold for K and p, the Zp-ranks of E′ ⊗Z Zp and E′ are
equal and therefore the kernel of the map E′⊗ZZp → E′ is finite. It follows that the representation
spaces E′ ⊗Z Qp and E′ ⊗Zp

Qp for Ω are isomorphic.
Class field theory defines a homomorphism

U ′
/
E′ −→ Γab

which has finite kernel and cokernel. Tensoring those Zp-modules with Qp defines an isomorphism of
Qp-representation spaces for Ω. It follows that U/W ∼= V . We have already discussed the structure
of E′ ⊗Zp

Qp, which is isomorphic to W , and of U = U ′ ⊗Zp
Q. The regular representation of Ω∞

is isomorphic to ε
0
⊕ ε1 and hence

U ∼= IndΩ
Ω∞

(ε
0
) ⊕ IndΩ

Ω∞
(ε1) .
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The stated isomorphism for V follows from the above isomorphisms for W and U . �

Assume that Ω satisfies assumption B. The Schur-Zassenhaus theorem then implies that the ex-
act sequence (5) splits and hence that there exists a splitting homomorphism from Ω to Gal(M/Q).
It is not unique, but we will fix one choice. Thus, Ω can be identified with a subgroup of Gal(M/Q).
Conjugation by elements of Ω then defines an action of Ω on Γ, and hence Γ becomes an Ω-group.
One sees easily that the Ω-type of Γ does not depend on the choice of splitting homomorphism.
If one assumes that K is p-rational, then Γ is a free Ω-group. As mentioned in remark 2.2.1, its
Ω-type is then determined by the representation space V = Γab ⊗Zp

Qp for Ω. However, if K is
not p-rational, then the Zp-torsion submodule of Γab will be nontrivial and will make an additional
contribution to the Ω-type of Γ.

If K is a totally complex, abelian extension of Q and χ ∈ Ω̂, then we say that χ is odd if
χ|Ω∞ = ε1. Let Ω̂odd denote the set of odd characters of Ω. The following corollary determines the
Ω-type of Γ completely under the stated assumptions. It follows directly from remark 2.2.1 and
proposition 3.2.1.

Corollary 3.2.2. Suppose that K is totally complex and p-rational. Suppose that Ω satisfies
assumption A. Then mχ(Γ̃) = 1 for all χ ∈ Ω̂odd ∪ {χ

0
} and mχ(Γ̃) = 0 for all other χ’s in Ω̂.

These multiplicities determine the Ω-type of Γ.

Remark 3.2.3. If Ω∞ is a normal subgroup of Ω, then KΩ∞ is the maximal totally real subfield
of K and K is a so-called CM field. As above, we let V = Γab ⊗Zp

Qp. One has a decomposition

V = V (ε
0
)⊕V (ε1) for the action of Ω∞. Even without assuming the validity of Leopoldt’s conjecture,

the above proof shows that
V (ε1) ∼= IndΩ

Ω∞
(ε1)

as representation spaces for Ω. If one doesn’t assume that Ω∞ is normal, then the proof shows that
IndΩ

Ω∞
(ε1) ⊕ χ

0
is a direct summand in V as a representation space for Ω.

We can also say something about Γ̃ as an Fp-representation space in the case where Ω has
order prime to p. Assume that K is totally complex. For brevity, let γ and ξ denote the Qp-
representations of Ω defined by V and by IndΩ

Ω∞
(ε1)⊕χ0

, respectively. Since ξ is a direct summand
in γ, and Ω has order prime to p, it follows from remark 2.2.1 that ξ is a direct summand in
γ. Furthermore, if Γ[p] denotes the maximal subgroup of Γ of exponent p, then Γ̃ ∼= γ ⊕ Γ[p] as
Fp-representations spaces for Ω. Therefore, it follows that ξ is a direct summand in Γ̃. ♦

3.3. Criteria involving subfields. Assume that K/Q is a finite, abelian extension and that Ω
has order prime to p, but not necessarily exponent dividing p − 1. Let IrrQp

(Ω) denote the set of
irreducible representations of Ω over Qp, up to isomorphism. If χ ∈ IrrQp

(Ω), we denote its degree
by n(χ). Let Fχ be the fixed field for ker(χ). Then Fχ is a cyclic extension of Q. Note that
n(χ) = 1 if and only if [Fχ : Q] divides p− 1. Also, if F is any extension of Q contained in K, then
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Fχ ⊆ F if and only if χ factors through Gal(F/Q). If F/Q is cyclic, then there exists at least one
χ ∈ IrrQp

(Ω) such that Fχ = F .
We have the following canonical decomposition, where we let eχ ∈ Zp[Ω] denote the idempotent

for χ and where our notation now includes a subscript indicating the field.

ΓabK
∼=

⊕

χ

(
ΓabK

)eχ .

as Zp[Ω]-modules, where χ varies over Irr
Qp

(Ω) in the above direct sum. Furthermore, if F is any

subfield of K, cyclic or not, then ΓabF can be identified with the maximal quotient of ΓabK on which
Gal(K/F ) acts trivially. Hence, we have the following isomorphism

ΓabF = Gal(Mab
F /F ) ∼=

⊕

Fχ⊆F

(
ΓabK

)eχ

where the notation indicates that χ varies over the elements of Irr
Qp

(Ω) such that Fχ ⊆ F . In

particular, taking F = Q, we have Mab
Q = Q∞, the cyclotomic Zp-extension of Q. This is so

because p is odd. Thus, we have
(
ΓabK

)eχ
0 ∼= Gal(Q∞/Q) ∼= Zp, where χ

0
denotes the trivial

character. ♦

The above remark gives a proof of the following proposition. One just observes that ΓabK is

torsion-free if and only if
(
ΓabK

)eχ is torsion-free for all χ ∈ Ω̂.

Proposition 3.3.1. If K is a finite abelian extension of Q and [K : Q] is not divisible by p, then
K is p-rational if and only if every cyclic extension of Q contained in K is p-rational.

Remark 3.3.2. Let us assume that K satisfies assumption A, but not necessarily that K is p-
rational. We let Ω̂odd denote the set of odd characters of Ω, which we can regard as characters with
values in Z×

p . They can also be regarded as irreducible representations for Ω over Qp. Remarks

3.2.3 implies that the Zp-rank of
(
ΓabK

)eχ is equal to 1 if χ ∈ Ω̂odd
⋃{χ

0
}. Thus, for every such

χ, there exists a uniquely determined Galois extension K
(χ)
∞ of K with the following properties:

Gal(K
(χ)
∞ /K) ∼= Zp, K

(χ)
∞ is Galois over Q, and Ω acts on Gal(K

(χ)
∞ /K) by the character χ. The

field K
(χ)
∞ is a Zp-extension of K. Using the notation of section 2, we have Gal(K

(χ)
∞ /Q) ∼= Γχ ⋊ Ω.

Note that K
(χ

0
)

∞ = KQ∞, the cyclotomic Zp-extension of K. The field Mab
K is a finite extension of

the compositum of the K
(χ)
∞ ’s. The field K will be p-rational if and only if Mab

K coincides with that
compositum. ♦

We will mention without proof a criterion which requires only assumption B for Ω. If T is a
collection of subgroups of Ω, then we say that T is “ample” if the following property holds: For
every Qp-irreducible representation χ of Ω, 1Θ is a constituent in χ|Θ for at least one Θ ∈ T .
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Here 1Θ denotes the trivial representation of Θ. Equivalently, one can make the same requirement
on the restrictions χ|Θ, where χ varies over all the absolutely irreducible representations of Ω. If
F is any subfield of K, let ΘF = Gal(K/F ). A collection F of subfields of K is said to be ample
if the corresponding collection of subgroups {ΘF }F∈F is ample. The proof of the next result is
somewhat similar to the proof of proposition 3.3.1. It is not difficult if K is totally real. If K is
totally complex, then remark 3.2.3 is useful as well as the following easily proved fact:

dimQp

(
IndΩ

Ω∞
(ε∞)ΘF

)
= r2(F )

for every subfield F of K. If Ω is abelian, then the collection F consisting of all cyclic extensions
of Q contained in K will obviously be ample. Thus, the following result is a generalization of
proposition 3.3.1.

Proposition 3.3.3. Suppose that K/Q is a finite Galois extension and that F is an ample collec-
tion of subfields of K. Suppose that p is a prime and that [K : Q] is not divisible by p. Then K is
p-rational if and only if every field F in F is p-rational.

As one simple illustration, suppose that Gal(K/Q) ∼= S3 and that p > 3. One can take F to
consist of the quadratic subfield and any cubic subfield of K. One sees easily that F is ample.

4 Examples of abelian p-rational fields.

We continue to assume that p is an odd prime. We describe a variety of examples of p-rational
fields which will be useful in the construction in section 6. We have already mentioned the simple
example K = Q for which we have Mab

Q = Q∞, the cyclotomic Zp-extension of Q.

4.1. Quadratic fields. Suppose that [K : Q] = 2. Then Ω̂ = {χ
0
, χ1}, where χ

0
is the trivial

character and χ1 is of order 2. If K is complex, then χ1 is odd and the field K
(χ1)
∞ defined in

remark 3.3.2 is usually called the anticyclotomic Zp-extension of K. The field K
(χ0)
∞ is just KQ∞,

the cyclotomic Zp-extension of K. Let hK denote the class number of K. The following result
is not entirely new. Very similar results are proved in [Fuj] and in [Min] if K is complex. For
simplicity, we make an assumption about p which guarantees that µp 6⊂ Kv for the primes(s) v of
K lying over p.

Proposition 4.1.1. Suppose that K is a quadratic field and that either p ≥ 5 or that p = 3 and is
unramified in K/Q.

(i) Assume that K is complex. Then K is p-rational if and only if the p-Hilbert class field of K

is contained in K
(χ1)
∞ . In particular, if hK is not divisible by p, then K is p-rational.
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(ii) Assume that K is real. Then K is p-rational if and only if hK is not divisible by p and the
fundamental unit ε

0
of K is not a p-th power in the completion Kv, where v is a prime of K lying

above p.

Proof. The field K will be p-rational if and only if
(
ΓabK

)eχ1 is torsion-free. We will let
(
ΓabK

)eχ1

tors

denote the torsion-subgroup of
(
ΓabK

)eχ1 . The assumption about p guarantees that the completion
Kv at a prime v|p doesn’t contain µp, the group of p-th roots of unity. In the notation of the proof
of proposition 3.2.1, one then has (U ′)eχ1 ∼= Zp.

If K is complex, then class field theory gives an exact sequence

1 −→ (U ′)eχ1 −→
(
ΓabK

)eχ1 −→ Gal(H/K) −→ 1 ,

where H denotes the p-Hilbert class field of K. The image of (U ′)eχ1 in
(
ΓabK

)eχ1 is just the inertia
subgroup for the prime(s) v dividing p. The surjectivity of the map to Gal(H/K) follows from the
fact that Ω = Gal(K/Q) acts on Gal(H/K) by χ1. It follows that

(
ΓabK

)eχ1

tors
is mapped injectively

into Gal(H/K) under the restriction map. That image will be Gal(H/H ′), where H ′ is an extension

of K contained in H. Furthermore, the fixed field for
(
ΓabK

)eχ1

tors
is precisely K

(χ1)
∞ . Consequently,

H ′ = H ∩K(χ1)
∞ . This shows that

(
ΓabK

)eχ1 is torsion-free if and only if H ⊂ K
(χ1)
∞ .

Now assume that K is real. There is a power ε = εa
0
, where a is not divisible by p, such that

ε ∈ U ′. We can choose a to be even so that ε has norm 1. Then ε ∈ (U ′)eχ1 and we have an exact
sequence

1 −→ (U ′)eχ1

/
〈ε〉 −→

(
ΓabK

)eχ1 −→ Gal(H/K) −→ 1 .

Thus,
(
ΓabK

)eχ1 is finite if K is real. It follows that K is p-rational if and only if both (U ′)eχ1

/
〈ε〉

and Gal(H/K) are trivial. The first group is nontrivial if and only if ε is a p-th power in (U ′)eχ1 ,
or equivalently, if and only if ε

0
is a p-th power in Kv for v|p. The group Gal(H/K) is nontrivial

if and only if hK is divisible by p. �

The following corollaries deal with various special cases. The first two concern p = 3 and p = 5.

