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The Problem

min
x∈X

F (x) := E[f(ξ, x)]

X ⊆ Rn convex compact set with non-empty interior

Ξ ⊆ R` Lebesgue measurable closed set with non-empty interior

f : Ξ×X → R̄ continuous in x ∀ ξ ∈ Ξ, measurable in ξ ∀x ∈ X

E[·] expectation over Ξ

Applications of interest include stochastic nonlinear
complementarity problems, stochastic gap functions, and
optimization problems in statistical learning, where
f(ξ, x) is often not Clarke regular in x for almost all ξ.
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Clarke Stationary Points

0 ∈ ∂F (x) +NX(x), where F (x) = E[f(ξ, x)]

Issues:

• Can we estimate ∂F (x) using f(ξ, x)?

• (Clarke ’83) If f(ξ, x) is Clarke regular a.e. ξ, then
∂F (x) = E[∂f(ξ, x)].

• In general, we only have
∂F (x) ⊆ E[∂xf(ξ, x)].

Example: f(ξ, x) = ξ|x| with ξ ∼ N(0, 1). Then

E[f(ξ, x)] = E[ξ|x|] ≡ 0 =⇒ ∂F (x) = 0 ∀ x ∈ R

but
E[∂f(ξ, 0)] =

√
π/2 [−1, 1].
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Basic Assumptions (Clarke ’83)

We say f : Ξ×X → R is a Carathéodory mapping on Ξ×X if
f(ξ, ·) is continuous on an open set U containing X for all
ξ ∈ Ξ, and f(·, x) is measurable on Ξ for all x ∈ X.

We say that f : Ξ× U → R is a locally Lipschitz integrand on
Ξ× U if f is a Carathéodory mapping on Ξ× U and
∀ x̄ ∈ U ∃ ε(x̄) > 0 and an integrable mapping
κf (·, x̄) ∈ L2

1(R`,M, ρ) such that

|f(ξ, x1)−f(ξ, x2)| ≤ κf (ξ, x̄)‖x1−x2‖ ∀ x1, x2 ∈ Bε(x̄)(x̄) a.e. ξ ∈ Ξ,

where Bε(x̄) := {x | ‖x− x̄‖ ≤ ε} ⊆ U .

If f : Ξ× U → R is a LL integrand then F (x) := E[f(ξ, x)] is
locally Lipschitz continuous on U with local Lipschitz modulus
κF (x̄) := E[κf (ξ, x̄)].
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Approximation by Smoothing Functions

Let F : U → R , where U ⊆ Rn is open.

We say that
F̃ : U × R++ → R

is a smoothing function for F on U if

(i) F̃ (·, µ) converges continuously to F on U , i.e.,

lim
µ↓0,x→x̄

F̃ (x, µ) = F (x̄) ∀ x̄ ∈ U, and

(ii) F̃ (·, µ) is continuously differentiable on U for all µ > 0.



Measurable Smoothing Integrands

f̃ : Ξ× U × R++ → R is a measurable smoothing integrand for
f : Ξ× U → R with smoothing parameter µ > 0 if,

∀ µ > 0, f̃(·, ·, µ) is a Carathéodory map and

(i)
lim

µ↓0,x→x̄
f̃(ξ, x, µ) = f(ξ, x̄) ∀ x̄ ∈ U and ξ ∈ Ξ,

(ii) ∀ (x̄, µ̄) ∈ U × R++ ∃ open V ⊆ U with x̄ ∈ U and

κ̂f (·, x̄, µ̄), κf (·, x̄, µ̄) ∈ L2
1(Ξ,M, ρ)

such that

|f̃(ξ, x, µ)| ≤ κf (ξ, x̄, µ̄) and
∥∥∥∇xf̃(ξ, x, µ)

∥∥∥ ≤ κ̂f (ξ, x̄, µ̄)

∀ (ξ, x, µ) ∈ Ξ× V × (0, µ̄].



Gradient Consistence of Smoothing Functions

Let U ⊆ Rn be open and let F : U → R have smoothing
function F̃ : U × R++ → R on U .

We say that F̃ is gradient consistent at x̄ ∈ U if

co

{
Limsup
µ↓0,x→x̄

∇xF̃ (x, µ)

}
= ∂F (x̄),

where the limit supremum is taken in the multi-valued sense.

