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Abstract. Regularization plays a key role in a variety of optimization formulations of inverse
problems. A recurring theme in regularization approaches is the selection of regularization param-
eters and their effect on the solution and on the optimal value of the optimization problem. The
sensitivity of the value function to the regularization parameter can be linked directly to the Lagrange
multipliers. This paper characterizes the variational properties of the value functions for a broad class
of convex formulations, which are not all covered by standard Lagrange multiplier theory. An inverse
function theorem is given that links the value functions of different regularization formulations (not
necessarily convex). These results have implications for the selection of regularization parameters,
and the development of specialized algorithms. Numerical examples illustrate the theoretical results.
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1. Introduction. It is well known that there is a close connection between the
sensitivity of the optimal value of a parametric optimization problem and its Lagrange
multipliers. Consider the family of feasible convex optimization problems

P(b,T) minimize p(r) subject to Ax+r=05b, ¢(x)<T,

T

where b € R™, A € R™*" and the functions ¢ : R® — R := (—o0, 00] and p : R™ — R
are closed, proper, and convex and continuous relative to their domains. The value
function

v(b,r) = 1rn£ {p(r)|[Az +7r =0, ¢(z) <7}

gives the optimal objective value of problem P(b, ) for fixed parameters b and 7. If
P(b,7) is a feasible ordinary convexr program [34, section 28], then under standard
hypotheses the subdifferential of v is the set of pairs (u, 1), where u € R™ and p € R
are the Lagrange multipliers of P (b, 7) corresponding to the equality and inequality
constraints, respectively. This connection is extensively explored in Rockafeller’s 1993
survey paper [35].

If we allow ¢ to take on infinite values on the domain of the objective—which can
occur, for example, if ¢ is an arbitrary gauge—then P(b,7) is no longer an ordinary
convex program, and so the standard Lagrange multiplier theory does not apply.
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Multiplier theories that do apply to more general contexts can be found in [21, 16, 45,
8]. Remarkably, even in this general setting, it is possible to obtain explicit formulas
of the subdifferential of the value function v useful in many applications.

1.1. Examples. We give two simple examples that illustrate the need for the
extended Lagrange multiplier theory. Both are of the form

(1.1) minimize 1 [|Az —b|[; subject to 7 (z|U) <1,
x

where
vy(@|U):=inf{A>0|x e AU}

is the gauge function for the nonempty closed convex set U C R", which contains 0.
Let A= 1T and b= (0,—1)T. Then the solution to (1.1) is just the 2-norm projection
onto the set {z|y(z |U) <1} ="U.

For our first example, we consider the set

U={x€R2 %a:%gxg},

defined in [34, section 10]. The gauge for this set is an example of a closed, proper,
and convex function that is not locally bounded and therefore not continuous at a
point in its effective domain. It is straightforward to show that

o

2357 xTo > 0,

V(@ |U)=40,  a1=0=ua,

+o00, otherwise.

The constraint region for (1.1) is the set U, and the unique global solution is the point
2 = 0. However, since 0 =~ (0 | U) < 1, the classical Lagrange multiplier theory fails:
the solution is on the boundary of the feasible region, and yet no classical Lagrange
multiplier exists. The problem is that the constraint is active at the solution but not
active in the functional sense, i.e., v (0| U) < 1. In contrast, the extended multiplier
theory of [45, Theorem 2.9.3] succeeds with the multiplier choice of 0.

For the second example, take U = By N K, where By is the unit ball associated
with the Euclidean norm on R?. Then v (z |BoNK) = |z||, + § (z | K), and the
constraint region for (1.1) is the set Bo N K. Set K = {(z1,22)|r2 > 0}. Again,
the origin is the unique global solution to this optimization problem, and no classical
Lagrange multiplier for this problem exists.

In both of these examples, the multiplier theory in [45] can be applied to obtain
a Lagrange multiplier theorem. In Theorem 5.2, we extend this theory and provide a
characterization of these Lagrange multipliers that is useful in computation.

1.2. Formulations. Appropriate definitions of the functions p and ¢ can be
used to represent a range of practical problems. Choosing p to be the 2-norm and ¢
to be any norm yields the canonical regularized least-squares problem

(1.2) minimize ||rll2  subject to Az +r =05, |z|| < T,
T, T

which optimizes the misfit between the data b and the forward model Az, subject to
keeping x appropriately bounded in some norm. The 2-norm constraint on x yields a
Tikhonov regularization, popular in many inversion applications. A 1-norm constraint
on z yields the Lasso problem [41], often used in sparse recovery and model-selection
applications. Interestingly, when the optimal residual r is nonzero, the value function
for this family of problems is always differentiable in both b and 7 with
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Fic. 1.1. The maisfit p(r) (solid line) and its derivative (dashed line) as a function of the
reqularization parameter for a 1-norm regularized example. The left panel shows the constrained
formulation P (b, T), which varies smoothly with 7; the right panel shows that the penalized formu-
lation does not vary smoothly with A (note the reversed axis).
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where || - ||« is the norm dual to || - ||. This gradient is derived by van den Berg and
Friedlander [10, Theorem 2.2]. The analysis of the sensitivity in 7 of the value function
for the Lasso problem led to the development of the SPGL1 solver [9], currently used
in a variety of sparse inverse problems, with particular success in large-scale sparse
inverse problems [27]. A subsequent analysis [12] that allows ¢(x) to be a gauge paved
the way for other applications, such as group-sparsity promotion [11].

An alternative to P(b, 7) is the class of penalized formulations

Pu(b, A) minimmize p(b— Azx) + Ao(z).

(The subscript “L” in the label reminds us that it can be interpreted as a Lagrangian
of the original problem.) The nonnegative regularization parameter A is used to
control the tradeoff between the data misfit p and the regularization term ¢. For
example, talking p(r) = ||r||2 and ¢(x) = ||z|| yields a formulation analogous to (1.2).
This penalized formulation is commonly used in applications of Bayesian parametric
regression [31, 37, 30, 42, 44], inference problems on dynamic linear systems [1, 15],
feature selection, selective shrinkage, and compressed sensing [25, 20, 19], robust for-
mulations [29, 24, 2, 23], support-vector regression [43, 26], classification [22, 33, 39],
and functional reconstruction [6, 38, 17].