Corollary 4.1.2. Suppose that K = Q(
√
d), where d is a squarefree integer and 3 ∤ d. Then K is

3-rational if and only if the class number of Q(
√
−3d) is not divisible by 3.

The same criterion is also proved by Fujii in [Fuj] (theorem 4.1) and by Minardi in [Min] (the
corollary to proposition 6.B) when d < 0. One can weaken the assumption that 3 ∤ d. It suffices to
assume that µ3 is not contained in the completion Kv of K at a prime v dividing 3.

Proof. Take p = 3. Let L(χ1) be the fixed field for the Frattini subgroup of
(
ΓabK

)eχ1 . Thus,

L(χ1) is Galois over Q, Gal(L(χ1)/K) is an abelian group of exponent 3, and Gal(K/Q) acts on

Gal(L(χ1)/K) by χ1. If K is complex, then L(χ1) contains the first layer K
(χ1)
1 in the anticyclotomic
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Z3-extension K
(χ1)
∞ /K, which is a cyclic extension of K of degree 3. In that case, the field K is

3-rational if and only if L(χ1) = K
(χ1)
1 . If K is real, then K is 3-rational if and only if L(χ1) = K.

We will use the reflection principle. We assume that d 6= 1 so that [K : Q] = 2. Let J =
K(µ3) = Q(

√
d,
√
−3d) and let F = Q(

√
−3d). Then a Kummer theory argument shows that

JL(χ1) is a compositum of fields of the form J( 3
√
α), where α ∈ F× and NF/Q(α) = 1. Since 3 ∤ d,

it is clear that 3 is ramified in F/Q. It follows that ordv(α) = 0 for the prime v of F lying over
3. Furthermore, the fact that L(χ1)/K is unramified at primes v not lying over 3 implies that
ordv(α) ≡ 0 (mod 3) for all such v. Thus, (α) = a3, where a is a fractional ideal of F .

Assume that the class number of F is not divisible by 3. Then a is principal. Thus α = β3ε,
where β ∈ F× and ε is a unit of F . Thus, J( 3

√
α) = J( 3

√
ε). If K is real, then F is complex and ε

is a root of unity whose order is not divisible by 3 (because d 6= 1). Thus, J( 3
√
ε) = J and hence

L(χ1) = K. If K is complex, then F is real and ±ε is a power of the fundamental unit of F . Hence
J( 3

√
ε) is a cyclic extension of J . It follows that L(χ1)/K is cyclic and consequently we must have

L(χ1) = K
(χ1)
1 . In both cases, we see that K is indeed 3-rational.

Conversely, assume that the class number of F is divisible by 3. Let c be an ideal class of order
3. Then Gal(K/Q) acts on c by χ1. One verifies easily that one can choose an ideal a ∈ c so that
Gal(K/Q) acts on a by χ1 and that a3 has a generator α such that NK/Q(α) = 1. Furthermore,

J( 3
√
α)/J has degree 3 and is unramified except at 3. It follows that JL(χ1) contains J( 3

√
α). If K

is real, then it follows that L(χ1) 6= K and therefore K is not 3-rational. Now assume that K is
complex. Then F is real and JL(χ1) also contains J( 3

√
ε

0
), where ε

0
is the fundamental unit of F .

It follows that JL(χ1)/J is not cyclic and hence L(χ1) is not a cyclic extension of K. This means
that K is not 3-rational. �

Remark 4.1.3. A similar argument gives the following generalization for an arbitrary odd prime
p. We assume that K = Q(

√
d) and that p ∤ d. Let J = K(µp) and let A denote the maximal

elementary abelian p-subgroup of the ideal class group of J . We regard A as an Fp-representation
space for Gal(J/Q). The action of Gal(J/Q) on µp is described by a character ω : Gal(J/Q) → F×

p .
We regard χ1 as an F×

p -valued character of Gal(J/Q) too. Then the field K is p-rational if and
only if the ωχ1-component eωχ1

A of A is trivial. ♦

Corollary 4.1.4. Suppose that K = Q(
√
d), where d is squarefree and d > 1. Assume that d ≡ ±1

(mod 5). Let ε
0

= a
0
+b

0

√
d be the fundamental unit of K, where a

0
, b

0
∈ Q and have denominator

1 or 2. Then ord5(a0
b
0
) ≥ 1. The field K is 5-rational if and only if 5 ∤ hK and ord5(a0

b
0
) = 1.

Proof. The congruence for d means that 5 splits in K/Q. The fact that either a
0

or b
0

is divisible
by 5, but not both, follows from the equation a2

0
− b2

0
d = ±1 and the congruence for d. Divisibility

refers to the ring Z[12 ]. If p is either one of the two primes of K dividing 5, then ε2
0
≡ ±1 (mod p).

It is clear that ε
0

is a 5-th power in Kp if and only if ε2
0
≡ ±1 (mod p2). Furthermore, it is not

difficult to show ε2
0
≡ ±1 (mod p2) if and only if a

0
or b

0
is divisible by 52. The stated result then

follows from proposition 4.1.1. �

17



Corollary 4.1.5. Let K = Q(
√

5). Suppose that p is an odd prime and p 6= 5. We will let q = p
if p ≡ ±1 (mod 5) and q = p2 if p ≡ ±2 (mod 5). Then K is p-rational if and only if Fq 6≡ 1
(mod p2), where Fq is the q-th Fibonacci number.

Proof. Since hK = 1, it follows that K is p-rational if and only if the fundamental unit ε
0

is not a
p-th power in the completion of K at a prime p above p. Let Fn denote the n-th Fibonacci number.
One has a well-known formula Fn = aεn−1

0
+ bε n−1

0
for all n ≥ 1, where a, b ∈ K and ε is the

conjugate of ε in K. We have
√

5a = ε
0

and
√

5b = −ε
0
. Thus, a and b are units in Kp. Now

εq−1
0

≡ 1 (mod p) and ε
0

is a p-th power in Kp if and only if εq−1
0

≡ 1 (mod p2). Since ε
0

= −ε−1
0

,
the above congruences for ε

0
give similar congruences for ε

0
. It follows that Fq ≡ 1 (mod p) and

that ε
0

is a p-th power in Kp if and only if Fq ≡ 1 (mod p2), proving the stated result. �

Corollary 4.1.6. Suppose that K is an imaginary quadratic field, that p satisfies the hypothesis in
proposition 4.1.1, that the class number of K is divisible by p, and that the p-primary subgroup of
the ideal class group of K is cyclic. Suppose that a is a fractional ideal of K whose ideal class has
order p and that α is a generator of ap. Then K is p-rational if and only if α is not a p-th power
in Kv for a prime v of K lying above p.

One can find this result in [Min], proposition 6.A. Note that if the p-primary subgroup of the class
group of K is not cyclic, then proposition 4.1.1 clearly implies that K is not p-rational.

Proof. We will use the criterion in remark 3.1.1. The unit group of K is finite and of order prime
to p. Furthermore, NK/Q(α) is a p-th power in Q. If there are two primes of K above p and if α
is a p-th power in the completion of K for one of those primes v, then α is also a p-th power in
the completion at the other prime above p. The assumptions imply that if β ∈ Hp(K), the group
of hyperprimary elements of K, then β = αiγp, where γ ∈ K× and 0 ≤ i < p. Furthermore, by
definition, β is a p-th power in Kv for all v|p. The assumption about p implies that µ(Kv) is trivial
for v|p. Now if α is not a p-th power in Kv for v|p, then i = 0. Thus, it follows that Hp(K) = (K×)p

and hence that K is p-rational. For the converse, note that α 6∈ (K×)p and that if α is a p-th power
in Kv for a prime v|p, then α ∈ Hp(K). �

Remark 4.1.7. Suppose that K is an imaginary quadratic field and that the hypothesis in propo-
sition 4.1.1 concerning the prime p is satisfied. Let A denote the p-primary subgroup of the ideal
class group of K. The Artin map defines an isomorphism A→ Gal(H/K), where H is the p-Hilbert

class field of K. Let H ′ = H ∩ K(χ1)
∞ . Let B denote the inverse image of Gal(H/H ′) under the

Artin map. Just as in the proof of part (a) of proposition 4.1.1, one sees that the restriction map
gives an isomorphism of the torsion subgroup of ΓabK to Gal(H/H ′). Thus, K is p-rational if and
only if B is trivial.

Corollary 4.1.6 then follows immediately from the following intrinsic description of B. Suppose
that a is a fractional ideal of K and that the class a = cl(a) is in A. Thus ap

t

= αOK for some t ≥ 0
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and some α ∈ K×. We will say that a is a “singular ideal” and that a is a “singular class” if the
following condition is satisfied: A generator α for ap

t

is a pt-th power in K×
v for all v dividing p.

It is easy to verify that this definition depends only on the ideal class a and not on the choice of
a, α, or t. The set of singular classes in A is obviously a subgroup of A. This subgroup is precisely
B. It is not difficult to prove this by using the description of ΓabK given by class field theory. The
ray class formulation is the most convenient. We omit the details. ♦

4.2. Compositums of quadratic fields. Suppose now that Ω = Gal(K/Q) ∼= (Z/2Z)t for
some t ≥ 2. If χ ∈ Ω̂, and χ 6= χ

0
, then ker(χ) is a subgroup of Ω of index 2. We let Fχ denote

the corresponding quadratic extension of Q. All the quadratic subfields of K are of the form Fχ
for some χ 6= χ

0
. There are 2t − 1 such subfields. Proposition 3.3.1 shows that K is p-rational if

and only if all of the quadratic field Fχ’s are p-rational. It seems reasonable to make the following
conjecture, although our numerical evidence is not very strong.

Conjecture 4.2.1. For any odd prime p and for any t, there exists a p-rational field K such that
Gal(K/Q) ∼= (Z/2Z)t.

We can merely give a few examples. For p = 3, we use corollary 4.1.2 to check 3-rationality.
For p = 5, we use corollary 4.1.4 for the real quadratic subfields of K. For the imaginary quadratic
subfields, we can just check either that the class number is not divisible by 5 or we can use corollary
4.1.6 if the class number is divisible by 5.

p = 3, t = 5 : K = Q(
√
−1,

√
2,
√

5,
√

11,
√

97)

p = 3, t = 6 : K = Q(
√
−1,

√
13,

√
145,

√
209,

√
269,

√
373)

p = 5, t = 5 : K = Q(
√
−1,

√
6,
√

11,
√

14,
√

59)

The example for p = 3 and t = 5 was found by Sourav Sen Gupta. The example for p = 3 and
t = 6 was found by Robert Bradshaw. In both cases, a number of examples were found, although
only a very small proportion of the trial set. The example for p = 5 was found by the author. The
verification requires using the criterion in corollary 4.1.6 for just one of the imaginary quadratic
subfields of K, namely F = Q(

√
−11 · 59).

4.3. The field K = Q(µp). Under the assumption that p is a regular prime, Shafarevich proved
that ΓK is a free pro-p group if K = Q(µp). One finds this on page 139 in [Sha], an illustration of
general results in that paper about generators and relations for certain Galois groups. Using the
results about p-rationality cited in section 3, we can give a rather short argument.

Proposition 4.3.1. Let K = Q(µp). Suppose that p is a regular prime. Then K is a p-rational
field.
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Proof. We are assuming that the class group of K has no elements of order p. Let ε1, ..., εr be
a fundamental set of units for K, where r = r2(K) − 1. Let ζp be a generator for µp. Then a
straightforward Kummer theory argument shows that

L = K
(

p
√
p, p

√
ζp, p

√
η1, ..., p

√
ηr

)
.

where L is the fixed field for Φ(ΓK). Consequently, one sees that

dim
Fp

(
Gal(L/K)

)
= r + 2 = r2(K) + 1 .

