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h:R™ — RU{+4o00} is closed, proper, convex
c:R"® — R™ is C?-smooth
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Examples: 70 - 90’s
Non-linear least-squares: f(z) = |c(z)]|3

Feasibility: ¢(z) € C': mindist (¢(z) | C),

where C' C R™ is non-empty, closed, convex, and
dist (y |C) :=inf{|ly—z|| |z € C}.

Exact Penalization: min ¢(z) + adist (¢(z) | C)
Here c(x) := (p(z),é(x)) and h(p,y) = p+ adist (y |C')

Non-linear programming: min ¢(z) + do(é(x)).

Here c(z) := (¢(2),é(z)) and h(p,y) := p + 0c(y), where
dc(y) =0if y € C and +oo otherwise.
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Quadratic support functions:
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h(c) := sup (u, Be) — —ul Mu
uelU 2

with U C R* non-empty, closed, convex, M € S™ is positive
semi-definite.



More Recent Examples

Quadratic support functions:

1
h(c) := sup (u, Be) — —ul Mu
uelU 2

with U C R* non-empty, closed, convex, M € S™ is positive
semi-definite.

Piecewise linear-quadratic (PLQ) penalties:
(Rockfellar-Wets (97))

Quadratic support functions with U C R* non-empty, closed
and convex polyhedron.
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Dual representation of PLQs
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PLQ penalties closed under addition and affine composition.



PLQ penalties in practice

Application Objective PLQs
Regression | Az — b||? Lo
Robust regression pr(Ax —b) Huber
Quantile regression Q(Az —b) Asym. L,
Lasso | Az — b]|% + Az Ly + 14
Robust lasso pr(Ax —b) + A||z|)1 Huber + L,
SVM Flw|* + H(1 — Az) L; + hinge loss
SVR pv(Az —b) Vapnik loss
Kalman smoother ||Gac—w||2Q,1 +[Hz—z||%-. Ly + Ly

Robust trend smoothing  ||Gz—wl||1+pp(Hz — 2) L, + Huber



The Convex-Composite Lagrangian

P ;IGI]iRI}L h(c(z))

e The Lagrangian for P: (B. (87))

L(z,y) := (y,c(z))—h*(y)

e The conjugate of h given by the support function for epi(h),

h*(y) == sgp[<y,w> — h(z)]



The Convex-Composite Lagrangian

P minh(e(z) +g(z)

e The Lagrangian for P: (B. (87))

L(z,y) :== (y,c(x))—h"(y) + g(z)

e The conjugate of h given by the support function for epi(h),

h*(y) == sgp[<y,w> — h(z)]



The Convex-Composite Lagrangian

P minh(e(z) +g(z)

e The Lagrangian for P: (B. (87))

L(z,y,v) := {y,c(x)) =" (y) +(v,2) = g"(v)

e The conjugate of h given by the support function for epi(h),

h*(y) == sgp[<y,w> — h(z)]



The Convex-Composite Lagrangian

P ;giRI}l h(c(z))

e The Lagrangian for P: (B. (87))

(Primal) infsup L(x,y)
Ty

L(z,y) = (y,c(z))—h"(y)
(Dual) Sl‘;p inf L(z,y)

e The conjugate of h given by the support function for epi(h),

W (y) = sup[(y, z) — h(w)]



The Convex-Composite Lagrangian

P ;giRI}l h(c(z))

e The Lagrangian for P: (B. (87))

(Primal) infsup L(x,y)
Ty

L(z,y) = (y,c(z))—h"(y)
(Dual) Sl‘;p inf L(z,y)

e The conjugate of h given by the support function for epi(h),

h*(y) =sup[(y,z) — h(z)] = sup ((y,—1),(z,p))
z (w,p1)E€epi(h)



Algorithms

Py mmin h <c(xk)+Vc(:Ck)[x—:ck]> —f—%(x—ﬁk)—er(az—xk),

e M approximates the Hessian of a Lagrangian for P at (z*, y*)
e Newton’s method: Hy, := V2 L(z*, y*) =Y 7" yFV2, ci(z)
e P; may or may not be convex depending on whether Hy > 0.