From an algorithmic point of view, the unconstrained formulation Py, (b, \) may be
preferable. However, the constrained formulation P(b,7) has the distinction that its
value function v(b, 7) is jointly convex in its parameters; see section 1.3. In contrast,
the optimal value of the penalized formulation Py (b, A) is not in general a convex
function of its parameters. The following simple example

p(r) = 5lrl3,  o(x) = |z, A=[(1) (1)] b:m

illustrates this situation. The optimal values of p in the formulations P(b,7) and
P.(b, A), as functions of 7 and A, respectively, are given by

% + %(7’ —2)? for T €10,1), A2 for A € [0, 1),
pr =1 i(r—-3)? for 7 € [1,3), pr=43+3A2 for Ae(l,2),
0 otherwise; 5/2 otherwise.
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The optimal values and their derivatives are shown in Figure 1.1, where it is clear
that p, is convex (and in this case also smooth) in 7, but py is not convex in A.

The admissibility of variational analysis and convexity of the value function
may convince some practitioners to explore formulations of type P(b, ) rather than
PL(b,A). In fact, we give an example (in section 7) of how this variational information
can be used for algorithm design in the context of large-scale inverse problems.

1.3. Approach. For many practical inverse problems, the formulation of pri-
mary interest is the residual-constrained formulation

Pr(b,0) minimize ¢(z) subject to p(b— Ax) <o,

(the subscript “R” reminds us that this formulation reverses the objective and con-
straint functions from that of P(b, 7)) in part because estimates of a tolerance level
o on fitting the error p(b — Ax) are more easily available than estimates of a bound
on the penalty parameter on the regularization ¢; cf. Py (b, \). However, the formula-
tion P(b, T) can sometimes be easier to solve. The underlying numerical theme is to
develop methods for solving Pr (b, o) that use a sequence of solutions to the possibly
easier problem P (b, 7).

In section 2, we present an inverse function theorem for value functions that
characterizes the relationship between P (b, 7) and Py (b, o) and applies more generally
to nonconvex problems. Pairs of problems of this type are classical, though typically
paired in a max-min fashion. For example, the isoperimetric inequality and Queen
Dido’s problem are of this type; the greatest area surrounded by a curve of given
length is related to the problem of finding the curve of least arc length surrounding
a given area. (See [40] for a modern survey.) The Markowitz mean-variance portfolio
theory is also based on such a pairing; minimizing volatility subject to a lower bound
on expected return is related to maximizing expected return subject to an upper
bound on volatility [32].

The application motivating our investigation is establishing conditions under
which it is possible to implement a root-finding approach for the nonlinear equation

(1.3) find 7 such that v(b,7) = o,

where Pg (b, o) can be solved via a sequence of approximate solutions of P(b, 7). This
generalizes the approach used by van den Berg and Friedlander [10, 12] for large-scale
sparse optimization applications. The convex case is especially convenient, because
both value functions are decreasing and convex. When the value function is differen-
tiable, Newton’s method is globally monotonic and locally quadratic. In section 5 we
establish the variational properties (including conditions necessary for differentiabil-
ity) of P(b, 7).

In section 4 we derive dual representations of P(b,7) and their optimality con-
ditions. These are used in section 5 to characterize the variational properties of the
value function v. The conjugate, horizon, and perspective functions arise naturally as
part of the analysis, and we present a calculus (section 3) for these functions that al-
lows explicit computation of the subdifferential of v for large classes of misfit functions
p and regularization functions ¢ (see section 6).

One of the motivating problems for the general analysis and methods we present is
the treatment of a robust misfit function p (such as the popular Huber penalty) in the
context of sparsity promotion, which typically involves a nonsmooth regularizer ¢. In

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/15/14 to 205.175.124.88. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

VARIATIONAL PROPERTIES OF VALUE FUNCTIONS 1693

section 7 we demonstrate that the sensitivity analysis can be applied to solve a sparse
nonnegative denoising problem with convex and nonconvex robust misfit measures.
The proofs of all of the results are relegated to the appendix (section 8).

1.4. Notation. For a matrix A € R™*" the image and inverse image of the
sets I¥ and F, respectively, are given by the sets

AE={yly=Ax,z € E} and A 'F={z|Av€F}.

For a function p : R® — R, its epigraph is denoted epi p = {(x, ) |p(z) < p}, and
its level set is denoted lev,(7) = {x |p(z) < 7}. The function p is said to be proper if
domp # () and closed if epi p is a closed set. The function ¢ (z | X) is the indicator
toaset X,ie,d(z|X)=0ifzeXandd(zx|X)=4cifx ¢ X.

2. An inverse function theorem for optimal value functions. Let v; :

X C R" — R, i € {1,2}, be arbitrary scalar-valued functions, and consider the
following pair of related problems and their associated value functions:

P1,2(7) vi(7) = nf Y1(x) +6 ((x,7) | epi ),
P2,1(0) va(0) := inf ¥a(2) +6((z,0) | epi 1)

This pair corresponds to the problems P(b, 7) and Py (b, o), defined in section 1, with
the identifications

Pi(x) = p(b— Az) and  1hs(x) = o().

Our goal in this section is to establish general conditions under which the value
functions v, and vy satisfy the inverse-function relationship

v1 0 vy = id,

and for which the the pair of problems P; 2(7) and P2 1(0) have the same solution
sets. The pair of problems P(b,7) and Px(b, o) always satisfy the conditions of the
next theorem, which applies to functions that are not necessarily convex.

THEOREM 2.1. Let ¢; : X CR™ = R, i € {1,2}, be as defined in Py 2(7), and
define

S12:= {7 €R|0 # argmin Py 5(7) C {w € X [ha(z) =7} }.