It follows that the inequalities (3) are equalities. Therefore K is indeed a p-rational field. �

4.4. The field K = Q(µ5) and p 6= 5. It is known that the class number of K is 1. Also, µp is not
contained in the completion of K at the primes lying above p. It follows that

(
ΓabK

)eχ is torsion-free
when χ is a faithful, irreducible representation of Ω = Gal(K/Q). Such a representation χ is odd.
If p ≡ 1 (mod 4), then there are two such χ’s, both 1-dimensional over Qp, but if p ≡ 3 (mod 4),
then there is just one such χ, a 2-dimensional representation over Qp. One then sees from the
proof of proposition 3.3.1 that K = Q(µ5) will be p-rational if and only if

(
ΓabK

)eχ is torsion-free

when χ is the character of Ω of order 2, which in turn means that the field Q(
√

5) is p-rational.
Corollary 4.1.5 gives a useful criterion involving Fibonacci numbers. Thus, we see that K = Q(µ5)
is p-rational if and only if Fq 6≡ 1 (mod p2), where q = p if p is a quadratic residue modulo 5, q = p2

if p is a quadratic nonresidue modulo 5.
We have searched for primes p for which K fails to be p-rational. The criterion just stated

suggests that such p’s are quite rare, but should exist. We haven’t found any. In particular,
K turns out to be p-rational for all p < 10, 000 and, if p is a quadratic residue, even for all
p < 8, 000, 000, We did this verification using Sage. In the latter case, R. Pollack verified that K
is p-rational for the much larger range of primes p < 3 × 109. As we will explain in section 6, if p
is a prime such that 4|(p− 1), and if K is p-rational, then one can construct 3-dimensional Galois
representations of Gal(MK/Q) over Qp with open image.

5 A Sylow pro-p subgroup of SLn(Zp).

We assume that n ≥ 2 and that p ≥ 3 throughout. We will first describe our notation for various
groups. If R is any commutative ring with identity, then Tn(R) denotes the group of diagonal
matrices in GLn(R), Un(R) denotes the group of upper triangular matrices inGLn(R) with diagonal
entries equal to 1R, and Bn(R) = Tn(R)Un(R) is the group of invertible upper triangular matrices.
The n × n identity and zero matrices will be denoted by In and On for any ring R. We will also
use the notation Eij to denote the matrix whose entries are all zeros except for a 1R as the entry
on the i-th row and j-th column. The ring, or the additive group, of n× n matrices over R will be
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denoted by Mn(R). The R-submodule consisting of matrices with trace equal to 0R will be denoted

by M
(0)
n (R). Of course, SLn(R) denotes the kernel of the determinant map det : GLn(R) → R×.

Suppose that R = Zp. If r ≥ 1, then the congruence subgroup In + prMn(Zp) of GLn(Zp)
will be denoted by Cn(p

r). Thus, Cn(p
r) is a normal subgroup of GLn(Zp) and the corresponding

quotient group is isomorphic to GLn(Z/p
rZ). The torsion subgroup of Tn(Zp) will be denoted by

Θn. It is the subgroup of diagonal matrices whose diagonal entries are (p − 1)-st roots of unity.
For 1 ≤ i ≤ n and τ ∈ Θn, we let θi(τ) denote the i-th diagonal entry of τ . Thus, θi : Θn → Z×

p

is a character of Θn of order p− 1. The reduction map GLn(Zp) → GLn(Fp) induces a surjective
homomorphism Tn(Zp) → Tn(Fp). The restriction to Θn defines an isomorphism Θn → Tn(Fp).
We identify those two groups and regard the characters θi as characters of Tn(Fp) or of Θn, with
values in Z×

p or in F×
p , depending on the context.

Let Z = Znp . We let {z1, ..., zn} be the standard Zp-module basis for Z. Thus, the entries of zi
are all 0’s, except for the i-th entry which is 1. Let GLn(Zp) act on Z by matrix multiplication,

regarding the elements of Z as column matrices. The Frattini quotient Z̃ = Z/pZ is isomorphic
to Fnp . The induced action of GLn(Zp) on Z̃ factors through the quotient group GLn(Fp) and is
again just matrix multiplication. Since Cn(p) is a normal pro-p-subgroup of GLn(Zp), a Sylow
pro-p subgroup of GLn(Zp) is determined by specifying a Sylow p-subgroup of GLn(Fp). We can

specify such a subgroup by choosing an ascending sequence of Fp-subspaces Z̃i for 0 ≤ i ≤ n, where

Z̃i has dimension i. The set of elements of GLn(Fp) which leave those subspaces fixed and which

act trivially on Z̃i
/
Z̃i-1 for i ≥ 1 is a Sylow p-subgroup. We simply choose Z̃i to be the subspace

generated by {̃z1, ..., z̃i} for i ≥ 1. The Sylow p-subgroup thus specified is Un(Fp), as defined
above. The corresponding Sylow pro-p-subgroup of GLn(Zp) will be denoted by Sn(Zp). We have
Sn(Zp) = Cn(p)Un(Zp) by definition.

5.1. Special elements of SLn(Zp). The Eij ’s satisfy the following simple multiplication law:
EabEcd = δbcEad, where δbc is 1 if b = c and is 0 otherwise. It follows that E2

ij = On if i 6= j.
Therefore, if i 6= j and if a is a positive integer, then

(6) (In + Eij)
a = In + aEij .

This shows that (In + Eij)
a → In as a → 0 p-adically. Hence 〈In + Eij〉 is a pro-p subgroup

of SLn(Zp) and is isomorphic to Zp. Furthermore, (6) holds for all a ∈ Zp. If j > i, then

〈In + Eij〉 ⊂ Un(Zp).

Suppose that D ∈ Tn(Zp). Thus, D =
∑n

i=1 diEii, where di ∈ Z×
p for 1 ≤ i ≤ n. Of course,

D−1 =
∑n

i=1 d−1
i Eii. The following relationship follows immediately from the multiplication law

and will be quite useful:

(7) D(In + Eij)D
−1 = In + did

−1
j Eij = (In + Eij)

did
−1

j
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for any i and j with i 6= j. In particular, this applies when D ∈ Θn in which case we have
did

−1
j = (θiθ

−1
j )(D). If we take Ω = Θn, then 〈In + Eij〉 is an Ω-group in the sense of section 2.

More precisely, In + Eij is a χ-element, where χ is the Z×
p -valued character θiθ

−1
j of Θn

5.2. The structure of Un(Fp). It is obvious that Un(Fp) is a p-group. Every element of
Un(Fp) has the form In +A, where A can be written in the form A =

∑
j>i aijEij . Here, the aij ’s

are in Fp. The following properties of Un(Fp) are well-known. The Frattini subgroup Φ
(
Un(Fp)

)

consists of elements I + A where aij = 0 when j − i = 1. Equivalently, Φ
(
Un(Fp)

)
consists of the

invertible matrices which leave the subspaces Z̃i fixed and which act trivially on the 2-dimensional
subquotients Z̃i

/
Z̃i-2 for 2 ≤ i ≤ n. It follows that

Un(Fp)
/
Φ

(
Un(Fp)

) ∼= Fn−1
p

as a group. With the above notation, the isomorphism is defined by sending I+A to
(
a12, ..., a(n−1)n

)
.

It is then clear that the set

(8) { In + Eij | j = i+ 1, where 1 ≤ i ≤ n− 1 }

is a minimal set of generators for Un(Fp). Its cardinality is n− 1.

Alternatively, one can verify that (8) generates Un(Fp) by the following induction argument. It
is clear for n = 2 and, if n ≥ 3, one can identify Un-1(Fp) with the subgroup of Un(Fp) consisting of
elements which fix z̃n. Assume that this subgroup Un-1(Fp) is generated by the first n− 2 elements
in (8). Now the kernel of the restriction map r defined by r(A) = A|eZn-1

is the subgroup generated
by {In + Ejn | 1 ≤ j ≤ n − 1}, which is an elementary abelian p-group. One sees that Un(Fp)
is the semidirect product of Un-1(Fp) and ker(r). Furthermore, when Un-1(Fp) acts on ker(r) by
conjugation, one checks easily that the orbit of In+E(n−1)n generates ker(r). Thus, it would follow
that (8) is a generating set for Un(Fp).

5.3. The action of Un(Fp) on Mn(Fp). We let Un(Fp) act on Mn(Fp) by conjugation. That
is, if u ∈ Un(Fp) and A ∈ Mn(Fp), then u acts by sending A to u(A) = uAu−1. Thus, Mn(Fp)
becomes an Fp-representation space for Un(Fp) of degree n2. Thus, Mn(Fp) can be regarded as a
module over the group ring Fp[Un(Fp)]. The following result is crucial for this paper.

Proposition 5.3.1. The Fp[Un(Fp)]-module M
(0)
n (Fp) is cyclic. It is generated by En1.

Proof. For brevity, let U = Un(Fp). Consider the Fp-bilinear pairing

〈 · , · 〉 : Mn(Fp) ×Mn(Fp) −→ Fp

defined as follows: 〈A,B〉 = Tr(AB) for all A,B ∈ Mn(Fp). It is clear that this pairing is non-
degenerate. We also have 〈u(A), u(B)〉 = 〈A,B〉 for all u ∈ U and A,B ∈ Mn(Fp). Consequently,
the Fp-representation space Mn(Fp) for U is self-dual.
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Suppose that W is an Fp-subspace of Mn(Fp). We let W⊥ denote the orthogonal complement
of W with respect to the pairing 〈·, ·〉. If W is invariant under the action of U , then so is W⊥.
Moreover, the above pairing induces a non-degenerate Fp-bilinear pairingW⊥×

(
Mn(Fp)/W

)
→ Fp

which is also equivariant for the action of U . In particular, let W = FpIn. Then W⊥ = M
(0)
n and

we obtain a nondegenerate, U -equivariant pairing

M (0)
n (Fp) ×

(
Mn(Fp)

/
FpIn

)
−→ Fp .

This means that the two Fp-representation spaces M
(0)
n (Fp) and Mn(Fp)

/
FpIn for U are dual to

each other.
The ring Fp[U ] is local. Its maximal ideal is the augmentation ideal m. That ideal is generated

by the elements u−In, where u varies over U . To prove that a nontrivial Fp[U ]-module M is cyclic,
one must show that M/mM is 1-dimensional over Fp. Note that M/mM is the maximal quotient
MU of M on which U acts trivially. If N = Hom

Fp
(M,Fp), then MU is dual to NU , the maximal

submodule of N on which U acts trivially. Therefore, the following lemma implies proposition
5.3.1.

Lemma 5.3.2. For any n ≥ 2 and any odd prime p, we have
(
Mn(Fp)

/
FpIn

)U
=

(
FpIn + FpE1n

)/
FpIn ,

an Fp-vector space of dimension 1.

Proof. The group U acts on the Fp-vector space Z̃. One sees easily that the only subspaces of Z̃

which are invariant under the action of U are the Z̃i’s, where 0 ≤ i ≤ n. Note that
(
Z̃
/
Z̃i

)U
=

Z̃i+1

/
Z̃i for 0 ≤ i ≤ n − 1. It will also be useful to note that the action of U on the unique

2-dimensional quotient Z̃
/
Z̃n−2 is nontrivial and that if n ≥ 3 and 2 ≤ i < n, then Z̃i

/
Z̃i−2 is not

isomorphic to Z̃
/
Z̃n−2 as an Fp[U ]-module. This is clear since the action of In + E(n−1)n is trivial

on the first module and nontrivial on the second.
We first show that Mn(Fp)

U = FpIn + FpE1n. The inclusion in one direction is obvious. For
the other direction, suppose that A ∈ Mn(Fp)

U . This means that uA = Au for all u ∈ U . Since

Z̃1 = Z̃U , one sees that AZ̃1 ⊆ Z̃1. A simple induction argument shows that AZ̃i ⊆ Z̃i for all i.
Thus, A is upper triangular. Now Az̃1 = ãz1 for some a ∈ Fp. Let B = A − aIn, which is also in

Mn(Fp)
U and is a singular matrix. It follows that BZ̃ is a U -invariant subspace of Z̃ and hence

that BZ̃ = Z̃i for some i ≤ n − 1. In fact, we must have i ≤ 1. For otherwise, multiplication by
B would define an isomorphism from Z̃

/
Z̃n−2 onto Z̃i

/
Z̃i−2, and this is not possible. Therefore,

Bz̃i = 0 for all i ≤ n − 1 and Bz̃n = b̃z1 for some b ∈ Fp. Consequently, B = bE1n. Hence, we
indeed have A = aIn + bE1n, where a, b ∈ Fp.

Suppose that p ∤ n. Then Mn(Fp) is a direct sum FpIn + M
(0)
n (Fp) as an Fp[U ]-module.

We therefore have an isomorphism Mn(Fp)
/
FpIn ∼= M

(0)
n (Fp). We also have M

(0)
n (Fp)

U = FpE1n.
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Thus, the stated conclusion is now clear if p ∤ n. Note also thatM
(0)
n (Fp) is a self-dual representation

space for U in this case.
If p | n, then we can use the following alternative argument which just requires that n ≥ 3.