e A example is the Gauss-Newton method: h = H||§
min, [|c(z¥) + ¢ (2%) (z — :ck)H;



Algorithm for NLP

NLP minimize ¢(x)
subject to fi(x)=0, i=1,...,s, fi(x)<0, i =s+1,...,m.
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Algorithm for NLP

NLP minimize ¢(x)
subject to fi(x)=0, i=1,...,s, fi(x)<0, i =s+1,...,m.

e Convex-Composite Framework

h(p,y) = p+ 3k (y), K :={0}° x R™?
c(z) = (¢(x), f(z))
L +Zyzfz —(SKO ) O:RSXRT_S

e Subproblems:

Py minimize  ¢(e*) + Vo(a*)T (z — 2F) + %[x M Hfw — o]

eV (z—ab)=0,i=1,...s
NV (x—a¥)=0,i=s+1,....m

subject to fl(:nk) + Vfi

(
fi(@®) + V f;(



Algorithm for NLP

NLP minimize ¢(x)
subject to fi(x)=0, i=1,...,s, fi(x)<0, i=s+1,...,m

e Convex-Composite Framework

h(p,y) = p+ 3k (y), K :={0}° x R™?
c(z) = (¢(z), f(2))

L(z,y) = ¢(x) + Y _yifi(x) —dkoly), K° =R xRP™*

e Subproblems: Sequential quadratic programming (SQP)

Py minimize  ¢(e*) + Vo(a*)T (z — 2F) + %[x M Hfw — o]
subject to  fi(z®) + Vfi(z") T (z —2*) =0, i=1,....s
fil@*) + V@) (@ —a") =0, i=s+1,...,m



Convergence of Convex-Composite Newton’s Method

Robinson (72):
Assumed h = dg with K := {0}* x R™™° (NLP case).

Established quadratic convergence in the NLP case
under linear independence of the active constraint
gradients, strict complementarity, and strong
second-order sufficiency.

Robinson (80):

Introduced the revolutionary notion of generalized
equations which, among many other consequences,
re-established quadratic convergence for NLP. The
generalized equations approach is much more powerful
as it allows access to a very rich sensitivity theory
including metric reqularity properties of solution
mappings.



Convergence of Convex-Composite Newton’s Method
Womersley (85):
Assumed h is finite-valued piecewise linear convex.

Established quadratic convergence under NLP-like
conditions: linear independence of the active constraint
gradients, strict complementarity, and strong
second-order sufficiency.

B-Ferris (95):
Assumed h is finite-valued closed, proper, convex.

Established quadratic convergence when C := argminh
s a set of weak sharp minima for h, and
argmin f = {z |c(z) € C'}.

Cibulka-Dontchev-Kruger (16):
Assumed h is piecewise linear convex.

Established super-linear convergence under the
Dennis-Moré conditions using generalized equations.



The Program

A long standing open problem:

Can one establish second-order rates using the rich history of
second-order ideas for convex-composite functions?

(B(87), Kawazaki(88), Toffe(88), B-Poliquin(92),
Rochafellar-Wets(92), Nguyen(17-19))
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The Program

A long standing open problem:

Can one establish second-order rates using the rich history of
second-order ideas for convex-composite functions?

(B(87), Kawazaki(88), Toffe(88), B-Poliquin(92),
Rochafellar-Wets(92), Nguyen(17-19))

Solution Proposal:

Develop a generalized equations approach for the PL(Q)
class using PLQ) second-order theory and partial
smoothness to establish second-order rates under
hypotheses motivated by those used for NLP.

Key new ingredient is partial smoothness due to (Lewis (02)).



PLQ Functions

h : R™ — R is called piecewise linear-quadratic (PLQ) if
dom h # () and, for K > 1,

K
domh = | J Cy,
k=1

where the sets C} are convex polyhedrons,
Cr = {c|(arj,c) < ayj, forall j € {1,...,s1}},
and relative to which h(c) is given by an expression of the form
1
h(C) = 5 <Cv ch> + <bk7 C> + 5.% Vece Ck

with By, € R, b, € R", and Q; € S™.