Let Sz1 be defined symmetrically to S12 by interchanging the roles of the indices.
Then, for every T € S1,2,

(a) v2(v1(7)) =7 and

(b) argminP; 2(7) = argmin P 1(v1(7)) C {x € X ||} ¢1(z) = v1(7).
Moreover, So.1 = {v1(7) |7 € S12}, and so

{(7’, vl(T)) [T e 51,2} = {(UQ(U)HT) lo € S } :

3. Convex analysis. In order to present the duality results of section 4, we
require a few basic tools from convex analysis. There are many excellent references
for the necessary background material, with several appearing within the past 10
years. In this study we make use of Rockafellar [34] and Rockafellar and Wets [36],
although similar results can be found elsewhere [8, 13, 14, 21, 28, 45]. We review the
necessary results here.
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3.1. Functional operations. The proper convex function h : R” — R generates
the following convex functions:
1. Legendre—Fenchel conjugate of h:

h*(y) := sup [(y, x) — h(z)].
2. Horizon function of h:

h*(z):= sup [h(z+ z)— h(x)].

redom h

3. Perspective function of h:

M(A12) i A >0,
h(z,A\):=4d(z]0) if A=0,
+00 if A<O.

4. Closure of the perspective function of h:

A(ATLz) if A >0,
h™(z, ) == ¢ h*>(2) it A=0,
+0o0 if A<0.

Each of these functions can also be defined by considering the epigraphical per-
spective and properties of convex sets. Indeed, the horizon function h* is usually
defined to be the function whose epigraph is the horizon cone of the epigraph of h
(see section 3.2 below). The definition given above is a consequence of [34, Theorem
8.5].

The perspective function of & is the positively homogeneous function generated
by the convex function h(z, ) := h(xz) + § (A ]| {1}) [34, pp. 35 and 67]. If h is
additionally closed and proper, then so are h* (Theorem 12.2), h*® (Theorem 8.5),
and h™ (Corollary 8.5.2), where these results are from Rockafellar [34].

Note that for every closed, proper, and convex function A, the associated horizon
and perspective function, h*>° and h™, are positively homogeneous and so can be rep-
resented as the support functional for some convex set [34, Theorem 13.2]. Moreover,
if h is a support function, then Ah*>° = h™ = h.

3.2. Cones. We associate the following cones with a convex set C' and a convex
function h:
1. Polar cone: The polar cone of C' is denoted by

C°:={z"|(z",z) <0 Vx e C}.
2. Recession cone: The recession cone of C' is denoted by
C* ={z|C+axCcC}={zly+rxeC YA>0,VyeC}.
3. Barrier cone: The barrier cone of C' is denoted by
bar (C) := {z" |for some 8 € R, (z, 2*) < 8 Vx € C}.
4. Horizon cone of h: The horizon cone [34, Theorem 8.7] of h is denoted by
hzn (h) := {y |h*=°(y) <0} = [levp(7)]*° V 7> infh.

A further excellent reference for horizon cones and functions is [7], where they are
referred to as asymptotic cones and functions.
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3.3. Calculus rules. The conjugate, horizon, and perspective transformations
defined in section 3.1 posses a rich calculus. We use this calculus to obtain explicit
expressions for the functions p*, ¢*, (¢*)*°, and (¢*)™, which play a crucial role in
the applications of section 6. The calculus for conjugates and horizons is developed in
many references (e.g., [8, 13, 14, 21, 28, 45]); specific citations from [34] are provided.
In order to establish the perspective calculus rules for affine composition and the
inverse linear image, we note that addition is a special case of affine composition,
and that infimal convolution is a special case of inverse linear image. Hence, we need
only establish the perspective calculus formulas for affine composition and the inverse
linear image: the formula for affine-composition follows from [34, Theorem 9.5] and
the definition of the perspective transformation; the formula for inverse linear image
is established in section 8.

Affine composition. Let p : R™ — R be a closed proper convex function,
A e R™X" and b € R™, such that (Ran (A) — b) Nri(dom p) # (). Let

h(z) := p(Az — b).

Then
h*(y) = Ainf [(b, u) + p* (u)] [34, Theorem 16.3],
Ty—y
h>(z) = p=(Az) [34, Theorem 9.5],

hﬂ-(xv )\) = pﬂ—(Ax - )\ba A)v
where, for A =0,
h™(x,0) = p"(Az,0) = p> (Ax).

All three functions are closed, proper, and convex. The derivation of h* also makes
use of the observation that

(3.1) if g(x):=h(x—>), then g"(v)=h*(v)+ (v, D).

Inverse linear image. Let p : R™ — R be closed, proper, and convex, and let
A e R™*™, Let

h(w) = Aiwn:pr(x)

be the inverse linear image of p under A. Then

h*(y) = p*(ATy) [34, Theorem 16.3].

If (AT)~'ri (domp*) # (), then
h*>(z) = Ain_f p™(x) [34, Theorem 9.2],
h™(w, \) = Ainf p"(x, ) (Proof in section 8),

where all of the functions h, h*, h®, and h™ are closed, proper, and convex.
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Addition. Let h; : R” - R, for i = 1,...,m, be closed proper convex functions.
If h:=hy+ -+ hy, is not identically +oo, then

h® =h{®+ -+ hy [34, Theorem 9.2],
hﬂ—:hir""""_h:na

where both are closed, proper, and convex. Moreover, if (", ri (dom h;) # 0, then
h* =hiv---Vh), [34, Theorem 16.4]

is closed, proper, and convex, where V denotes infimal convolution.
Infimal convolution. Let h; : R™ — R, for i = 1,...,m, be closed, proper, and
convex functions. Let h := hyV---Vh,,. Then h* = hi +---+ h’ , and

if ri(domh}) #@, then h* =hv---Vhy? [34, Corollary 9.2.1],

-

@
I
=

and

o (z,A) = _ inf  [hT(21,A) + -+ hy (@m, A)] .

m L Ti=T
All three functions are closed, proper, and convex.