Suppose that A ∈Mn(Fp) and that uAu−1 −A ∈ FpIn for all u ∈ U . For any pair (s, t) such that
1 ≤ s < t ≤ n, let u = In + Est. Then u−1 = In − Est and we have

uAu−1 − A = EstA − AEst − EstAEst ,

which is a matrix whose nonzero entries can only be in row s or in column t. Since n ≥ 3, this
matrix can be equal to cIn, where c ∈ Fp, only if c = 0. Thus, uAu−1 = A for all u’s of the above
form. Since U is generated by the set (8), it follows that A ∈ Mn(Fp)

U . The conclusion then
follows from the first step in the proof.

An element A ∈ M
(0)
n (Fp) will be a generator of M

(0)
n (Fp) as an Fp[U ]-module if and only if

A has a nontrivial image in M
(0)
n (Fp)U . This means that A is not orthogonal to E1n. One such

element is A = En1. We have 〈En1, E1n〉 = 1. �

5.4. Generators for a Sylow pro-p subgroup of SLn(Zp). We let C
(0)
n (pr) and S

(0)
n (Zp)

denote the intersections Cn(p
r) ∩ SLn(Zp) and Sn(Zp) ∩ SLn(Zp), respectively. The Sylow pro-p-

subgroup of SLn(Zp) is S
(0)
n (Zp), which can also be described as C

(0)
n (p)Un(Zp). Thus, S

(0)
n (Zp)

has a descending sequence of normal subgroups C
(0)
n (pr) for r ≥ 1, S

(0)
n (Zp)

/
C

(0)
n (p) is isomorphic

to Un(Fp), and C
(0)
n (pr)

/
C

(0)
n (pr+1) is isomorphic to the additive group of M

(0)
n (Fp) for all r ≥ 1.

The latter isomorphisms are defined by the maps defined by sending the coset represented by a
matrix of the form In + prA, where A ∈Mn(Zp), to the image Ã of A in Mn(Fp). This defines an
isomorphism

Cn(p
r)

/
Cn(p

r+1) −→ Mn(Fp)

which is equivariant for the natural actions of Un(Fp) on those two groups (defined by conjugation).
This isomorphism is easily seen to send the subgroup represented by matrices of determinant 1 onto

M
(0)
n (Fp). Proposition 5.3.1 then implies that C

(0)
n (pr)

/
C

(0)
n (pr+1) is generated as a group by the

Un(Fp)-orbit of the element which is represented by the matrix In + prEn1. Note that In + prEn1

is a power of In + pEn1 for all r ≥ 1.

The above remarks and a straightforward induction argument give the following result.

Proposition 5.4.1. The Sylow pro-p subgroup S
(0)
n (Zp) of SLn(Zp) can be generated topologically

by

(9) { In + Eij | j = i+ 1, where 1 ≤ i ≤ n− 1 }
⋃

{ In + pEn1 } .

This is a minimal generating set for S
(0)
n (Zp). It has cardinality n.
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Alternatively, one can verify this by using the fact that the Frattini subgroup of Cn(p) is Cn(p
2),

proposition 5.3.1, and the BBT. The set (9) is a minimal topological generating set for S
(0)
n (Zp).

To see this, note that the first set in the union is contained in Un(Zp). The images of those n− 1

elements in the Frattini quotient of S
(0)
n (Zp) are linearly independent over Fp. They don’t generate

S
(0)
n (Zp) and hence cannot be a basis for the Frattini quotient of that group. Therefore, at least n

elements are needed to generate S
(0)
n (Zp) topologically. We also remark that one obtains a minimal

topological generating set for the Sylow pro-p subgroup Sn(Zp) of GLn(Zp) by just including any
additional matrix A such that det(A) = 1 + p. For example, one can take A = In + pEnn.

5.5. The action of Θn. If we take Ω = Θn, then the elements in (9) are Ω-elements. This
follows from (7). The corresponding characters (in the listed order) are: θ1θ

−1
2 , ..., θn−1θ

−1
n , and

θnθ
−1
1 . These characters are all distinct. Their product is the trivial character of Θn. If we choose

a diagonal matrix A with determinant 1 + p, then such an A will also be an Ω-element. The
corresponding character is the trivial character of Θn.

More generally, suppose that Ω is a group satisfying assumption A stated in section 2. Suppose
that we fix a homomorphism ω : Ω → Θn. Such an ω is determined by specifying the elements

ωi = θi ◦ ω of Ω̂ for 1 ≤ i ≤ n. We can then regard S
(0)
n (Zp) as an Ω-group. The set (9) consists

of Ω-elements and the corresponding characters are ω1ω
−1
2 , ..., ωn−1ω

−1
n , and ωnω

−1
1 . Of course,

they are not necessarily distinct. Their product is the trivial character χ
0

of Ω. This observation

determines the Ω-type of S
(0)
n (Zp). It is simply the direct sum of the above listed characters. The

Ω-type of Sn(Zp) is then obtained by including an additional χ
0

in the direct sum.

We now prove a result which is useful for certain applications, although we will not need it in
this paper. Suppose that (u, v) is a pair of integers such that 1 ≤ u, v ≤ n. Let Ω and ω be as in
the previous paragraph. We will say that (u, v) is (Ω, ω)-distinguished if the following statement is
satisfied:

If 1 ≤ i, j ≤ n and ωiω
−1
j = ωuω

−1
v , then (i, j) = (u, v).

In particular, since n ≥ 2, this statement implies that u 6= v. The following proposition will be
useful in [Gr2], but only for the case where n = 2. In that case, the pair (1, 2) is (Ω, ω)-distinguished
if and only if the order of the character ω1ω

−1
2 is not 1 or 2.

Proposition 5.5.1. Suppose that p − 1 > n and that (u, v) is (Ω, ω)-distinguished. Suppose that
A ∈ GLn(Zp) and that the image of A in GLn(Fp) is of p-power order. Suppose that A is an
Ω-element and that the corresponding character is ωuω

−1
v . Then A = (In +Euv)

a for some a ∈ Zp.

Proof. First note that Ap
k ∈ Cn(p) for some k ≥ 0. Thus, 〈A〉 is a pro-p subgroup of GLn(Zp).

If r ≥ 1, then one can define a function log : Cn(p
r) −→ Mn(Zp) by the usual power series

expansion. We take r sufficiently large so that the image of the above map is contained in the

25



domain where the power series expansion for the exponential function converges and gives a left
inverse for log, which we denote by exp. Then log will be injective on Cn(p

r). Another property
is that if B ∈ Cn(p

r) and b ∈ Zp, then log(Bb) = b · log(B). This is a formal property of the
power series defining log. In addition, it is clear that if T ∈ GLn(Zp) and B ∈ Cn(p

r), then
log(TBT−1) = T log(B)T−1.

Suppose that A satisfies the assumptions in the proposition. Let χ = ωuω
−1
v , a nontrivial

character of Ω. Then Ap
m

is in Cn(p
r) for some m ≥ 1 and is a χ-element. Now we can also use

ω to make the additive group of Mn(Zp) into an Ω-group. An element α ∈ Ω acts as conjugation
by the matrix ω(α). It follows that log

(
Ap

m)
is a χ-element of Mn(Zp). The assumption that

(u, v) is (Ω, ω)-distinguished implies that log
(
Ap

m)
= kEuv for some k ∈ Zp. Since u 6= v, we have

E2
uv = On. As a consequence of these remarks, together with (6), we have

Ap
m

= exp(kEuv) = In + kEuv =
(
In + Euv

)k

for some k ∈ Zp. In particular, Ap
m

is a unipotent matrix. Thus, the eigenvalues of A are p-power
roots of unity. Since n < p− 1 = [Qp(µp) : Qp], it follows that A itself is unipotent.

If k = 0, then one sees easily that A = In and one can take a = 0. We now assume that
k 6= 0. Consider A and Euv as endomorphisms of the vector space V = Z ⊗Zp

Qp. Note that
Ap

m − In = (A − In)B, where B is invertible in Mn(Qp). Thus, A − In and Ap
m − In have the

same kernel and the same image as endomorphisms of V, which are also the same as the kernel and
the image of Euv, respectively. The common kernel has codimension 1 and is generated by the zi’s
with i 6= t. The common image is Qpzu and so (A− In)zv = azu for some a ∈ Qp. Clearly, a ∈ Zp.
It follows that A− In = aEuv and the stated conclusion then follows by using (6). �

5.6. Automorphisms of S
(0)
n (Zp). Let s1, ..., sn be the topological generators for S

(0)
n (Zp) listed

in (9). A continuous automorphism δ of S
(0)
n (Zp) is determined if one specifies δ(si) for 1 ≤ i ≤ n.

If we take Ω = Θn and ω to be the identity map, then every pair (u, v) with u 6= v is (Ω, ω)-
distinguished. Assuming that p− 1 > n, it then follows from proposition 5.5.1 that any continuous

Ω-automorphism δ of S
(0)
n (Zp) must have the property that δ(si) = sai

i where ai ∈ Zp. Thus, δ is
determined by the n-tuple (a1, ..., an). The following result shows that δ is just conjugation by a
certain matrix in Tn(Zp). The constraint on the product of the ai’s will be useful in the proof of
proposition 6.1.2. No assumption about p is needed.

Proposition 5.6.1. Suppose that a1, ..., an ∈ Zp. There exists a continuous automorphism δ of

S
(0)
n (Zp) such that δ(si) = sai

i for 1 ≤ i ≤ n if and only if
∏n
i=1 ai = 1. For any such automorphism

δ, there exists a matrix t ∈ Tn(Zp) such that δ(s) = tst−1 for all s ∈ S
(0)
n (Zp).

Proof. Suppose first that a1, ..., an ∈ Zp and that
∏n
i=1 ai = 1. We can then define t1, ..., tn ∈ Z×

p

such that
a1 = t1t

−1
2 , . . . , an−1 = tn−1t

−1
n , an = tnt

−1
1 .

26



Let t =
∑n

i=1 tiEii. We then have δ(si) = sai

i for 1 ≤ i ≤ n. This follows from (7). Obviously, δ is

a continuous automorphism of S
(0)
n (Zp).

For the converse, by composing a given δ with the automorphism of S
(0)
n (Zp) defined by con-

jugation by a suitable diagonal matrix t, we can reduces to the case where a1, ..., an−1 are all 1’s.
Letting a = an, it then suffices to show that a = 1. Thus, we can now assume that δ fixes s1, ..., sn−1

and that δ(sn) = san. Recall that {s1, ..., sn-1} is a topological generating set for Un(Zp). It follows

that δ fixes the elements of Un(Zp). Proposition 5.3.1 implies that C
(0)
n (p) has a topological gen-

erating set consisting of conjugates of sn = In + pEn1 by elements of Un(Zp). This follows from

the facts that the Frattini subgroup of C
(0)
n (p) is C

(0)
n (p2) and that there is a Un(Fp)-equivariant

isomorphism of C
(0)
n (p)

/
C

(0)
n (p2) to the additive group M

(0)
n (Fp). It is clear that if u ∈ Un(Zp)

and if c = usnu
−1, then δ(c) = ca. Therefore, C

(0)
n (p) has a topological generating set consisting of

elements cj , where 1 ≤ j ≤ n2 − 1, such that δ(cj) = caj for all j’s.

We will use theorems 4.3.1, 5.3.2, and corollary 9.23 from [DSMS]. They imply that C
(0)
n (p) is

a p-adic analytic group and that its elements can be uniquely expressed in the form

n2−1∏

j=1

c
xj

j

where the xj ’s are in Zp and can be taken as the coordinates defining the analytic structure on

C
(0)
n (p). The effect of applying δ to such an element is to multiply the corresponding coordinates

by a. Hence δ is an analytic automorphism of C
(0)
n (p). We then get an automorphism d of the

Lie algebra sln for C
(0)
n (p), a Lie algebra over Qp. For each j, the subgroup 〈cj〉 of C

(0)
n (p) is a 1-

dimensional analytic subgroup on which δ acts by the map c→ ca. Thus d acts on the corresponding
1-dimensional subalgebra of sln as multiplication by a. Since d is Qp-linear and those subalgebras
generate sln as a Qp-vector space, it follows that d acts as multiplication by a on sln and therefore
on the Lie subalgebra un corresponding to Un(Zp). Since δ acts trivially on all of Un(Zp), d will
act trivially on un. It follows that a = 1. �

5.7. The Ω-type of the pro-p group Cn(p). We assume that Ω has order prime to p and
that we are given a homomorphism ω : Ω → GLn(Fp). Then we know that ω can be lifted to a
homomorphism ω : Ω → GLn(Zp). If α ∈ Ω, then we can let α act on Cn(p) as conjugation by the
matrix ω(α). Thus, Cn(p) becomes an Ω-group. The Frattini quotient is

C̃n(p) = Cn(p)
/
Cn(p

2) ∼= Mn(Fp) .