Variational Analysis of PLQ-Composite Functions
Assume f := hoc with h convex PLQ and ¢ in C?(R").

Active Set: For ¢ € dom h, the active set at c is
K(c) ={k|ceC}.

Basic Constraint Qualification: (BCQ)
ker Ve(Z) T N Ngomn(c(z)) = {0}
Subdifferential: Under the BCQ
of(z) = (z)Toh(c(x)).

Directional Derivative: Under BCQ
f(ws d) = limgyo LD — W (e(a); ¢/ ()d)
with

B (6 w) = (Qre + by, w) YV k € K(¢) and w € T, ().



Directions of Non-Ascent and Multipliers

Directions of non-ascent:

D(z):={deR" | f(z:d) <0}
={deR" | W' (c(z); Ve(z)d) <0} (BCQ)

The Multiplier Set:

M (Z) := ker Ve(z) " NOh(c(Z))

|
—N—
<
RN
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N———"

m
<0
<
T
=~ =
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The Second Directional Derivative

The PLQ second directional derivative:
(Rockafellar-Wets (97))

h(¢ + tw) — h(c) — th'(¢;w)

0 < h'(gw) :=lim

N0 12
B (w, Qrw) when w € T¢, (¢),
R when w & Tyom 1 (€).

and h”(c;-) is PLQ, but not necessarily convex.



The Second Directional Derivative
The PLQ second directional derivative:
(Rockafellar-Wets (97))

_ VR
0 < 1" (&w) := lim h(¢ + tw) — h(c) — th'(¢; w)

N0 %tQ
B (w, Qrw) when w € T¢, (¢),
R when w & Tyom 1 (€).

and h”(c;-) is PLQ, but not necessarily convex.
Moreover, there exists a neighborhood V' of ¢ such that

1
h(c) = h(c) + W' (c;c—¢) + §h”(é; ¢ —¢) for c € VN domh.



PLQ-Composite 2"4-Order Nec. and Suff. Conditions

(Rockafellar-Wets (97))
Let T € dom f such that f satisfies BCQ at Z.

(1) (Nec.) If f has a local minimum at z, then
0 € Ve(z) "0h(c(z)) and, ¥ d € D(7),

W' (c(z); Ve(z)d) +max {(d, V2, L(z,y)d) |y € M(z)} > 0.
(2) (Suff.) If 0 € Ve(z) TOh(c(Z)) and, ¥ d € D(z) \ {0},
W' (c(Z); Ve(z)d) + max {{d, V2, L(z,y)d) |y € M(z)} >0,

then Z is a strong local minimizer of f,
that is, there exists € > 0, u > 0 such that

@) 2 f@+5 e -2l Ve B@e).



Convex-Composite Generalized Equations

Let f := h o c be convex-composite, and define the set-valued
mapping g + G : R = R*™ by

oo = (") G = (et

The associated generalized equation for P is g + G 3 0.



Convex-Composite Generalized Equations

Let f := h o c be convex-composite, and define the set-valued
mapping g + G : R = R*™ by

_ (Vel@) 'y _( {o}"
The associated generalized equation for P is g + G 3 0.
For a fixed (z,7) € R™ x R™, define the linearization mapping
_ N
G+ (2. a(o) + Vala.) (57 7) + o)

V2 (ge)(7) me),

where Vg(z,79) = < (é) 0



Newton’s Method for Generalized Equations

- Let f := hoc be convex-composite.
- For (#,7) € R® x R™ set H := V2, L(,9).
- Assume f satisfies BCQ at Z.

Then, (z,y) € R™ x R™ satisfy the optimality conditions for
Yy

min h(c() + Ve(#)(x — &) + %(m — &) T H(z — )

T€R™

if and only if (Z, ) solves the Newton equations for g+G:

0 9(2,9) + Vo(2,9) (jjy)  Glany).