4. The dual problem. For our analysis, it is convenient to consider the (equiv-
alent) epigraphical formulation

(P) v(b, 7) = minimize f(z,b,7)
of P(b, ), where

fz,b,7):=p(b— Az) + 6 ((z,7) | epi @) .

Because the functions p and ¢ are convex, it immediately follows that f is also convex.
This fact gives the convexity of the value function v, since it is the inf-projection of
the objective function in x [34, Theorem 5.3].

We use a duality framework derived from the one described in Rockafellar and
Wets [36, Chapter 11, section H] and associate with P its dual problem and corre-
sponding dual value function:

(D) (b, 7) := maximize (b, u) + 7 — f*(0,u, ).

Uy p

To derive this dual from [36, Theorem 11.39], define
foo,ry (@, Ab, AT) = f(2,0+ Ab, 7+ AT) .

Then, by (3.1), f(*bJ)(v, u, i) = f*(v,u, p) — (b, u) — 7. Substituting this expression
into [36, Theorem 11.39] gives D.

The dual D is the key to understanding the variational behavior of the value
function. To access these results we must compute the conjugate of f. For this it is
useful to have an alternative representation for the support function of the epigraph,
which is the conjugate of the indicator function appearing in f.
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4.1. Reduced dual problem. In Theorem 4.2, we derive an equivalent repre-
sentation of the dual problem D in terms of w alone. This is the reduced dual problem
for P. We first present a result about conjugates for epigraphs and lower level sets.

LeEMMA 4.1 (Conjugates for epigraphs and lower level sets). Let h: R® — R be
closed, proper, and convex. Then

(4.1a) " ((y, ) [epi h) = (R*)" (y, —p),

(4.1 5yl teva(r)) = (inf i+ (7))

Expressions (4.1b) and (4.1a) are easily derived from the case where 7 = 0 which
is established in [34, Theorem 13.5] and [34, Corollary 13.5.1], respectively. In [34],
it is shown that (4.1a) is a consequence of (4.1b). In section 8 we provide a different
proof of Lemma 4.1, where it is shown that (4.1b) follows from (4.1a). The arguments
provided in the proof are instructive for later computations.

The conjugate f*(y,u,u) of the perturbation function f(z,b,7) defined in P is
now easily computed:

f*(y,u, u) = sup [(y, ) + (u, b) + p7 — p(b — Ax) — 6 ((=,7) | epi ¢)]

x,b, T
= sup [{y, 2) + (u, w+ Az) + p7 — p(w) = & ((2,7) | epi 9)]
= szuf [<y + AT, x> +ur — 6 ((z,7) | epi d)ﬂ + SLuljp [(u, w) — p(w)]
(4.2) = (") (y + ATu, —p) + p*(w),

where the final equality follows from (4.1a). With this representation of the conjugate
of f, we obtain the following equivalent representations for the dual problem D. The
representation labeled D, is of particular importance to our discussion. We refer to
D, as the reduced dual.

THEOREM 4.2 (Dual representations). For problem P define the functions

gr(u) := p*(u) + 6" (ATu | lev¢(7)) ,
pr(s, ) := T+ ()" (s, 1)

Then the value function for D has the following equivalent characterizations:

9(b,) = sup |(b, u) = p*(u) — fnf pr(ATu, )
(Dy) = sup b, u) — p*(u) — 6 (ATu|levy(r))]

(
(4.3a) 0
(4.3b) =cl(v(-,7)) (),

where the closure operation in the (4.3b) refers to the lower semicontinuous hull of
the convex function b v(b, 7). In particular, this implies the weak duality inequality
(b, 7) < v(b, 7). Moreover, if the function p is differentiable, the solution u to D, is
unique.

In the large-scale setting, the primal problem P(b,7) is usually solved using a
primal method that does not give direct access to the multiplier &z for the inequality
constraint ¢(x) < 7. For example, P(b,7) may be solved using a variant of the
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gradient projection algorithm. However, one can still obtain an approximation to the
optimal dual variable @ in D,, typically through the residual corresponding to the
current iterate. For this reason, one needs a way to obtain an approximation to &
from an approximation to @ (i.e., given u, compute ). Lemma 4.1 and Theorem 4.2
show that this can be done by solving the problem inf,>¢ p- (AT, u) for 1. Indeed,
in the sequel we show that in many important cases there is a closed form expression
for the solution 7. The following lemma serves to establish a precise relationship
between the solution u to the reduced dual D, and the solution pair (u, ) to the
dual D.
LEMMA 4.3. Let ¢ be as in P with 7 > inf ¢ and T € levy(T).
1. For every s, we have

(4.4) 8 (s leve(r)) < inf pr(s. ).

2. Let (T,3) satisfy s € N (T |levy(T)) and define

S1 =argmin p,(3,u) and Sy = {,u >0
n>0

where, for x € dom ¢,

+06(z) = {pz|z € 0¢(x)} if p >0 and x € dom ¢,
a " | N(z|dom¢p)  if u=0 or dp(z) = 0.
If either S1 or So is nonempty, then S1 = So and equality holds in (4.4).
In Zalinescu the object u*d¢(z) is denoted as d(u¢)(x) [45, p. 141], where

(16)(r) = {§¢(x) Lo

(x| domg) if A=0.
We choose the notation p+d@(x) to emphasize that there is an underlying limiting
operation at play, e.g., see [36, Definition 8.3 and Proposition 8.12].

The final lemma of this section concerns conditions under which solutions to P
and D, exist. This is closely tied to the horizon behavior of these problems and the
notion of coercivity.

DEFINITION 4.4. A function h : R* — R is said to be a-coercive if

@) _

llzll—oo ||z

In particular, h is said to be 0-coercive, or simply coercive, if im0 f(7) = 00.
LEMMA 4.5 (Coercivity of primal and dual objectives).
1. The objective function f(-,b,7) of P is coercive if and only if
(4.5a) hzn (¢) N [~ A" hzn (p)] = {0}.