Thus, the minimal cardinality of a topological generating set for Cn(p) is n2. The Ω-type of Cn(p) is
determined by ω and is defined by letting α ∈ Ω act on Mn(Fp) as conjugation by the matrix ω(α).
This representation of Ω is isomorphic to the tensor product (over Fp) of ω and the contragredient of
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ω. If we let ω̌ denote the contragredient of ω, then the Ω-type of Cn(p) is obtained from ω⊗Zp
ω̌ by

reduction modulo p. The resulting representation of Ω over Fp is the so-called adjoint represention
(corresponding to ω) and will be denoted by ad(ω).

6 The construction.

We assume that K/Q is a finite abelian extension, that p is an odd prime, and that Ω = Gal(K/Q)
has exponent dividing p− 1. As in section 3, we let M = MK denote the maximal pro-p extension
of K which is unramified outside of the set of primes above p. Let Γ = ΓK = Gal(M/K). The
action of GQ on µp∞ defines a continuous homomorphism χcyc from GQ to GL1(Zp) = Z×

p . It is
surjective. Now 1 + pZp is a direct factor in Z×

p . Composing χcyc with the projection map defines
a surjective homomorphism κ : GQ → 1+ pZp. One sees easily that κ factors through Gal(M/Q).

6.1. The basic proposition. Our construction of continuous representations into GLn(Zp) with
open image is based on the following result.

Proposition 6.1.1. Assume that K is p-rational and that Ω = Gal(K/Q) has exponent dividing
p− 1. Assume also that one can find distinct characters χ1, ..., χn in Ω̂odd ∪ {χ

0
} such that their

product is χ
0
. Then there exists a continuous homomorphism

ρ
0

: Gal(M/Q) −→ GLn(Zp)

such that ρ
0
(Γ) = S

(0)
n (Zp). Furthermore, ρ = ρ

0
⊗ κ is a continuous homomorphism from

Gal(M/Q) to GLn(Zp) with open image.

Proof. We may as well assume that n ≥ 2. The result is trivial for n = 1. Thus, Ω̂odd is nonempty
and K is totally complex. If ω : Ω → Θn is a homomorphism, then we let ωi = θi ◦ω for 1 ≤ i ≤ n.
The ωi’s are in Ω̂. We specify ω by choosing the ωi’s so that

ω1ω
−1
2 = χ1 , . . . , ωn−1ω

−1
n = χn−1 , and ωnω

−1
1 = χn .

If we choose ω1 ∈ Ω̂ arbitrarily, and choose χ1, ...., χn as stated in the proposition, then the first
n− 1 of these equations will determine a certain ω. The assumption about the product of the χi’s
makes the n-th equation satisfied too.

Note that Θn normalizes S
(0)
n (Zp). If α ∈ Ω, then we can let α act on S

(0)
n (Zp) as conjugation

by ω(α). Hence, S
(0)
n (Zp) becomes an Ω-group. Furthermore, there is a homomorphism from the

corresponding semidirect product S
(0)
n (Zp) ⋊ Ω to GLn(Zp). It is defined by making it the identity

map on S
(0)
n (Zp) and the map ω on Ω.
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As pointed out in section 5.5, the generators of S
(0)
n (Zp) listed in proposition 5.4.1 are Ω-

elements and the corresponding characters are χ1, ..., χn, respectively. We will denote them by

s1, ..., sn in order. Thus, it is clear that the Ω-type of S
(0)
n (Zp) is bounded above by the Ω-type

of the free pro-p group Γ = ΓK which is described in corollary 3.2.2. Recall from section 3.2 that
Gal(M/Q) is isomorphic to a semidirect product Γ ⋊ Ω. This is how one makes Γ into an Ω group.
By proposition 2.1.1, we can choose a topological generating set γ1, ..., γr for Γ consisting of Ω-
elements, where 1

2 [K : Q] + 1. We have n ≤ r. Choose the indexing so that γi is a χi-element for
1 ≤ i ≤ n.

We can define a surjective homomorphism σ
0

: Γ → S
(0)
n (Zp) by mapping γi to si for 1 ≤ i ≤ n

and mapping the γi’s for i > n (if there are any) to In. It is clear that σ
0

is an Ω-homomorphism.

Therefore, we can extend σ0 to a surjective homomorphism from Γ ⋊ Ω to S
(0)
n (Zp) ⋊ Ω. This then

gives us a homomorphism from ρ
0

from Gal(M/Q) to GLn(Zp) whose image contains S
(0)
n (Zp).

smallskip
Consider the representation ρ = ρ

0
⊗ κ of Gal(M/Q). Denote Mker(ρ

0
) by Q(ρ

0
). Thus,

Gal(Q(ρ
0
)
/
Q) is isomorphic to the image of ρ

0
, a p-adic Lie group whose Lie algebra is sln. It

follows that the maximal abelian quotient of Gal(Q(ρ
0
)
/
Q) is finite. The field Mker(κ) is just

the cyclotomic Zp-extension Q∞ of Q. Since Q∞ is an abelian extension of Q, it follows that
Q(ρ

0
) ∩ Q∞ is a finite extension of Q. Let F = Q(ρ

0
)Q∞. Both ρ

0
and κ can be regarded as

representations of Gal(F/Q). The restrictions of ρ and ρ
0

to Gal(F/Q∞) coincide and their image
contains an open subgroup of SLn(Zp). On the other hand, the restriction of ρ to Gal

(
F/Q(ρ

0
)
)

coincides with the restriction of κ, viewed as having its values in the group Z×
p In of scalar matrices

in GLn(Zp). The image will be an open subgroup of Z×
p In. Thus, the image of ρ contains open

subgroups of both SLn(Zp) and Z×
p In, and hence must indeed be an open subgroup of GLn(Zp).

�

Proposition 6.1.2. Under the assumptions of proposition 6.1.1, there exists an uncountable col-
lection of homomorphisms ρ

0
with the stated properties and such that the corresponding kernels are

distinct.

Proof. Assume that K, p, and n satisfy the assumptions in proposition 6.1.1. Fix a choice of

χ1, ..., χn and define ω : Ω → Θn as in the proof. Thus, S
(0)
n (Zp) can be regarded as an Ω-group.

One obtains a ρ
0

for each choice of a surjective Ω-homomorphism σ
0

from Γ to S
(0)
n (Zp). Fix a

topological generating set γ1, ..., γr for Γ as in the proof of proposition 6.1.1. We continue to let

s1, ..., sn be the topological generators for S
(0)
n (Zp) given in (9). We will assume that σ

0
is defined

by mapping γi to si for 1 ≤ i ≤ n and by mapping the remaining generators γi for i > n (if r

exceeds n) to the identity element In of S
(0)
n (Zp).

If ψ is any Ω-automorphism of ΓK , then σ ◦ψ will be another surjective Ω-homomorphism from

ΓK to S
(0)
n (Zp). We have

ker
(
σ ◦ ψ

)
= ψ−1

(
ker(σ)

)
.
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For simplicity, we will restrict attention to automorphisms ψ of the following special form:

(10) ψ(γi) = γai

i for 1 ≤ i ≤ n, ψ(γi) = γi for i > n ,

where the ai’s are in Z×
p . Any such automorphism is clearly an Ω-automorphism. We refer to

a1, ..., an as the parameters for ψ. Since ΓK is free, any choice of a1, ..., an will determine such an
automorphism ψ of ΓK . Note that σ ◦ ψ also maps the γi’s for i > n to In.

Suppose that ψ′ is another automorphism of Γ of the form (10) and that the corresponding
parameters are a′1, ..., a

′
n. We will prove that

ker(σ ◦ ψ) = ker(σ ◦ ψ′) ⇐⇒
n∏

i=1

ai =

n∏

i=1

a′i

and hence that there are indeed uncountably many distinct kernels for the homomorphisms σ ◦ ψ.
In effect, we are just replacing one set of topological generators for ΓK by other choices, each
consisting of Ω-elements. We thereby get many ρ

0
’s and uncountably many distinct kernels.

One easily reduces to the case where ψ′ is the identity automorphism of ΓK , i.e., where a′i = 1
for 1 ≤ i ≤ n. Thus, we must show that σ◦ψ and σ have the same kernel if and only if

∏n
i=1 ai = 1.

This assertion follows from proposition 5.6.1. To see this, first assume that σ ◦ ψ and σ have the
same kernel. Thus, ker(σ) is fixed by ψ. It follows that ψ will induce an automorphism on the

quotient group ΓK
/
ker(σ), and hence on the group S

(0)
n (Zp). Calling that automorphism δ, we

have

(11) σ ◦ ψ = δ ◦ σ .

Conversely, the existence of such a δ implies that σ ◦ψ and σ have the same kernel. Note that (11)
implies that δ(si) = sai

i for 1 ≤ i ≤ n, where a1, ...., an are the parameters for ψ. According to
proposition 5.6.1, such a δ exists if and only if

∏n
i=1 ai = 1. �

Remark 6.1.3. Following the notation in the proof of proposition 6.1.2, suppose that σ and σ′ are

two surjective homomorphisms from ΓK to S
(0)
n (Zp) and that ker(σ) 6= ker(σ′). Then ker(σ)ker(σ′)

is a normal subgroup of ΓK and the corresponding quotient group is isomorphic to a proper quotient

group of S
(0)
n (Zp). The Lie algebra of S

(0)
n (Zp) is sln, a simple Lie algebra over Qp. One shows

easily that S
(0)
n (Zp) has no nontrivial finite, normal subgroups. Thus, a closed normal subgroup of

S
(0)
n (Zp) must have finite index. In particular, ker(σ)ker(σ′) has finite index in ΓK . Therefore, the

intersection of the fields cut out by the representations σ and σ′ must be a finite extension of K. If
one constructs representations ρ and ρ′ of GQ from σ and σ′ as in proposition 6.1.1, so that their
images are open, then the intersection of the fields cut out by ρ and ρ′ will be a finite extension of
Q∞. ♦

Remark 6.1.4. It is natural to ask whether the uncountable family of representations ρ constructed
in the proof of proposition 6.1.1 includes some representations having nice arithmetic properties
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at p. Could one make the construction so that the restriction of ρ to a decomposition subgroup
is crystalline or Hodge-Tate, for example? We don’t see how to deal with such questions. The
difficulties become clear by considering two extreme cases.

Suppose first that there is just one prime p of K lying over p, where K satisfies the assumptions
in proposition 6.1.1. Suppose also that p doesn’t divide the class number of K. Then one sees
easily that p is totally ramified in M/K and therefore that ΓK can be identified with Gal(Mp/Kp),
where Mp is a certain pro-p extension of Kp. However, we don’t see any way to identify that
extension. There may indeed be n-dimensional representations of the local Galois group GKp with
open image which have some nice properties (a question which we haven’t examined), but how can
one construct such representations so that they factor through the quotient group Gal(Mp/Kp).

Suppose now that p splits completely in K/Q. Let p be one of the primes of K lying over
p. Thus, Kp = Qp. If K is a complex, abelian extension of Q, then one can show that the
decomposition subgroup of ΓabK for p is isomorphic to Z2

p. This is a nontrivial fact. It follows
as a consequence of proposition 3 in [Gr73]. Thus, the decomposition subgroup Dp of ΓK for a
prime of M lying above p requires at least two topological generators. One can identify Dp with
Gal(Mp/Qp), where Mp is a certain pro-p extension of Qp. Furthermore, if one assumes that K is
p-rational, then Dp must be a free pro-p group since it is a subgroup of the free pro-p group ΓK .

