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The extension of steepest descent to nonsmooth optimization
and the origins of wvertical and horizontal steps.



Exact Penalization

NLP minimize  f(z)
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pi(x)= 0 i=k+1,...,¢

where f and all ¢; are continuous mappings from R” to R.
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Theoretical Foundations

Thm:(CQ) If Z solves NLP, then, for all x > 0 small, Z solves ¢;-NLP:
6 =NLP  min, p,(z) == uf (x) + i, max(0, ¢5(x)) + Li_g 4 [61(2)] -

Convex Case (finite-valued): Eremin (1966), Zangwill (1967)

Slater CQ: ¢; are affine fori =k +1,...,¢ and
3 2 € F such that ¢;(2) <0, i=1,...,k.
Smooth Case: Pietrzykowski (1969)

(LICQ): The active constraint gradients,
Voi(x) i€ A(x,0), are linearly independent,
where, for € > 0,
Az, e) :={i[|pi(z)| <e, i e{l,... . k}}

are the e-active constraints.



Vertical and Horizontal Steps

Constrained Optimization Using a Nondifferentiable Penalty Function,
STAM J. Numerical Analysis, 10(1973)760-784.

Linear Programming via a Nondifferentiable Penalty Function
SIAM J. Numerical Analysis, 13(1976)145-154.

A Penalty Function Method Converging Directly to a Constrained
Optimum

with Tomasz Pietrzykowski

STAM J. Numerical Analysis, 14(1977)348-375.



Vertical and Horizontal Steps
For simplicity assume F := {x |¢;(x) <0,i=1,...,0}.

A(z,e) :=={i ||¢i(zx)| <e,ie{l,....l}} e-active
I(z,e) :={i||pi(x)| >e, ie{l,...,¢}} e-inactive
I(z,e) :=I(z,e) N {i |ps(x) >0, i=1,...,0} infeas. e-inactive

Keys: The construction of P and the evaluation of o, 7 > 0.
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I(z,e) :={i||pi(z)| >, i€ {1,...,¢}} e-inactive
I(z,e) :=I(z,e) N {i |ps(x) >0, i=1,...,0} infeas. e-inactive
“Steepest Descent” for p,: r(z,e) = —pVf(z) — Zief(z,e) Voi(x)

Let P be (almost) the projection onto the subspace orthogonal to the
e-active constraint gradients:

Span[{V¢;(z) |i € A(z,e) }]*.

h(z,e):= Pr(x,e) the horizontal step
v(x,e) := (I — P)r(z,e) the vertical step
w(z,e) :=ov(xz,e) + Tv(x,e) the step

Keys: The construction of P and the evaluation of o, 7 > 0.



Extensions

UV-decompositions are an example of recent ideas in this
direction, where the horizontal step is in the U direction and
the vertical step is in the V direction.

Minimization Techniques for Piecewise Differentiable Functions:
The ¢1 Solution to an Overdetermined Linear System

with Richard Bartels and James Sinclair

SIAM J. Numerical Analysis, 15(1978)224-241.

Linearly Constrained Discrete 1 Problems
with Richard Bartels
AMS TOMS 4(1980)594-608.

An Efficient Method to Solve the MiniMax Problem Directly
with Christakas Charalambous
SIAM J. Numerical Analysis, 15(1978)162-241.



Second-Order Theory and Algorithms

Second-Order Conditions for and Fxact Penalty Function

with Tom Coleman
Mathematical Programming 19(1980)178-185.

Nonlinear Programming via and Ezact Penalty Function:
Asymptotic Analysis

with Tom Coleman

Mathematical Programming 24(1982)123-136.

Nonlinear Programming via and Ezact Penalty Function:
Global Analysis

with Tom Coleman

Mathematical Programming 24(1982)137-161.



Second-Order Theory and Algorithms

Theory:
Andy and Tom established second-order necessary and sufficient
conditions for the /; exact penalty function using techniques

from NLP under LICQ.
e The theory applies at both feasible and infeasible points.

e When feasible, they show equivalence with the NLP strong
second-order theory.



Second-Order Theory and Algorithms
Algorithms:

Again, the basic idea rests on the notion of vertical and
horizontal steps.

But now the horizontal step h* is based on a second-order
approximation to the Lagrangian over the subspace
perpendicular to the active constraint gradients.

Multiplier estimates are given by a least-squares solution to the
first-order optimality conditions.
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Second-Order Theory and Algorithms
Algorithms:

Again, the basic idea rests on the notion of vertical and
horizontal steps.

But now the horizontal step h* is based on a second-order
approximation to the Lagrangian over the subspace
perpendicular to the active constraint gradients.

Multiplier estimates are given by a least-squares solution to the
first-order optimality conditions.

Once the second-order step is chosen, a vertical step v* is
chosen at the point z* + h* using the data at z* to give the
final step z* + h* + oF.

This work is one of the initial contributions toward second-order
correction steps (Fletcher) to overcome the Marotos effect.



Second-Order Theory and Algorithms

Convergence Theory:

Local: Andy and Tom establish the two step local super-linear
convergence of their method under a strong second-order
sufficiency.

Global:

e A break-point line-search procedure is introduced to ensure
global convergence.

e Under a strong second-order sufficiency condition, the
Newton step is accepted and two step super-linear
convergence is achieved.



Thank You Andy!!

An inspiring leader, mentor, community builder, and researcher.