2. The objective function of the reduced dual D, is coercive if and only if

(4.5b) b € int (dom p + Alevy(7)) .
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5. Variational properties of the value function. Using D and representation
of the conjugate of the objective of P (cf. (4.2)), we can specialize [36, Theorem 11.39]
to obtain a characterization of the subdifferential of the value function, as well as
sufficient conditions for strong duality.

THEOREM 5.1 (Strong duality and subgradient of the value function). Let v and
0 be as in P and D, respectively. It is always the case that

v(b,T) > (b, 7) (weak duality).
If (b,7) € int (domw), then

v(b,7) =0(b,T) (strong duality)
and Ov(b, T) # ) with

(b, 7) = arg max [(b, w) — p*(u) — pr(ATu, —p)] .

Furthermore, for fized (b,7) € R™ x R,
dom f(-,b,7) #0 <= b e domp+ A(levyg(7)).
In particular, this implies that

(b,7) € int (domv) <= b € int (dom p + A(levg(7))) .

We now derive a characterization of the subdifferential dv(b,7) based on the
solutions of the reduced dual D,..
THEOREM 5.2 (Value function subdifferential). Suppose that

(5.1a) b eri(domp) + Ari(levg(r)) and
(5.1b) ri (dom p*) N [A™Tri (bar (levy(7)))] # 0.

1. If the pair (T,u) satisfies
(5.1c) T € levy(r), TWe dp(b— AT), and AT € N (T |levy(r)),

then T solves P and u solves D,..
2. If T solves P and (5.1a) holds, there exists u such that (T,u) satisfies (5.1c).
Ifu solves D, and (5.1b) holds, there exists T such that (T,u) satisfies (5.1c).
4. If either (4.5a) and (5.1a) holds, or (4.5b) and (5.1b) holds, then dv(b,T) # ()
and argmin - pr (AT, ) # 0 for all (z,u) € R® x R™ satisfying (5.1c)
with

©w

_ w\ | (T,u) eR™xR™ satisfy (5.1¢) and
(5:1d)  dolby7) = {(—ﬁ) ‘ fi € argmin,»o pr(ATT, p)
| 3T €levy(r) s.t. 0e —ATu+nut0¢(T),
(5.1e) = <_ ) where u € dp(b — AT),
71> 0, and B(6(z) — ) = 0
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The representation (5.1e) expresses the elements of dv(b, T) in terms of classical
Lagrange multipliers when @ > 0, and extends the classical theory when 7w = 0. (See
Lemma 4.3 for the definition of u+d¢(x).) Because v is convex, it is subdifferentially
regular, and so for fixed b, we can obtain the subdifferential of v with respect to 7
alone [36, Corollary 10.11], i.e.,

Oyv(b, ) = {w ' <Z) € ov(b, 7) }

6. Applications. In this section we apply the calculus rules of section 3.3 in
conjunction with Theorem 5.2 to evaluate the subdifferential of the value function
in three important special cases: where ¢ is a gauge-plus-indicator (section 6.1), a
quadratic support function (section 6.2), and an affine composition with a quadratic
support function (section 6.3). In all cases we allow p to be an arbitrary convex
function.

6.1. Gauge-plus-indicator. The case where p is a linear least-squares objective
and ¢ is a gauge function is studied in [12]. We generalize this case by allowing the
convex function p to be possibly nonsmooth and non-finite-valued, and take

(6.1) ¢(@) =7 (x| U)+6(x|X),

where U is a nonempty closed convex set containing the origin. Here, v (x | U) is the
gauge function defined in (1.1). It is evident from the definition of a gauge that ¢
is also a gauge if and only if X is a convex cone. Since 0 € U, it follows from [34,
Theorem 14.5] that v (- | U) = §*(-|U®), where

U°={v|(v,u) <1VueU}

is the polar of the set U.
Observe that the requirement « € X is unaffected by varying 7 in the constraint
¢(x) < 7. Indeed, the problem P is unchanged if we replace p and ¢ by

(6.2) py.a) = p(y) +6 (2| X)  and  d() =~ (x| U)
with A and b replaced by

hie (g) and A= {_f}] .

Hence, the generalization of [12] discussed here only concerns the application to more
general convex functions p.

There are two ways one can proceed with this application. One can use ¢ as given
in (6.1) or use p and ¢ as defined in (6.2). We choose the former in order to highlight
the presence of the abstract constraint € X. But we emphasize—regardless of the
formulation chosen—that the end result is the same.

LEMMA 6.1. Let ¢ be as given in (6.1). The following formulas hold:
6.3a) Y(U)=6(-1U°),
6.3b) dom~y (- | U) = cone (U) = bar (U°),
6.3¢) dom ¢ = cone (U) N X,
6.3d) levg(r) = (tU) N X,
6.3e) hzn (¢) = U N X, and
6.3f) cl(bar (levg(7))) = cl (bar (U) + bar (X)) .
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If it is further assumed that
(6.4) ri(7U) Nri(X) # 0,

and then we also have

(6.50) §(2) = minfs" (= — 5 X) + 8 (s | U],
(6.5b) (67 (2. ) = minl6" (2 = 5| X) + 8 (s | uU),
(6.5¢) 07(2|levy (7)) = minfrp + (¢7)" (2, )]

(6.5d) = msin[d*(z —s|X)+7y(s| U], and
(6.5¢) N (z|levg(r)) =N (z|7U)+ N (z]|X).

If s minimizes (6.5d), then [t := v (3 | U°) minimizes (6.5¢).

By Theorem 5.1, the subdifferential of v(b,7) is obtained by solving the dual
problem (8.4) or the reduced dual D,. When ¢ is given by (6.1), the results of
Lemma 6.1 show that the dual and the reduced dual take the form

(6.6) sup [(b, u) +7p — (¢*)(ATu, —p) — p* (u)]

Uy

= Sl;p [(b, u) — p*(u) — 6" (ATu } levy(T) )}

= sup {(b, u) — p*(u) — Insin[5* (ATu—s|X)+7y(s| U°)]]

(6.7) =sup [(b, u) — p*(u) — 6*(ATu —s | X)—6"(s|TU)].