If

co

{
Limsup
x→x̄,µ↓0

∇F̃ (x, µ)

}
⊆∂F (x̄),

we say the F̃ is gradient sub-consistent at x̄ ∈ U

Chen (2012), B-Hoheisel-Kanzow (2013), B-Hoheisel (2013-16)



Gradient Sub-Consistency

If x̄ ∈ U is such that

uniform subgradient approximation property



∃ ν̄ > 0 s.t. ∀ ν ∈ (0, ν̄) ∃ δ(ν, x̄) > 0 and

Ξ(ν, x̄) ∈M with ρ(Ξ(ν, x̄)) ≥ 1− ν
for which

∇xf̃(ξ, x, µ) ∈ ∂xf(ξ, x̄) + νB ∀ (x, µ) ∈ [(x̄, 0) + δ(ν, x̄)(B× (0, 1))]

a.e. ξ ∈ Ξ(ν, x̄),

then

co

{
Limsup
x→x̄,µ↓0

∇F̃ (x, µ)

}
⊆∂F (x̄) = E

[
co

{
Limsup
x→x̄,µ↓0

∇xf̃(ξ, x, µ)

}]
.
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Composite Max (CM) Integrands

Let Ξ×X ⊆ R` × Rn and let U be an open set containing X.
We say that the mapping g : Ξ× U → Rm is a measurable
mapping with amenable derivative if the following two
conditions are satisfied:

(i) Each component of g is a Carathéodory mapping and, for
all ξ ∈ Ξ, g(ξ, ·) is continuously differentiable in x on U ;

(ii) For all (ξ, x) ∈ Ξ× U , the gradient ∇xg(ξ, x) is locally L2

bounded in x uniformly in ξ in the sense that there is a
function κ̂g : Ξ× U → R satisfying κ̂g(·, x) ∈ L2

1(R`,M, ρ)
for all x ∈ U and

∀ x̄ ∈ X ∃ ε(x̄) > 0 such that ‖∇xg(ξ, x)‖ ≤ κ̂g(ξ, x̄) ∀ x ∈ Bε(x̄)(x̄).



Composite Max (CM) Integrands

A CM integrand on Ξ×X is a mapping of the form

f(ξ, x) := q(c(ξ, x) + C(g(ξ, x))) (0.1)

for which there exists an open set U containing X such that

1. C : Rm → Rm is of the form
C(y) := [p1(y1), p2(y2), . . . , pm(ym)]T ,

where pi : R→ R (i = 1, . . . ,m) are finite piecewise linear
convex with finitely many points of nondifferentiability,

2. the mappings c and g are measurable mappings with
amenable derivatives and

3. the mapping q : Rm → R is continuously differentiable with
Lipschitz continuous derivative.



Piecewise Linear Convex Functions on R
For i = 1, . . . ,m, there is a positive integer ri and scalar pairs
(aij , bij), i = 1, . . . ,m, j = 1, . . . , ri such that

pi(t) := max {aijt+ bij | j = 1, . . . , ri } ,

where ai1 < ai2 < · · · < ai(ri−1) < airi . The scalar pairs
(aij , bij), i = 1, . . . ,m, j = 1, . . . , ri are coupled with a scalar
partition of the real line

−∞ = ti1 < ti2 < · · · < tiri < ti(ri+1) =∞
such that for all j = 1, . . . , ri − 1,

aijti(j+1) + bij = ai(j+1)ti(j+1) + bi(j+1) and

pi(t) =


ai1t+ bi1, t ≤ ti2,
aijt+ bij , t ∈ [tij , ti(j+1)] (j ∈ {2, . . . , ri − 1}),
airit+ biri , t ≥ tiri .

This representation for the functions pi gives

∂pi(t) =

{
aij , tij < t < ti(j+1), j = 1, . . . , ri

[ai(j−1), aij ], t = tij , j = 2, . . . , ri.
i = 1, . . . ,m.



Smoothing for CM Integrands

β : R→ R+ be a piecewise continuous density function s.t.

β(t) = β(−t) and ω :=

∫
R
|t|β(t) dt <∞.

Denote the distribution function for the density β by ϕ, i.e.,

ϕ : R→ [0, 1] is given by ϕ(x) =
∫ x
−∞ β(t) dt.

Since β is symmetric, ϕ is a non-decreasing continuous with

ϕ(0) =
1

2
, (1− ϕ(x)) = ϕ(−x),

lim
x→∞

ϕ(x) = 1 and lim
x→−∞

ϕ(x) = 0.



Smoothing the pi
For i = 1, . . . ,m, the convolution

p̃i(t, µ) :=

∫
R
pi(t− µs)β(s) ds

is a (well-defined) smoothing function with

∇tp̃i(t, µ) = ai1

(
1− ϕ

( t− ti2
µ

))
+

ri−1∑
j=2

aij

(
ϕ
( t− tij

µ

)
− ϕ

( t− ti(j+1)

µ

))
+ airiϕ

( t− tiri
µ

)
,

ηi(t) := lim
µ↓0
∇tp̃i(t, µ) =

{
aij tij < t < ti(j+1), j = 1, . . . , ri
1
2(ai(j−1) + aij) t = tij , j = 2, . . . , ri

is an element of ∂pi(t̄), and

Limsup
t→t̄,µ↓0

∇tp̃i(t, µ) = ∂pi(t̄) ∀t̄ ∈ R.