Strong Metric Subregularity

A set-valued mapping S : R® = R™ is strongly metrically
subregular at u for v if (u,v) € graph (S) and there exists k > 0
and a neighborhood U of % such that

llu — @l < kdist (v | S(u)) for all u € U.
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A set-valued mapping S : R® = R™ is strongly metrically
subregular at u for v if (u,v) € graph (S) and there exists k > 0
and a neighborhood U of % such that
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Theorem: (B-Engel(18)) h: R™ — R convex PLQ and
f := hocsatisfies BCQ at £ € dom f. Then, the following are
equivalent:

(1) The multiplier set M (Z) := ker Ve(z) T N Oh(c(Z)) is a
singleton {7} and the second-order sufficient conditions are
satisfied at z.

(2) The mapping g + G is strongly metrically subregular at
(z,y) for 0 and Z is a strong local minimizer of f.



Strong Metric Subregularity

A set-valued mapping S : R® = R™ is strongly metrically
subregular at u for v if (u,v) € graph (S) and there exists k > 0
and a neighborhood U of % such that

llu — @l < kdist (v | S(u)) for all u € U.

Theorem: (B-Engel(18)) h: R™ — R convex PLQ and
f := hocsatisfies BCQ at £ € dom f. Then, the following are
equivalent:

(1) The multiplier set M (Z) := ker Ve(z) T N Oh(c(Z)) is a
singleton {7} and the second-order sufficient conditions are
satisfied at z.

(2) The mapping g + G is strongly metrically subregular at

(z,y) for 0 and Z is a strong local minimizer of f.

Corollary: The matrix secant method converges superlinearly
if the Dennis-Mére condition holds.



Partial Smoothness: Lewis (02)

e h: R™ — R is a closed and proper function.
e M a C%-smooth manifold and ¢ € M C R™.

The function h is partly smooth at ¢ relative to M if M the
following four properties hold:

(1) (restricted smoothness) the restriction h|arq is smooth
around ¢, in that there exists a neighborhood V of ¢ and a
C2%-smooth function g defined on V such that h = g on
VM,

(2) (existence of subgradients) at every point ¢ € M close to

¢, Oh(c) # 0;

(
(subgradient inner semicontinuity) the subdifferential map
Oh is inner semicontinuous at ¢ relative to M.

(3)
(4)

normals and subgradients parallel) pardh(c) = Na(¢);



Partial Smoothness: Lewis (02)

e h: R™ — R is a closed and proper function.
e M a C%-smooth manifold and ¢ € M C R™.

The function h is partly smooth at ¢ relative to M if M the

following four properties hold:

(1) (restricted smoothness) the restriction h|arq is smooth
around ¢, in that there exists a neighborhood V of ¢ and a
C%-smooth function g defined on V such that h = g on
VM,

(2) (existence of subgradients) at every point ¢ € M close to
¢, Oh(c) # 0;

(3) (normals and subgradients parallel) pardh(¢) = Naq(C);

(4) (subgradient inner semicontinuity) the subdifferential map
Oh is inner semicontinuous at ¢ relative to M.

Generalizes classical notions of nondegeneracy, strict
complementarity, and active constraint identification.



Partial Smoothness




Rockafellar-Wets Representation (RWR)

h is PLQ and int (dom h) # (). Then, WLOG, the polyhedral
sets {Cy}X_; are given in terms of a common set of s > 0
hyperplanes H := {(a;,;)}i_; C (R™\ {0}) x R, so that
Vke{l,... K},

Cr = {c | {wrjaj, c) <wyjay, forall j € {1,...,s}},
with wy; € {£1},

Ie(e) = {j [{wrjaj; ¢) = wijog } = {5 [{aj, ¢) = a;} C{1,... s},

and
. . (wrjaj, c) < wijay,
0 t(Cy) =
(1) 07 int (Ci) {C Vief{l,... s
(ii) int (Cf,) Nint (Ck,) = 0 when ki # k.
Condition (b) implies that if ¢ € C, N Cy,, then
¢ € bdry Ck, Nbdry Ck, when ki # ks.