Moreover, if (w,s) solves (6.7), then (u, ) solves (6.6) with mw = —~v (5| U°), and
(@, = (5[ U?)) € Ov(b, 7).

We have the following version of Theorem 5.2 when ¢ is given by (6.1).
THEOREM 6.2. Let ¢ be given by (6.1) under the assumption that (6.4) holds,
and consider the following two conditions:

(6.8) b € 1i (dom p+ A[FU N X]) = ri (dom p) + Afri (+U) Nri (X))

and

(6.9) J 4 €ri(domp*)  such that AT4 € ri(bar (U)) 4+ ri (bar (X)) .
1. If the triple (T,w,3) satisfies

(6.10a) u € dp(b — AT), Te XN (r0),
(6.10b) 5€N(@|tU), and ATu-3€ N (T|X),

then T solves P(b,7) and (u,s) solves (6.7).

2. If T solves P(b,7) and (6.8) holds, then there exists a pair (u,s) such that
(T,w,s) satisfies (6.10).

3. If (@,s) solves (6.7) and (6.9) holds, then there exists T such that (T,,S)
satisfies (6.10).
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4. If either
(6.11) U*NX>*N[~Athzn (p)] = {0} and (6.8) holds
or
(6.12) b € int (dom p + A[rU N X]) and (6.9) holds,

then Ov(b,7) # 0 and is given by

(6.13)
o6 ={ (L3 0m)

< _) 3T € XN(rU) s.t.

(Z,u,35) € R" x R™ x R" satisfy (6.10)}

Y 0 -ATu+ N@|X)+utoy(@|U), where

TRl weoplb—AT), 0< T and (v (T | U) —7) =0
6.1.1. Gauge penalties. In [12], the authors study the case where p is a linear
least-squares objective, ¢ is a gauge functional, and X = R™. In this case, [12, Lemma
2.1] and [12, Theorem 2.2(b)] can be deduced from (6.7) and (6.13), respectively.
Another application is to the case where p is finite-valued and smooth, ¢ is a norm,
and X is a generalized box. In this case, all of the conditions of Theorems 5.1 and
6.2 are satisfied, solutions to both P(b,7) and (6.7) exist, and v is differentiable. In

particular, consider the nonnegative 1-norm-constrained inversion, where

¢(x) =zl + 0 (z | RY),

and p is any differentiable convex function. The subdifferential characterization given
in Theorem 5.1 can be explicitly computed via Theorem 6.2. In the notation of (6.1),

U= {zf|], 1=} :Bi,

and X in (6.1) is R’}. Since the function p is differentiable, the solution % to the
dual (6.7) is unique [34, Theorem 26.3]. Therefore, Theorem 6.2 gives the existence
of a unique gradient

Vyv(b, 1) = —ATVp(b — AZ),

where T is any solution that achieves the optimal value. The derivative with respect
to 7 is immediately given by Theorem 6.2 as

(6.14) V.o(b,7) = —v (ATVp(b— Az) | U°) = —||ATVp(b — AZ)| .

Note that (6.14) has the same algebraic form when z is unconstrained. The
nonnegativity constraint on x is reflected in the derivative only through its effect on
the optimal point Z.

6.2. Quadratic support functions. We now consider the case

(6.15) ¢(x) = EEEW’ w) — 5 (w, Bw)],
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where U C R™ is nonempty, closed, and convex with 0 € U, and B € R™*"™ is positive
semidefinite. We call this class of functions quadratic support (QS) functions. This
surprisingly rich and useful class is found in many applications. A deeper study of its
properties and uses can be found in [4]. Note that the conjugate of ¢ is given by

(6.16) ¢*(w) = % (w, Bw) + 6 (w | U).

If the set U is polyhedral convex, then the function ¢ is called a piecewise linear-
quadratic (PLQ) penalty function [36, Example 11.18]. Since B is positive semidefinite
there is a matrix L € R™** such that B = LLT, where k is the rank of B. Using L,
the calculus rules in section 3.3 give the following alternative representation for ¢:

¢(z) = EEEKM’ z) = 3llLTw]3 =6 (w | U)]

. * . 2

=m0 [ o)+ i il
= inf [% |l + 6% (z — Ls | U)]

(617) = inf [Fllll3 + 7 (x — Ls | U°)]

where the final equality follows from [34, Theorem 14.5] since 0 € U. Note that the
function class (6.15) includes all gauge functionals for sets containing the origin. By
(6.16), it easily follows that

w3 + 0 (w | wU) if >0,
(¢")" (w, 1) = 4 & (w | U NNul(B)) if p=0,

where || - || 5 denotes the seminorm induced by B, i.e.,
|lw| s := VwT Bw.

The next result catalogues important properties of the function ¢ given in (6.15).
LEMMA 6.3. Let ¢ be given by (6.15) with 7 > 0. Then

dom ¢ = cone (U°) + Ran (B)  and
hzn (¢) = cone (U)°,

and in particular, ¢ is coercive if and only if 0 € int (U). Moreover,

(618)  8"(wlleve(r)) = min[rA + (¢)7(w, M)

6.19
(6:19) Varwlls i (0] U) < Julls/ VT,

where the minimizing A in (6.18) is given by

_ {m (w | U)+ gl if 5 (w | U) > wl|s/v/2r,

(6.20) /\:max{’y(w|U), %}

In particular, the formula (6.19) implies that
bar (levy (7)) = dom (6*(- |levy(7))) = dom(y (- | U)) = cone (U).
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We now apply Theorem 5.2 to the case where ¢ is given by (6.15).
THEOREM 6.4. Let ¢ be given by (6.15) and consider the following two conditions:

(6.21) Jz eri(dome) such that (&) <7 and b— Az € ri(dom p)
and
(6.22) 34 €ri(domp*)  such that AT € ri(cone (U)).

1. If the pair (T,u) satisfy
(6.23) T elevy(r), we€ dp(b— AZ), and ATTeE N (T|levy(r)),

then T solves P(b,T) and u solves D,.
2. IfT solves P(b,7) and (6.21) holds, then there exists u such that (6.23) holds.