Now one can show that the Galois group ΓQp
for the maximal pro-p extension of Qp is a free

pro-p group on 2 generators. Since there is a surjective homomorphism from ΓQp
to Dp, the facts

mentioned above imply that such a homomorphism is injective and hence that Mp is precisely the
maximal pro-p extension of Qp. The difficulty is that we cannot give a description of the subgroup
Dp in terms of the type of generating set for ΓK described in proposition 3.2.1. Thus, it is not clear
how to study the restrictions ρ|Dp for the representations ρ constructed in propositions 6.1.1. ♦

Remark 6.1.5. The image of the representation ρ in proposition 6.1.1 contains Sn(Zp) if n is even
and p ∤ n. To see this, note that if n is even, then the characters χ1, ..., χn will all be odd. Referring

to the proof of the proposition, one sees that the Ω-type of σ0(Γ) = S
(0)
n (Zp) doesn’t contain χ

0
.

Let K(σ0) = Mker(σ0) and K∞ = KQ∞, which is the fixed field for κ|Γ. We then have

K(σ0) ∩ K∞ = K .

Therefore, the image of Gal
(
M/K∞

)
under σ0, and hence under ρ, will still be S

(0)
n (Zp). Thus, the

image of ρ contains S
(0)
n (Zp). It then suffices to show that the image of det(ρ) contains 1 + pZp.

However, κ(Γ) = κ
(
ker(σ0)

)
is 1 + pZp. The restriction of ρ to ker(σ0) is just a direct sum of n

copies of κ. The image under the determinant map is 1 + pZp since p ∤ n. ♦

6.2. Finding suitable character sets. Now we discuss the existence of a set of characters
χ1, ..., χn with the properties stated in the above proposition. Suppose first that K is a cyclic
extension of Q and that K is complex. Then [K : Q] = 2g for some g. We have |Ω̂odd| = g. Assume
that g ≥ 2. Consider pairs of odd characters {χ, χ−1}, where χ−1 6= χ. The number of such pairs
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is [g/2]. Thus, if n is even and n ≤ 2[g/2], then we can take n/2 such pairs to obtain n distinct,
odd characters whose product is χ

0
. If n is odd, then we can choose one of the characters to be χ

0

and choose the other characters in pairs as above. We then obtain a suitable set of n characters if
n− 1 ≤ 2[g/2]. In both cases, the inequality we need for n can be stated as [n/2] ≤ g/2. Thus, we
obtain the following result.

Proposition 6.2.1. Suppose that n ≥ 2. Suppose that K is a complex, cyclic extension of Q, that
[K : Q] divides p− 1, that K is p-rational, and that [K : Q] ≥ 4[n/2]. Then there exist continuous
homomorphisms ρ

0
and ρ having the properties stated in proposition 6.1.1.

Proposition 1.1 in the introduction is the special case K = Q(µp). The assumption there is that
p is a regular prime. Hence K is p-rational by proposition 4.3.1. However, even if p is irregular, the
construction sometimes works. As an example, suppose that p = 37. Then the torsion subgroup
of (ΓabK )eχ is nontrivial for exactly one χ, namely χ = ε32 where ε denotes the character giving the
action of Gal(K/Q) on µp. It follows from the discussion in remark 3.2.4 that the unique subfield
K ′ of K such that [K ′ : Q] = 12 is p-rational. Thus, one can apply proposition 6.1.3 for p = 37 to
the field K ′ provided that 2 ≤ n ≤ 7.

Another special case is K = Q(µ5). Since [K : Q] = 4, we assume that p ≡ 1 (mod 4). Except
for the seemingly rare primes p for which K fails to be p-rational, one can then apply proposition
6.1.3, taking n to be 2 or 3. In particular, one obtains representations ρ : GQ → GL3(Zp) for an
extremely large set of primes, including all primes p < 10, 000 such that p ≡ 13 or 17 (mod 20)
and all primes p < 3 × 109 such that p ≡ 1 or 9 (mod 20).

Now consider the case where K is a compositum of quadratic fields. Thus, Ω is an elementary
abelian 2-group. The exponent of Ω certainly divides p− 1. We prove the following result.

Proposition 6.2.2. Suppose that K is complex and that Ω = Gal(K/Q) is isomorphic to (Z/2Z)t,
where t ≥ 4. Suppose also that 4 ≤ n ≤ 2t-1−3. Then one can find distinct characters χ1, ..., χn in
Ω̂odd ∪ {χ

0
} whose product is χ

0
. Consequently, if we also assume that K is p-rational, then there

exists continuous homomorphisms ρ
0

and ρ having the properties stated in proposition 6.1.1.

Proof. Let Ω̂ev denote the subgroup of Ω̂ consisting of even characters, which has order 2t-1. Let
m = 2[n/2]. Then m is even and 4 ≤ m ≤ n. We will show that there exists distinct elements
ϕ1, ..., ϕm ∈ Ω̂ev whose product is χ

0
. If ψ is any element of Ω̂odd, then one can take χi = ψϕi for

1 ≤ i ≤ m. These χi’s are distinct elements of Ω̂odd and their product is χ
0

since ψm = χ
0
. If n is

even, then n = m, and the stated result follows. If n is odd, then n = m+ 1. We then take χn to
be χ

0
.

To show the existence of ϕ1, ..., ϕm, assume first that 4|m. Let Ξ be a subgroup of Ω̂ev of order
4. Any coset of Ξ consists of four characters whose product is χ

0
. Thus, we can just choose the

ϕi’s so that {ϕ1, ..., ϕm} is a union of m/4 distinct cosets of Ξ in Ω̂ev.
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On the other hand, if 4 ∤ m, then the inequalities show that t ≥ 5. Thus, [Ω̂ev : Ξ] ≥ 4. The
bound on n corresponds to the inequality 6 ≤ m ≤ 2t-1 − 6. First consider m = 6. Suppose that
the nontrivial elements of Ξ are ξ1, ξ2, and ξ3. Suppose that ϕ and ϕ′ belong to distinct, nontrivial
cosets of Ξ in Ω̂ev. Then

A = { ξ1, ξ2, ϕξ1, ϕξ3, ϕ′ξ2, ϕ
′ξ3 }

has cardinality m and the product of the characters in A is indeed χ
0
. Those characters belong to

a union of three of the cosets of Ξ. If m > 6, then one can form a set A∪B, where B is a union of
(m− 6)/4 of the remaining cosets of Ξ in Ω̂ev. The product of the elements in A∪B will again be
χ

0
. This will settle all the m’s in the indicated range. �

Remark 6.2.3. If K is a compositum of quadratic fields and t ≥ 3, then one can simply take
{χ1, ..., χn} to be either Ω̂odd or Ω̂odd ∪ {χ

0
}. The requirements in proposition 6.1.1 are then

satisfied for n = 2t-1 or n = 2t-1 + 1, respectively. Thus, if K is p-rational, then one obtains
homomorphisms ρ

0
and ρ with the properties in proposition 6.1.1 for those values of n too. For the

special case t = 5, we gave examples of suitable compositums of quadratic fields when p = 3 and
p = 5 in section 4. Thus, using those specific K’s, we obtain representations ρ : GQ → GLn(Zp)
with an open image for both of those primes when 4 ≤ n ≤ 13 and for n = 16 and n = 17 too.
Using the example for p = 3 with t = 6, one obtains such ρ’s for 4 ≤ n ≤ 29 and for n = 32 and
33. If one grants conjecture 4.2.1, then proposition 6.1.1 will give such representations for all pairs
(n, p), where p ≥ 3 and n ≥ 4.

For n = 2, the requirements that χ1χ2 = χ
0

and χ1 6= χ2 imply that χ1 and χ2 have order
at least 3. Similarly, if n = 3, the requirements on χ1, χ2, and χ3 imply that one of those three
characters is χ

0
and the other two have order at least 3. Thus, compositums of quadratic fields will

not work in these cases. However, if p > 3, then one can apply proposition 6.1.1 for n = 2 or n = 3
provided that one can find a cyclic extension K of Q with the following two properties: (i) K is
complex and p-rational, (ii) the degree [K : Q] is at least 4 and divides p− 1. It is reasonable to
conjecture that such a field K should exist for any prime p. The remaining cases are (n, p) = (2, 3)
and (n, p) = (3, 3), both of which resist the approach of this paper. Of course, elliptic curves give
many examples of 2-dimensional representations over Z3 with open image. We haven’t found a way
to construct 3-dimensional representations over Z3 with open image. ♦

7 Examples with irreducible residual representation.

Suppose that K is a finite Galois extension of Q. We will assume in this section that K is totally
complex and that Ω = Gal(K/Q) has order prime to p. We continue to assume that p is an
odd prime. As before, let M denote the maximal pro-p extension of K which is unramified at all
ℓ 6∈ Σp. Let Γ = Gal(M/K). We will also assume that K is p-rational in the main result and the
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illustrations in this section. Consequently, Γ = Gal(M/K) will be a free pro-p group. We identify
Ω with a subgroup of Gal(M/Q). Then Γ becomes an Ω-group and Gal(M/Q) is isomorphic to
the corresponding semidirect product Γ ⋊ Ω.

Suppose that F is a finite extension of Qp, m is the maximal ideal in the ring of integers O of
F , and f = O/m is the corresponding residue field. Let RF (Ω) and Rf(Ω) denote the Grothendieck
groups for representations of Ω over F and f, respectively. Then the natural map RF (Ω) → Rf(Ω)
is an isomorphism. (See the references to [Ser] cited in remark 2.2.1.) The map is defined as follows.
If ω is a representation of Ω over F , then one can realize ω over O. Let ω denote the reduction of
ω modulo m. The image of the isomorphism class of ω is defined to be the isomorphism class of
ω as an f-representation space for Ω, which is well-defined because |Ω| is not divisible by p. If ω1

and ω2 are arbitrary F-representations of Ω, then ω1 is a direct summand in ω2 if and only if ω1 is
a direct summand in ω2. All finite-dimensional representations of Ω over F and f are completely
reducible. In particular, note that if ω is an absolutely irreducible representation of Ω over Qp,
then ω is an absolutely irreducible representation of Ω over Fp.

As before, let Ω∞ be the decomposition subgroup for an infinite prime of K, a subgroup of Ω
of order 2, and let ε1 be the nontrivial character of Ω∞, regarded as a character with values in Z×

p .

Then IndΩ
Ω∞

(ε1) is a representation of Ω over Qp of degree 1
2 [K : Q]. The Frobenius Reciprocity

Law implies that if ω is an absolutely irreducible representation of Ω, then the multiplicity of ω
in IndΩ

Ω∞
(ε1) (extending scalars if necessary) coincides with the multiplicity of ε1 in ω|Ω∞ . Thus,

that multiplicity is positive unless Ω∞ ⊆ ker(ω), i.e., unless ω factors through Gal(K ′/Q), where
K ′ is a totally real Galois extension of Q contained in K.

7.1. The basic proposition. The result below is a straightforward consequence of proposition
2.3.1. We will let ω

0
denote the trivial representation of Ω in this section. Note that for any

representation ω of Ω over a field F , the representation ω⊗
F
ω̌ contains ω

0
with positive multiplicity.

That multiplicity is 1 if and only if ω is absolutely irreducible. We will write the above tensor
product more simply as ω ⊗ ω̌.

Proposition 7.1.1. In addition to the above assumptions, suppose that K is p-rational. Let
ω be a representation of Ω over Qp of degree n. Assume that ω ⊗ ω̌ is a direct summand in
IndΩ

Ω∞
(ε1) ⊕ ω

0
. Then there exists a representation ρ : Gal(M/Q) → GLn(Zp) with open image

such that ρ is isomorphic to ω.

The assumption about the tensor product implies that ω is absolutely irreducible. This is so
because Frobenius reciprocity implies that ω

0
is not a constituent in IndΩ

Ω∞
(ε1) and hence occurs

with multiplicity 1 in ω ⊗ ω̌. Therefore, since Ω has order prime to p, ω will also be absolutely
irreducible.

Proof. We can realize ω as a homomorphism from Ω to GLn(Zp). As described in section 5.6,
the pro-p group Cn(p) then becomes an Ω-group. It is clear that there is a homomorphism from
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the corresponding semidirect product Cn(p) ⋊ Ω to GLn(Zp) whose image contains Cn(p) and is
therefore an open subgroup of GLn(Zp). The assumptions together with proposition 3.2.1, remark

3.2.3, and the discussion in section 5.6 imply that C̃n(p) is a direct summand in Γ̃. Proposition
2.3.1 then implies that there is a surjective Ω-homomorphism from Γ to Cn(p). Consequently, there
is a surjective homomorphism from Gal(M/Q) (which is isomorphic to Γ ⋊ Ω) to Cn(p) ⋊ Ω, and
hence indeed to an open subgroup of GLn(Zp). �

7.2. The deformation theory point of view. Let G = Gal(M/Q). Suppose that ω satisfies the
hypotheses in proposition 7.1.1. Then the Fp-representation ω of Ω is absolutely irreducible. There
exists a universal deformation ring R for the pair G and ω. Thus, R is a complete Noetherian local
ring with residue field Fp and there exists a continuous representation ρuniv : G→ GLn(R) whose
residual representation is isomorphic to ω. A continuous ring homomorphism ϕ : R → Zp gives
rise to a continuous representation ρϕ : G → GLn(Zp) with residual representation isomorphic
to ω. Similarly, if we have such a homomorphism ψ : R → Z

/
p2Z, we obtain a representation

ρψ : G→ GLn(Z
/
p2Z).