Smoothing CM Integrands (B-Hoheisel-Kanzow ’13)

Let f be a CM integrand. Then f̃ : Ξ× U × R++ → R given by
f̃(ξ, x, µ) := q(c(ξ, x) + C̃(g(ξ, x), µ))

is a smoothing function for f , where
C̃(y, µ) := [p̃1(y1, µ), p̃2(y2, µ), . . . , p̃m(ym, µ)]T .

If rank∇xg(ξ, x̄) = m, then, for all µ > 0,
∇xf̃(ξ, x̄, µ) and ∂xf(ξ, x̄)

are given respectively by

(∇xc(ξ, x̄) + diag(∇tp̃i(gi(ξ, x̄), µ))∇xg(ξ, x̄))T∇q(c(ξ, x̄) + C̃(g(ξ, x̄)))

(∇xc(ξ, x̄) + diag(∂tpi(gi(ξ, x̄), µ))∇xg(ξ, x̄))T∇q(c(ξ, x̄) + C(g(ξ, x̄))).

Moreover,
Limsup
x→x̄,µ↓0

∇xf̃(ξ, x, µ)⊆∂xf(ξ, x̄)



Gradient Sub-Consistency of Smoothed CM Integrands

f(ξ, x) := q(c(ξ, x) + C(g(ξ, x), µ))

f̃(ξ, x, µ) := q(c(ξ, x) + C̃(g(ξ, x), µ))

If f(ξ, ·) is subdifferentially regular x̄ for almost all ξ ∈ Ξ or
−f(ξ, ·) is subdifferentially regular at x̄ for almost all ξ ∈ Ξ.
Then

F̃ (x) := E[f̃(ξ, x)]

satisfies the gradient sub-consistency property i.e.,

co

{
Limsup
x→x̄,µ↓0

∇F̃ (x, µ)

}
⊆ ∂F (x̄) = E

[
co

{
Limsup
x→x̄,µ↓0

∇xf̃(ξ, x, µ)

}]
.



What happens when Clarke regularity fails?
Consider the CM integrand f and its smoothing function f̃ :

f(ξ, x) := q(c(ξ, x) + C(g(ξ, x), µ))

f̃(ξ, x, µ) := q(c(ξ, x) + C̃(g(ξ, x), µ))

Assume that rank∇xg(ξ, x̄) = m for a fixed (ξ, x̄) ∈ Ξ×X.
Then the limit

u(ξ, x̄) := lim
µ↓0
∇xf̃(ξ, x̄, µ)

= (∇xc(ξ, x̄) + (z1(ξ, x̄), . . . , zm(ξ, x̄))T∇q(c(ξ, x̄) + C(g(ξ, x̄)))

exist as given with u(ξ, x̄) ∈ ∂xf(ξ, x̄), where

zi(ξ, x̄) := ηi(gi(ξ, x̄))∇xgi(ξ, x̄) with

ηi(t) := lim
µ↓0
∇tp̃i(t, µ) ∈ ∂pi(t̄).



Subgradient Approximation by Smoothing

f(ξ, x) := q(c(ξ, x) + C(g(ξ, x), µ))

f̃(ξ, x, µ) := q(c(ξ, x) + C̃(g(ξ, x), µ))

u(ξ, x̄) := lim
µ↓0
∇xf̃(ξ, x̄, µ)

F (x) := E[f(ξ, x)] and F̃ (x, µ) := E[f̃(ξ, x, µ)] ∀ x ∈ X.

Then F̃ (·, µ) is differentiable for all µ > 0 with

∇xF̃ (x, µ) = E[∇xf̃(ξ, x, µ)],

the function u is well defined, and,

lim
µ↓0
∇xF̃ (x̄, µ) = lim

µ↓0
E[∇xf̃(ξ, x̄, µ)] = E[u(ξ, x̄)] ∈ ∂F (x̄).



Subgradient Approximation by Smoothing

For µ > 0 and x̄ ∈ U there exits K(x̄) > 0 and δ(x̄) > 0 s.t.∥∥∥∇f̃(ξ, x, µ)−∇f̃(ξ, x̄, µ)
∥∥∥ ≤ K(x̄)

µ
‖x− x̄‖ ∀ ξ ∈ Ξ and x ∈ Bδ̄(x̄)(x̄)

and

dist
(
E[∇f̃(ξ, x, µ)] | ∂F (x̄)

)
≤K(x̄)

µ
‖x−x̄‖+dist

(
∇xF̃ (x̄, µ) | ∂F (x̄)

)
∀ x∈Bδ̄(x̄)(x̄).

Moreover, for any γ ∈ (0, 1):

Limsup
x→x̄, µ=O(‖x−x̄‖γ)

E[∇f̃(ξ, x, µ)] ⊂ ∂F (x̄).