3. If T solves D, and (6.22) holds, then there exists T such that (6.23) holds.
4. If either

(6.24) cone (U)° N [~A " hzn (p)] = {0} and (6.21) holds

or

(6.25) b € int (dom p + Alevy(7)) and (6.22) holds,

then Ov(b,7) # 0 and is given by

0007 = {(5) | 7 2o (47010 1 5 |
620 ={( )| T 05 i 2

In the following corollary we exploit the structure of ¢ to refine the multiplier
description of the duv(b, 7) given in (6.26).

COROLLARY 6.5. Consider the problem P(b,T) with ¢ given by (6.15). A pair
(z,u) satisfies (6.23) if and only if T € levy(7), @ € Ip(b — AT), and either

(6.27a) ATg e N(T| dom¢) or
(6.27b) 3u>0, weU suchthat T€ Bw+ N (w|U) and ATu = fw.

6.2.1. Huber penalty. A popular function in the PLQ class is the Huber
penalty [29]:

122 if |z;| < k&,

o) = sup |z, w) =3 |w|\§} = Zéf%(%), bi(z;) == {2

we[—r,K]" k|lzi| — K%/2 otherwise.

The Huber function is of form (6.15) with B = I and U = [k, k|". In this case,
U NNul (B) = {0} so that the conditions of Corollary 6.5 hold.

A graph of the scalar component function ¢; is shown in Figure 6.1. The Hu-
ber penalty is robust to outliers, since it increases linearly rather than quadratically
outside the threshold defined by k. For any misfit function p, Theorem 6.4 can be
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FiG. 6.1. Huber (left) and Vapnik (right) penalties.

used to easily compute the subgradient dv(b, 7) of the value function. If the regularity
condition (6.21) is satisfied (e.g., if p is finite valued), then Theorem 6.4 implies that

000:7) = {(2)] 7 s AT AT

In particular, if p is differentiable finite-valued, uw = Vp(b — AZ) is unique and

Vo(b, ) = (_g) .

6.3. Affine composition with QS functions. Next consider the case where
¢ takes the form

628 o) =v(Hr+ o), where w(y):=sup[ly,w) - } (w, Bu))

H € R”*™ is injective, ¢ € R, U C R” is nonempty, closed, and convex with 0 € U,
and B € R”*Y is symmetric and positive semidefinite. We assume that

3% such that HZ + ¢ € ri (dom ),

where dom = cone (U°) + Ran (B) (Lemma 6.3). We show that the function ¢ in
(6.28) is an instance of the quadratic support functions considered in section 6.2. To
see this we make the following definitions:

(i) y=<z> M(Z), U={0} x U,

i=(0). 4= 3] 5=[0 3] 2(Y)=ew o1 on,

5 2 ) €) () 2wt oo

With these definitions, the two problems P(b, 7) and

ISH
Il

minimize p(b — AZ) subject to (&) < T

are equivalent. In addition, we have the relationships
(U
P \r

H((2)19) =seronawion wa |(2)] =5 wion .

w B

N—

@+, 6 (1) =50 + )
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Moreover, the reduced dual D, becomes
(6.29) sup  [(b, u) + (¢, r) — p*(u) — 0™ (r |levy(1))].
HTr=ATy

Using standard methods of convex analysis, we obtain the following result as a direct
consequence of Theorem 6.4 and [36, Corollary 10.11].

THEOREM 6.6. Let ¢ be given by (6.28), and consider the following two condi-
tions:

and

<

(6.30) 3 2 such that Hi + ¢ € ri(dom), Y(HZ +¢) <7, and b — A% € ri(dom p)
(6.31) I 4 eri(domp*) and 7 € ri(cone (U)) such that <
1. If the triple (T,u,T) satisfies

e L))

7 € levy(7), TWe dp(b— AT), 7 € N (HT + c|levy(r)), and ATa= H'F,

then T solves P(b,T) and (@,T) solves (6.29).
2. If T solves P(b,7) and (6.30) holds, there exists (u,T) such that (6.32) holds.
If (@w,7) solves (6.29) and (6.31) holds, there exists T such that (6.32) holds.
4. If either

©w

H™'[cone (U)°] N [~A"han (p)] = {0} and (6.30) holds

or

(i’) € int (dom p x levy(T) + Ran ([_ ﬁ )) and (6.31) holds,

then Ov(b,7) # 0 and is given by
37 € R s.t. (T,w,T) satisfy (6.32) and
ov(b,c,T) = _ _ =
e { <_ ) I
37 € R” s.t. ¢+ HT € levy (1),
= u e dplb— Az), TeutOY(c+ HT), 1> 0, .
T 7(Y(c+ HT) —7) =0, and ATu=H'F
COROLLARY 6.7. Consider the problem P(b,7) with ¢ given by (6.28). Then
(T,u,T) satisfies (6.32) if and only if

=l 3 Sl

=S

HT 4 c €levy(r), ucdpb— Az), ATu=H'F,
and either T € N (HT + c¢| domv) or
I35 >0, weU suchthat Hr+ce Bu+ N (w|U) and ¥ = fiw.

6.3.1. Vapnik penalty. The Vapnik penalty

AR (L) R
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is an important example in the PLQ class which is most easily represented as the
composition of an affine transformation with a PLQ function. The scalar version is
shown in the right panel of Figure 6.1. In this case,

_ 1 _ €l _ 2nX2n . 2n
H_[—I]’ c= Ll], B=0€R , and U =][0,1]".

In order to satisfy (6.32), we need to find a triple (Z,u,w) with w = [w; wa]T € [0,1]*"
so that w € dp(b — AT) and ATu = HTw = w; — wy. We claim that either w; (i) = 0
or Wa (i) = 0 for all i. To see this, observe that W € N (HZ + ¢|levy (7)), so

(oo [0

whenever 1 (y) < 7. Taking y first with —e as the only nonzero in the ith coordinate,
and then with —e in the only nonzero in the (n + 4)th coordinate, we get

T (i)(—T(i)) <0 and Wa(i)(T(3)) < 0.