Suppose that the hypothesis concerning ω⊗ ω̌ in proposition 7.1.1 is satisfied. As in the proof of

the proposition, it follows that there is a surjective Ω-homomorphism from Γ̃ to C̃n(p). Now C̃n(p)
can be identified with a subgroup of GLn(Z

/
p2Z), namely the kernel of the map GLn(Z/p

2Z) →
GLn(Z/pZ). The homomorphism ω induces a homomorphism of Ω into GL2(Z

/
p2Z). Conse-

quently, there exists a homomorphism from C̃n(p) ⋊ Ω to GLn(Z
/
p2Z) whose image contains

C̃n(p).
Recall that L is the extension of K contained in M such that Gal(L/K) ∼= Γ̃. Now Gal(L/Q) ∼=

Γ̃⋊Ω and hence there is a surjective homomorphism from Gal(L/Q) to C̃n(p)⋊Ω. Thus, we obtain a

homomorphism σ from Gal(L/Q) to GLn(Z
/
p2Z) whose image contains C̃n(p). The corresponding

residual representation is isomorphic to ω. We can regard σ as a representation of G over the ring
Z

/
p2Z. Therefore, there must be a continuous, surjective homomorphism ψ : R→ Z

/
p2Z such that

ρψ = σ. Furthermore, if there exists a continuous Zp-algebra homomorphism ϕ : R→ Zp lifting ψ,
then we obtain a representation ρϕ : G→ GLn(Zp) whose residual representation is isomorphic to
ω and whose reduction modulo p2 is σ. It follows from BBT that the image of ρϕ contains Cn(p)
and hence is an open subgroup of GLn(Zp).

The above remarks show that if one makes the assumptions that ω ⊗ ω̌ is a direct summand
in IndΩ

Ω∞
(ε1) ⊕ ω

0
and that every continuous Zp-algebra homomorphism ψ : R → Z

/
p2Z can be

lifted to a continuous Zp-algebra homomorphism ϕ : R → Zp, then one will obtain continuous
representations ρ : G→ GLn(Zp) with open image and residual representation isomorphic to ω. It
is not clear what assumptions about R guarantee the existence of such liftings. If it happens that
R is isomorphic to a formal power series ring Zp[[X1, ..., Xt]] for some t ≥ 0, then it is clear that
the above lifting property holds. One sufficient condition for R to have that structure is given in
proposition 2 in [Maz]. It suffices to have H2

(
G, ad(ω)

)
= 0. This is the so-called unobstructed
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case in deformation theory.
Recall that K is p-rational if and only if H2(Γ,Z/pZ) = 0. By Shapiro’s lemma, another

equivalent statement is that H2(G,Fp[Ω]) = 0, where Fp[Ω] is the regular representation of Ω,
regarded as a G-module. This vanishing statement is in turn equivalent to the vanishing ofH2(G,α)
for all α ∈ IrrFp

(Ω). In particular, if K is p-rational, then it follows that H2
(
G, ad(ω)

)
= 0 since

ad(ω) is isomorphic to a direct sum of irreducible Fp-representation spaces. Sometimes, it turns out
that the vanishing of H2

(
G, ad(ω)

)
and of H2(G,Fp[Ω]) are equivalent. As an example, suppose

that Ω is the simple group of order 168, whose representation theory will be discussed below, and
that ω is either the irreducible representation of degree 7 or of degree 8. Then every irreducible
representation of Ω is a constituent in ω ⊗ ω̌, as we point out below. It then follows that every α
in IrrFp

(Ω) occurs as a constituent in ad(ω). The vanishing of H2
(
G, ad(ω)

)
and of H2(G,Fp[Ω])

are indeed equivalent. Consequently, the field K is p-rational if and only if H2
(
G, ad(ω)

)
= 0.

As a simpler example, suppose that Ω = Gal(K/Q) is isomorphic to S3 and that ω is the
2-dimensional irreducible representation of Ω. Assume that p ≥ 5. Then all three elements of
IrrFp

(Ω) are constituents in ad(ω). Hence K is p-rational if and only if H2
(
G, ad(ω)

)
vanishes.

In this special case, that vanishing means that R is isomorphic to a formal power series ring over
Zp in either one or three variables, depending on whether K is totally real or totally complex. In
[Maz], Mazur considers certain examples of totally complex S3-extensions K of Q which he calls
“special”. These extensions correspond to primes p of the form p = 27 + 4a3. For each such prime
p, Let K be the splitting field over Q for the polynomial x3 + ax + 1. There are eighteen such
primes p < 106 and the field K turns out to be p-rational for each of them.

7.3. An illustration. We discuss the example mentioned in the introduction. Thus, we will
suppose that Ω = Gal(K/Q) is isomorphic to the symmetric group Sn+1 for some n. It is known that
such totally complex Galois extensions K/Q exist for all n ≥ 0. We fix an isomorphism. Suppose
that n ≥ 2. Then Sn+1 has an absolutely irreducible representation of degree n, a direct summand
in the obvious permutation representation of degree n + 1. We will let ωn be the corresponding
representation of Ω. All the representations of the symmetric groups are self-dual. In particular,
ω̌n

∼= ωn.

Proposition 7.3.1. If n = 2 or n ≥ 4, then the representation ωn ⊗ ωn is a direct summand in
IndΩ

Ω∞
(ε1)⊕ω

0
. If n = 3, this statement is true if the unique quadratic subfield of K is imaginary.

The proof depends on the lemma below. We will use various results about the representation
theory of Sn+1 which can be found in [JaKe]. We think of Sn+1 as the group of permutations of a set
Xn+1 = {x1, ..., xn+1}. First of all, the absolutely irreducible representations of symmetric groups
are always realizable over Q. This is theorem 2.1.3 in [JaKe]. In particular, they are all self-dual.
That latter fact is clear because if g ∈ Sn+1, then g and g−1 have the same cycle decomposition and
hence are conjugate. This implies that the characters of all representations of Sn+1 are real-valued.
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In fact, g is conjugate to any generator of the cyclic group 〈g〉 generated by g and this implies
that all these characters have values in Q. The fact that the corresponding representations can be
defined over Q is somewhat harder to show.

The isomorphism classes of irreducible representations of Sn+1 correspond to partitions of n+1
as sums of positive integers. For any such partition n + 1 = a1 + ...+ at, where t ≥ 0, we assume
that the terms are arranged so that ai ≥ ai+1 for 1 ≤ i < t. The corresponding irreducible
representation will be denoted by [a1, ..., at]. This notation (which is taken from [JaKe]) indicates

in part that this irreducible representation is a constituent in Ind
Sn+1

H

(
1H

)
, where H is a subgroup

of Sn+1 isomorphic to the direct product Sa1
× ...×Sat and is defined by expressing the set Xn+1 as

a disjoint union of t subsets with cardinalities a1, ..., at. Here 1H is the trivial representation of H.
To uniquely determine [a1, ..., at], one requires also that the twist [a1, ..., at] ⊗ sgn is a constituent

in Ind
Sn+1

H′

(
1H′

)
, where sgn is the nontrivial character of Sn+1/An+1 and H ′ is a subgroup of Sn+1

defined just as above, but corresponding to another partition n+ 1 = a′1 + ...+ a′t′ of n+ 1 which
is specified in the following way. The original partition defines a matrix A with t rows and a1

columns, where the i-th row has the first ai entries equal to 1 and the remaining entries (if any)
equal to 0. Thus, the total number of 1’s in the matrix A is n+ 1. The second partition is defined
to be the one whose corresponding matrix A′ is the transpose of A. Thus, a′1 = t and t′ = a1.

The trivial representation of Sn+1 corresponds to the partition with t = 1, and is denoted by

[n + 1]. The natural permutation representation of Sn+1 is Ind
Sn+1

Sn

(
1Sn

), where Sn is identified
with the subgroup of Sn+1 fixing xn+1. That induced representation has an irreducible constituent
of degree n which corresponds to the partition n + 1 = a1 + a2, with a1 = n, a2 = 1, and is the
irreducible representation [n, 1]. Note that 1Sn

is [n]. We prove the following lemma:

Lemma 7.3.2. If n ≥ 3, then we have an isomorphism

[n, 1] ⊗ [n, 1] ∼= [n+ 1] ⊕ [n, 1] ⊕ [n− 1, 2] ⊕ [n− 1, 1, 1]

as representations of Sn+1. In particular, each irreducible constituent in [n, 1]⊗[n, 1] has multiplicity
1. The only irreducible constituent of degree 1 is [n+ 1].

Although we won’t need it, the degrees of the four constituents in [n, 1] ⊗ [n, 1] turn out to be
1, n, 1

2(n+1)(n− 2), and 1
2n(n− 1), respectively. One sees this by using theorem 2.3.21 in [JaKe].

Proof of the lemma. Identifying Sn with a subgroup of Sn+1 as above, we have

(
[n, 1] ⊗ [n, 1]

)
⊕ [n, 1] ∼=

(
[n, 1] ⊕ [n+ 1]

)
⊗ [n, 1] ∼= Ind

Sn+1

Sn

(
[n]

)
⊗ [n, 1] .

One sees easily from the definitions that the restriction of the natural permutation representation
of Sn+1 to the subgroup Sn is isomorphic to the direct sum [n− 1, 1]⊕ [n]⊕ [n]. It follows that the
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restriction of [n, 1] to Sn is isomorphic to the direct sum [n− 1, 1]⊕ [n]. Using a standard property
of induction, we have

Ind
Sn+1

Sn

(
[n]

)
⊗ [n, 1] ∼= Ind

Sn+1

Sn

(
[n− 1, 1] ⊕ [n]

) ∼= Ind
Sn+1

Sn

(
[n− 1, 1]

)
⊕ Ind

Sn+1

Sn

(
[n]

)
.

The Branching Theorem, which is theorem 2.4.2 in [JaKe], gives the decomposition of Ind
Sn+1

Sn
(χ)

if χ is an irreducible representation of Sn. Suppose that χ corresponds to the partition n =
a1 + ... + at, as above, where t ≥ 1. We can imagine this partition of n as a partition with t + 1
terms by setting at+1 = 0. We can form various partitions of n + 1 by replacing exactly one of
the summands ai by ai + 1. We consider only the resulting partitions where the summands are in
nondecreasing order. Thus, if some of the ai’s are repeated, we need only augment the first such
summand by 1. Then Ind

Sn+1

Sn
(χ) is isomorphic to the direct sum of the irreducible representations

which corresponds to the various partitions of n + 1 obtained as just described. In particular, we
have

Ind
Sn+1

Sn

(
[n]

) ∼= [n+1] ⊕ [n, 1] , Ind
Sn+1

Sn

(
[n−1, 1]

) ∼= [n, 1] ⊕ [n−1, 2] ⊕ [n−1, 1, 1] .

The first isomorphism amounts to the definition that we gave before for the irreducible represen-
tation [n, 1] of Sn+1 of degree n. The isomorphism in the lemma follows directly from the above
isomorphisms. �

Proof of the proposition. If n = 2, then Ω ∼= S3 has three nonisomorphic irreducible representations
and one checks easily that ω2 ⊗ ω2 is isomorphic to their direct sum, each with multiplicity 1.
However, IndΩ

Ω∞
(ε1) ⊕ ω

0
is also isomorphic to that direct sum.