},Vke{l,...,lC},



The Active Manifold
- M Active set: K(c) :={keR™ |ce Cy, ke {1,2,...,K}}
- Active Manifold: Mg := riﬂkelC(E) Ck

- Active set (RWR) for
Cr = {c | {wrjaj, c) <wyjay, forall j € {1,...,s}},
with wy; € {£1}, is

Ii(c) = {J [{wrjaj, ) = wgja; } = {j [{(aj,c) = a;} C{1,...,s}.



The Active Manifold

Lemma: Let ¢ € dom f and assume dom h is given by an
RWR. Then, for all ¢ € M; and k € K(¢),

K(c) = K(¢), M.,= M; and Ij(c) = Ii(c).

Moreover,

./\/l(-;:{c

(c,aj) = aj for all k € K(¢),j € I(c)
(c,wrja;) < wijoy for all k € K(¢),j & Ir(c)



The Active Manifold

Lemma: Let ¢ € dom f and assume dom h is given by an
RWR. Then, for all ¢ € M; and k € K(¢),

K(c) = K(¢), M.,= M; and Ij(c) = Ii(c).

Moreover,

./\/l(-;:{c

For k € Mz set A := Ag(c¢) whose columns are
{a5 [k € K(0),j € Iu(@) }
Then 3 diagonal P; with entries ££1 on the diagonal such that
APj = Ag,(c) Vce Mg,
and, for any k € K(¢) and ¢ € Mg,
T, (c) =ker AT, and N (c) = Ran(A).

(c,wrja;) < wijoy for all k € K(¢),j & Ir(c)

(c,aj) = aj for all k € K(¢),j € I(c) }



The Subdifferential of A

We let k = |K(¢) and ¢ := |I(¢)| = |I(¢)| for all k, k" € K(€), so that
A e R™*¢, P; e R** P; = I,, and define block matrices
Q := diag(Qy), A := diagAP;

(1-k)AP, AP, s A
APy (1—k)AP, - A
A= : . - ; ’
AP, APy o (1-k)A
le bkl Im
Qk2 ka Im
Q = , B = . y J =
Qk; bi; I,

and averaged quantities

Q=@1/k)JTQJ, A=1/k)JTA, b= 1/k)J'B, X(c)=Qc+b.



The Subdifferential of A

For any ¢ € Mz, Oh(c) can be given by two equivalent

formulations:
= (... u)T >0 )
Ohie)= y | F T Wt 20 L A,
such that Jy = Qc+ B+ Au
where

Ue) :={p>0|Au=k [Qc+ B— J(Qc+1b)] }.



The Subdifferential of A

For any ¢ € Mz, Oh(c) can be given by two equivalent

formulations:
= (... u)T >0 )
ooy = Jy | H T W) 20 L ),
such that Jy = Qc+ B+ Au
where

Ue) :={p>0|Au=k [Qc+ B— J(Qc+1b)] }.

Structure Functional of Osborne (01)



The Subdifferential of A

For any ¢ € Mz, Oh(c) can be given by two equivalent

formulations:
= (... u)T >0 )
Ohie)= y | F T Wt 20 L A,
such that Jy = Qc+ B+ Au
where

Ue) :={p>0|Au=k [Qc+ B— J(Qc+1b)] }.

Nondegeneracy: We say M; satisfies the nondegenercy
condition if ker(A4) = {0}.



The Subdifferential of A

For any ¢ € Mz, Oh(c) can be given by two equivalent
formulations:

Oh(c) = {y

where

= (..., pu)" 20
such that Jy = Qc + B+ Au

} = No(e) + AU(e),

Ue) :={p>0|Au=k [Qc+ B— J(Qc+1b)] }.

Nondegeneracy: We say M; satisfies the nondegenercy
condition if ker(A4) = {0}.

