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The extension of steepest descent to nonsmooth optimization
and the origins of vertical and horizontal steps.



Exact Penalization

NLP minimize f(x)

subject to φi(x) ≤ 0 i = 1, . . . , k

φi(x) = 0 i = k + 1, . . . , `

where f and all φi are continuous mappings from Rn to R.

Feasible region:

F :=

{
x

∣∣∣∣∣ φi(x) ≤ 0, i = 1, . . . , k,

φi(x) = 0, i = k + 1, . . . , `

}

`1 Exact Penalization:

`1−NLP min pµ(x) := µf(x)+

k∑
i=1

max(0, φi(x))+
∑̀
i=k+1

|φi(x)|
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Theoretical Foundations

Thm:(CQ) If x̄ solves NLP, then, for all µ > 0 small, x̄ solves `1-NLP:

`1−NLP minx pµ(x) := µf(x)+
∑k
i=1 max(0, φi(x))+

∑`
i=k+1 |φi(x)| .

Convex Case (finite-valued): Eremin (1966), Zangwill (1967)

Slater CQ: φi are affine for i = k + 1, . . . , ` and
∃ x̂ ∈ F such that φi(x̂) < 0, i = 1, . . . , k.

Smooth Case: Pietrzykowski (1969)

(LICQ): The active constraint gradients,

∇φi(x) i ∈ A(x, 0), are linearly independent,

where, for ε ≥ 0,

A(x, ε) := {i | |φi(x)| ≤ ε , i ∈ {1, . . . , k}}

are the ε-active constraints.
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Vertical and Horizontal Steps

Constrained Optimization Using a Nondifferentiable Penalty Function,
SIAM J. Numerical Analysis, 10(1973)760–784.

Linear Programming via a Nondifferentiable Penalty Function
SIAM J. Numerical Analysis, 13(1976)145–154.

A Penalty Function Method Converging Directly to a Constrained
Optimum
with Tomasz Pietrzykowski

SIAM J. Numerical Analysis, 14(1977)348–375.



Vertical and Horizontal Steps

For simplicity assume F := {x |φi(x) ≤ 0, i = 1, . . . , `}.

A(x, ε) := {i | |φi(x)| ≤ ε , i ∈ {1, . . . , `}} ε-active

I(x, ε) := {i | |φi(x)| > ε , i ∈ {1, . . . , `}} ε-inactive

Î(x, ε) := I(x, ε) ∩ {i |φi(x) > 0, i = 1, . . . , `} infeas. ε-inactive

“Steepest Descent” for pµ: r(x, ε) := −µ∇f(x) −
∑
i∈Î(x,ε)∇φi(x)

Let P be (almost) the projection onto the subspace orthogonal to the
ε-active constraint gradients:

Span[{∇φi(x) | i ∈ A(x, ε)}]⊥.

h(x, ε) := P r(x, ε) the horizontal step

v(x, ε) := (I − P )r(x, ε) the vertical step

w(x, ε) := σ v(x, ε) + τ v(x, ε) the step

Keys: The construction of P and the evaluation of σ, τ ≥ 0.
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Extensions

UV-decompositions are an example of recent ideas in this
direction, where the horizontal step is in the U direction and
the vertical step is in the V direction.

Minimization Techniques for Piecewise Differentiable Functions:
The `1 Solution to an Overdetermined Linear System
with Richard Bartels and James Sinclair
SIAM J. Numerical Analysis, 15(1978)224–241.

Linearly Constrained Discrete `1 Problems
with Richard Bartels
AMS TOMS 4(1980)594–608.

An Efficient Method to Solve the MiniMax Problem Directly
with Christakas Charalambous
SIAM J. Numerical Analysis, 15(1978)162–241.



Second-Order Theory and Algorithms

Second-Order Conditions for and Exact Penalty Function
with Tom Coleman
Mathematical Programming 19(1980)178–185.

Nonlinear Programming via and Exact Penalty Function:
Asymptotic Analysis
with Tom Coleman
Mathematical Programming 24(1982)123–136.

Nonlinear Programming via and Exact Penalty Function:
Global Analysis
with Tom Coleman
Mathematical Programming 24(1982)137–161.



Second-Order Theory and Algorithms

Theory:
Andy and Tom established second-order necessary and sufficient
conditions for the `1 exact penalty function using techniques
from NLP under LICQ.

• The theory applies at both feasible and infeasible points.

• When feasible, they show equivalence with the NLP strong
second-order theory.



Second-Order Theory and Algorithms

Algorithms:

Again, the basic idea rests on the notion of vertical and
horizontal steps.

But now the horizontal step hk is based on a second-order
approximation to the Lagrangian over the subspace
perpendicular to the active constraint gradients.

Multiplier estimates are given by a least-squares solution to the
first-order optimality conditions.

Once the second-order step is chosen, a vertical step vk is
chosen at the point xk + hk using the data at xk to give the
final step xk + hk + vk.

This work is one of the initial contributions toward second-order
correction steps (Fletcher) to overcome the Marotos effect.
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Second-Order Theory and Algorithms

Convergence Theory:

Local: Andy and Tom establish the two step local super-linear
convergence of their method under a strong second-order
sufficiency.

Global:

• A break-point line-search procedure is introduced to ensure
global convergence.

• Under a strong second-order sufficiency condition, the
Newton step is accepted and two step super-linear
convergence is achieved.



Thank You Andy!!

An inspiring leader, mentor, community builder, and researcher.