If n = 3, then Ω ∼= S4 and the stated assumption about K implies that a generator of Ω∞

corresponds to a transposition in the isomorphism. For any n ≥ 0, the transpositions in Sn+1 are
all conjugate and generate Sn+1. If ω is any irreducible representation of Ω, and ω 6= ω

0
, then it

follows that Ω∞ 6⊂ ker(ω) and hence that ω|Ω∞ contains ε1 as a constituent. Thus, every irreducible
representation of Ω is a constituent in IndΩ

Ω∞
(ε1) ⊕ ω

0
. On the other hand, lemma 7.2.2 implies

that the irreducible constituents in ω3 ⊗ ω3 have multiplicity 1. It follows that ω3 ⊗ ω3 is indeed a
direct summand in IndΩ

Ω∞
(ε1) ⊕ ω

0
.

If n ≥ 4, then Ω has just one proper normal subgroup. We denote that subgroup by Θ. We
have [Ω : Θ] = 2. Of course, Θ corresponds to the alternating group An+1 under the isomorphism
Ω ∼= Sn+1. There is a nontrivial representation ω1 of Ω whose kernel is Θ. Apart from ω0 and
ω1, it follows that the remaining irreducible representations of Ω are all faithful. Hence, if ω is
any such representation, ε1 must occur as a constituent in ω|Ω∞ . Frobenius reciprocity therefore
implies that ω occurs as a constituent in IndΩ

Ω∞
(ε1). Thus, the proposition will follow if we show

that each of the irreducible constituents in ω ⊗ ω has multiplicity 1 in that representation space
and that ω1 does not occur as a constituent. The latter fact is needed because it is possible to have
Ω∞ ⊂ Θ and ω1 will fail to be a constituent in IndΩ

Ω∞
(ε1) in that case.
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Lemma 7.3.2 shows that ωn ⊗ ωn has four irreducible constituents and that they are indeed
nonisomorphic. The representation ω1 of Ω corresponds to the representation of Sn+1 with kernel
An+1. The corresponding partition of n + 1 has t = n + 1 and all summands equal to 1. This
representation is [1, ..., 1] and is not isomorphic to any of the four constituents in [n, 1] ⊗ [n, 1].
Thus, the properties of ωn ⊗ ωn that we need are indeed true. �

Remark 7.3.3. If n = 3, then Ω contains a unique normal subgroup of order 4, the Klein 4-group,
which we denote by Υ. The quotient Ω/Υ is isomorphic to S3. If the unique quadratic subfield
of K is real, then Ω∞ ⊂ Υ. There are five irreducible representations of Ω. Three of them factor
through Ω/Υ and have degrees 1, 1, and 2. The other two have degree 3 and are faithful. Let
ω2 denote the unique irreducible 2-dimensional representation of Ω. In fact, ω2 corresponds to the
representation [2, 2] of S4. We have ker(ω2) = Υ. Frobenius reciprocity implies that ω2 is not a
constituent in IndΩ

Ω∞
(ε1). However, ω2 is a constituent in ω3 ⊗ ω3. Therefore the assumption in

proposition 7.3.1 is not satisfied in this case. ♦

7.4. Additional illustrations. Propositions 7.1.1 and 7.3.1 provide a possible source of examples
of continuous n-dimensional representations of GQ over Qp with open image and absolutely irre-
ducible residual representation. However, if n ≥ 3 and p is any prime, then it would seem rather
difficult to determine whether an extension K/Q with Gal(K/Q) ∼= Sn+1 is actually p-rational.
We have not made any attempt to do such a computation. If one does manage to find such a field,
then one can apply proposition 7.1.1 to other irreducible representations of Gal(K/Q) of various
dimensions. We give several illustrations.

7.4.1. Ω ∼= S5. Suppose that K is totally complex and is p-rational for some prime p ≥ 7. The
elements of order 2 in S5 form two conjugacy classes, one consisting of the transpositions, the other
consisting of products of two disjoint transpositions. Thus, there are two possible conjugacy classes
for Ω∞. The unique quadratic subfield of K is imaginary when Ω∞ corresponds to a subgroup
of S5 generated by a transposition. For the other possibility for Ω∞, that quadratic subfield will
be real. Now S5 has seven irreducible representations. In addition to the two one-dimensional
representations factoring through S5/A5, there are two of degree 4, two of degree 5, and one of
degree 6, up to isomorphism. We denote the corresponding irreducible representations of Ω by
ω0, ω1, ω4,1, ω4,2, ω5,1, ω5,2, and ω6. The degrees of the nontrivial representations listed here are
indicated by boldface subscripts. To be more precise, ω4,1 corresponds to [4, 1], ω4,2 = ω4,1 ⊗ ω1

corresponds to [2, 1, 1, 1], ω5,1 corresponds to [3, 2], and ω5,2 = ω5,1 ⊗ ω1 corresponds to [2, 2, 1].
The trivial representation is ω0.

If the unique quadratic subfield of K is imaginary, then one finds that

IndΩ
Ω∞

(ε1) ∼= ω1 ⊕ ω4,1 ⊕ ω3
4,2 ⊕ ω2

5,1 ⊕ ω3
5,2 ⊕ ω3

6 .

On the other hand, if ω is any one of the irreducible representations of Ω, the decomposition of
the tensor product ω ⊗ ω can be found in the table in [JaKe] starting on page 451. One finds
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that all of the irreducible constituents in ω ⊗ ω have multiplicity 1, except for the case ω = ω6. If
ω = ω6, then all of the irreducible constituents in ω⊗ω have multiplicity 1, except for ω5,1 and ω5,2,
both of which have multiplicity 2. Thus, for any irreducible ω, the hypotheses in proposition 7.1.1
are satisfied and consequently, under the assumption that p ≥ 7 and that K is p-rational, there
would then exist continuous n-dimensional representations of GQ with open image and absolutely
irreducible residual representation (isomorphic to ω ) for n = 4, 5, and 6.

If the unique quadratic subfield of K is real, then it turns out that

IndΩ
Ω∞

(ε1) ∼= ω2
4,1 ⊕ ω2

4,2 ⊕ ω2
5,1 ⊕ ω2

5,2 ⊕ ω4
6 .

Note that ω1 is not a constituent in this induced representation. Now it turns out that ω1 is
a constituent (with multiplicity 1) in ω6 ⊗ ω6, but is not a constituent in ω ⊗ ω for the other
irreducible representations of Ω. Thus, the hypotheses in proposition 7.1.1 are satisfied for all the
irreducible representations ω of Ω, except for ω6. For any such ω, one would obtain a continuous
representation ρ of GQ with open image such that ρ ∼= ω, again under the assumption that K is
p-rational. The dimension would be be 4 or 5.

7.4.2. Ω ∼= A5. Thus, Ω is the simple group of order 60. We still assume that p ≥ 7 and that
K is totally complex and p-rational. In this case, there is only one possible conjugacy class for
Ω∞. There are five irreducible representations of Ω. In addition to ω0, two have degree 3, one has
degree 4, and one has degree 5. The ones of degree 4 and 5 are the restrictions of representations
of S5 and hence are realizable over Q. The two of degree 3 are the irreducible constituents of ω6|A5

and are realizable over the field Q(
√

5). All of these representations are self-dual. One finds that
IndΩ

Ω∞
(ε1) is isomorphic to the direct sum of the four nontrivial irreducible representations, all with

multiplicity 2. Furthermore, if ω is any one of the irreducible representations of Ω, one finds that
the hypothesis about ω ⊗ ω in proposition 7.1.1 is again satisfied. Thus, if one can find such a
field K, one would then obtain continuous n-dimensional representations of GQ over Qp with open
image and irreducible residual representation for n = 4 or 5. The same thing is true for n = 3 if
one assumes that p splits in the quadratic field Q(

√
5).

7.4.3. Ω ∼= S6. If p ≥ 7, K is totally complex and p-rational, and Ω ∼= S6, then there are
three possible conjugacy classes for Ω∞. There are eleven irreducible representations of S6. Their
degrees are 1, 5, 9, 10, and 16. Up to isomorphism, there are four irreducible representations of
degree 5, two for each of the degrees 1, 9, and 10, and just one of degree 16. For all of these
irreducible representations ω of Ω, except for the one of degree 16, and for all three possibilities for
the isomorphism class of IndΩ

Ω∞
(ε1), one finds that the hypothesis concerning ω⊗ ω in proposition

7.1.1 is satisfied. To verify this, one can use the above cited tables in [JaKe] as before to determine
the decomposition of the representation space ω ⊗ ω. The character tables on page 350 in [JaKe]
together with Frobenius reciprocity determine the decomposition of IndΩ

Ω∞
(ε1). As a consequence,

if one can find such a field K, one would then obtain continuous n-dimensional representations of
GQ with open image and irreducible residual representation for n = 5, 9, and 10.
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7.4.4. Ω ∼= PSL2(F7). In this final illustration, Ω is the simple group of order 168. At the end
of [Ham], Hamblem discusses one such example due to W. Trinks, where K is the splitting field
for x7 − 7x+ 3 over Q. There are two absolutely irreducible representations of Ω of degree 3. Let
ω be either one of them. Hamblen’s main result in [Ham] can be applied to this example when
p ≡ 8 (mod 21) to construct a 3-dimensional representation ρ of GQ over Qp with open image
such that ρ ∼= ω. His representation ρ is unramified outside a finite set containing Σp ∪ {3, 7,∞}.
Interestingly, his construction gives a representation ρ such that ρ(Dp) is upper triangular, where
Dp is the decomposition subgroup of GQ for some prime above p.

In contrast, proposition 7.1.1 can be applied only if one can verify that K is p-rational, where
p 6∈ {2, 3, 7}. As with the other examples, we haven’t attempted to do this, but we would expect
that any fixed number field K will turn out to be p-rational for almost all primes p. That is, the
set of exceptions should have Dirichlet density 0. Furthermore, there should be infinitely many
distinct Galois extensions K of Q with Galois group isomorphic to PSL2(F7). Indeed, in [LaM],
one finds an infinitely family of polynomials over Q of degree 7 with that Galois group. Although
this is not stated, presumably the corresponding extensions will form an infinite family too. Thus,
it seems exceedingly likely that, for every odd prime p, such a K will exist which is p-rational.

The character table for PSL2(F7) can be found on page 318 in [JaLi]. The following remarks
are derived from that table. In addition to the trivial representation ω

0
, there are five isomorphism

classes of absolutely irreducible representations of Ω. We denote them by ω3,1, ω3,2, ω6, ω7, and
ω8. The two representations of degree 3 are contragredients of each other. The others are self-dual.
Furthermore, there is only one conjugacy class of elements of order 2. Hence Ω∞ is unique up to
conjugacy and one finds that

IndΩ
Ω∞

(ε1) ∼= ω2
3,1 ⊕ ω2

3,2 ⊕ ω2
6 ⊕ ω4

7 ⊕ ω4
8 .

As for the tensor product occurring in proposition 7.1.1, the decomposition is as follows:

ω3,1 ⊗ ω3,2
∼= ω

0
⊕ ω8 , ω7 ⊗ ω7

∼= ω
0
⊕ ω3,1 ⊕ ω3,2 ⊕ ω2

6 ⊕ ω2
7 ⊕ ω2

8 ,

ω6 ⊗ ω6
∼= ω

0
⊕ ω2

6 ⊕ ω2
8 , ω8 ⊗ ω8

∼= ω
0
⊕ ω3,1 ⊕ ω3,2 ⊕ ω2

6 ⊕ ω3
7 ⊕ ω3

8 .

Each of these tensor products is a direct summand in IndΩ
Ω∞

(ε1) ⊕ ω
0
.

Except for the irreducible representations of degree 3, all of the others have rational-valued
characters. Furthermore, a theorem of Janusz states that if F is any finite field, then the Schur
index over Q for any irreducible representation of PSL2(F) is 1. In particular, the irreducible
representations of degree 6, 7, and 8 for Ω can be realized over Q and therefore over Qp for any
prime p. One can easily verify this assertion about the Schur indices for F = F7 by examining the
multiplicity of any irreducible representation ω of Ω in IndΩ

Θ(θ), where Θ is a Sylow 2-subgroup of
Ω and θ is one of the three characters of Θ of order 2. Those induced representations are defined
over Q. For each ω, and at least one choice of θ, the multiplicity turns out to be 1. One can check
this by using the character table for Ω and Frobenius reciprocity.
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Therefore, assuming that K is p-rational and that p ≥ 11 or p = 5, one would obtain continuous
representations ρ of GQ of degrees 6, 7, or 8 such that the image of ρ is open and the residual
representation ρ is an absolutely irreducible representation factoring through Ω. One also obtains
such representations of degree 3 if one makes the additional assumption that p splits in the quadratic
field Q(

√
−7).
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