Lemma: Let ¢ € Mg. If ker A = {0}, then, for every y € oh(c),
there is a unique p(c,y) € U(c) such that y = Ag(c) + Ap(e, y).



k-Strict Complementarity
Let ¢ € dom h. We say k-strict complementarity holds at
(c,y) € graph (0h) for u = (u],... ,,ul—fT)T € U(c) wrt Mg if
(1) ¢ € Mz and y = Mo(c) + Ap,
(2) 3k € K(@) with p > 0,
(3) if j € K(c)\ {k} and i € {1,...,¢} with (p;); = 0, then the
scalars (Pj); = 1 for all j’ € K(c).
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(c,y) € graph (0h) for u = (u],... ,,ul—fT)T € U(c) wrt Mg if
(1) ¢ € Mz and y = Mo(c) + Ap,
(2) 3k e K(¢) with p > 0,
(3) if j € K(c)\ {k} and i € {1,...,¢} with (p;); = 0, then the

scalars (Pj); = 1 for all j’ € K(c).

Lemma: Let ¢ € dom h. If M; is nondegenerate and for some
¢ € M; and there is a (¢,y) € graph (Oh) such that k-strict
complementarity holds at (¢, y) wrt Mg, then Mg is partly
smooth.



k-Strict Complementarity
Let ¢ € dom h. We say k-strict complementarity holds at
(c,y) € graph (0h) for u = (u],... ,,ul—fT)T € U(c) wrt Mg if
(1) ¢ € Mz and y = Mo(c) + Ap,
(2) 3k e K(¢) with p > 0,
(3) if j € K(c)\ {k} and i € {1,...,¢} with (p;); = 0, then the

scalars (Pj); = 1 for all j’ € K(c).

Lemma: Let ¢ € dom h. If M; is nondegenerate and for some
¢ € M; and there is a (¢,y) € graph (Oh) such that k-strict
complementarity holds at (¢, y) wrt Mg, then Mg is partly
smooth.

Moreover, if z € dom f and y € 0h(c) are such that ¢ = ¢(z) and
ker Ve(z) ' Nri(0h(2) = {7}, (Strict Criticality (SC))
then

= {d | (c(2); Ve(z)d) <0} = ker AT Ve(z).



Newton’s Method Hypotheses

Let f = hoc¢ be PLQ convex composite, Z € dom f, § € Oh(c(Z)), and
set ¢ := ¢(T).
Assumptions:

(a) cis C3-smooth,

(b) Mg satisfies the nondegeneracy condition,
(c) f satisfies SC at z for g,
(d

)  satisfies the second-order sufficient conditions, i.e.,
' (c(Z); Ve(z)d) + <d, V2, L(z, gj)d> >0 VdekerATVe(z)\ {0},
where M (z) = {y} and D(Z) = ker AT Ve(z).



Newton’s Method Hypotheses

Let f = hoc¢ be PLQ convex composite, Z € dom f, § € Oh(c(Z)), and
set ¢ := ¢(T).
Assumptions:

(a) cis C3-smooth,

(b) Mg satisfies the nondegeneracy condition,

(c) f satisfies SC at z for g,

(d) z satisfies the second-order sufficient conditions, i.e.,

W' (c(z); Ve(z)d) 4+ (d, V2, L(z,5)d) >0 Vdeker ATVe(z)\ {0},
where M (z) = {y} and D(Z) = ker AT Ve(z).

NLP Analogues:

(b) linear independence of the active constraint gradients,
(c) strict complementary slackness, and

(d) strong second-order sufficiency condition.



Convergence of Newton’s Method

There exists a neighborhood N of (Z,y) such that if

(2%, 4%) € NV, then there exists a unique sequence {(z*,y*)}
satisfying the optimality conditions of Py with

Hy, := V2, L(2*,y*) such that, for all k € N,

() e(@*1) + Ve(ah e — 2" € M,
(ii) ¥ € 1idh(c(zF 1) + Ve(zh 1) zk — 2F-1)),

(iii) Hg_q[z* — 2% 1) 4+ Ve(zb 1) TyF =0,

(iv) %! is a strong local minimizer of Py.
Moreover, the sequence (z¥,3*) converges to (z,7) at a

quadratic rate.