If 2:(:) < 0, from the first equation we get w1 (i) = 0, while if z(7) > 0, we get Wy (i) =0
from the second equation. If z(i) = 0, then taking y = 0 gives

w1 (2)6 <0 and mg(i)e <0,

so w1 (i) = wa(i) = 0. Since ATu =w; — Wy and w1 (i) or Wa (i) is 0 for each i, we get
p=n~(w|[0,1]*") = ||AT%| . Hence, the subdifferential dv is computed in precisely
the same way for the Vapnik regularization as for the 1-norm.

7. Numerical example: Robust nonnegative basis pursuit . In this ex-
ample, we recover a nonnegative undersampled sparse signal from a set of very noisy
measurements using several formulations of P. We compare the performance of three
different penalty functions p: least-squares, Huber (see section 6.2.1), and a noncon-
vex penalty arising from the student’s t distribution (see, e.g., [5, 3]). The regularizing
function ¢ in all of the examples is the sum of the 1-norm and the indicator of the
positive orthant (see section 6.1.1).

The formulations using Huber and Student’s t misfits are robust alternatives
to the nonnegative basis pursuit problem [18]. The Huber misfit agrees with the
quadratic penalty for small residuals but is relatively insensitive to larger residuals.
The student’s t misfit is the negative likelihood of the student’s t distribution,

(7.1) pa() = log(1 +2%/v),

where v is the degrees of freedom parameter.
For each penalty p, our aim is to solve the problem

mini>n(}ize lz||, subject to p(b— Azx) <o
=z

via a series of approximate solutions of P. The 1-norm regularizer on x encourages
a sparse solution. In particular, we solve the nonlinear equation (1.3), where v is the
value function of P. This is the approach used by the SPGL1 software package [12];
the underlying theory, however, does not cover the Huber function. Also, ¢ is not
everywhere finite valued, which violates [12, Assumption 3.1]. Finally, the student’s t
misfit (7.1) is nonconvex; however, the inverse function relationship (cf. Theorem 2.1)
still holds, so we can achieve our goal, provided we can solve the root-finding problem.
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Fic. 7.1. Left, top to bottom: true signal, and reconstructions via least-squares, Huber, and
student’s t. Right, top to bottom: true errors, and least-squares, Huber, and student’s t residuals.

Formula (6.14) computes the derivative of the value function associated with
P(b, ) for any convex differentiable p. The derivative requires Vp, evaluated at the
optimal residual associated with P (b, 7). For the Huber case, this is given by

The student’s t misfit is also smooth, but nonconvex. Therefore, the formula (6.14)
may still be applied—with the caveat that there is no guarantee of success. However,
in all of the numerical experiments, we are able to find the root of (1.3).

We consider a common compressive sensing example: we want to recover a 20-
sparse vector in R5+12 from 120 measurements. We use a Gaussian measurement
matrix A € R100%1024 where each entry is sampled from the distribution N(0,1/10).
We generate measurements to test the BPDN formulation according to

b= Az +w+(,

where w ~ N(0,0.0052) is small Gaussian error, while ¢ contains five randomly placed
large outliers sampled from N(0,4). For each penalty p, the o parameter is the true
measure of the error in that penalty, i.e., o, = p(¢). This allows a fair comparison
between the penalties.

We expect the Huber function to out-perform the least squares penalty by bud-
geting the error level o to allow a few large outliers, which will never happen with
the quadratic. We expect the student’s t penalty to work even better, because it
is nonconvex and grows sublinearly as outliers increase. The results in Figure 7.1
demonstrate that this is indeed the case. In many instances the Huber function is
able to do just as well as the student’s t; however, often the student’s t does better
(and never worse). Both robust penalties always do better than the least squares fit.
The code is implemented in and extended version of SPGL1 and can be downloaded
from https://github.com/saravkin/spgll. The particular experiment presented here
can be found in tests/spgllTestNN.m.

8. Appendix: Proofs of results.

Proof of Theorem 2.1. Let 7 € S;2 and set o, = v1(7). By assumption,
argmin P o(7) # 0. Let x, € argmin Py 2(7), so that ¥1(z;) = o, and Ya(z,) = 7.
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In particular, x, is feasible for Py 1(0;). Let & be any other feasible point for P 1 (o)
so that ¢1(2) < or = vi(7) = Yi(zr). I 1(2) < or = vi(7), then ¥o(2) > 7
since otherwise we contradict the definition of vy (7). If ¥1(Z) = o,, then we claim
that (%) > 7. Indeed, if ¥5(Z) < 7, then & € argminP; o(7) but ¥2(2) < 7,
which contradicts the fact that 7 € Sy 2. Hence, every feasible point for P 1(o;)
has 92(&) > 7 with equality only if ¢1(Z) = o,. But z, is feasible for Py 1(0,) with
o(x;) = 7. Therefore, z, € argmin Pz 1(0,) C {z € X |¢1(x) = o, }. Consequently,
va(v1(7)) = 7 and

(8.1) 0 # argmin Py o(7) C argmin Py 1(0,) C {z € X |¢1(z) =0, }.

We now show that argmin Ps 1(0,) C argminP; o(7). Let & € argmin P 1(07).
In particular, Z is feasible for Ps 1(0,), so, by what we have already shown, ¢2(&) > 7
with equality only if ¢1(Z) = 0. But, by our choice of &, ¥2(Z) = va(v1(7)) = 7, so
(%) = 07, 1e., & € argmin Py o(7).

It remains to establish the final statement of the theorem. By (8.1), we already
have that {v1(7)|7 € S12} C S2,1, so we need only establish the reverse inclusion.
For this, let 0 € S31 and set 7, = v2(0). By interchanging the indices and applying
the first part of the theorem, we have from (8.1) that

() # argmin Py 1 (o) C argmin Py o(7,) C {z € X [tho(x) =7, }.
That is, 7, € S1,2, and, by (a), 0 = v1(v2(0)) = v1(75).
Proof of the inverse linear image (section 3.3). For A > 0, observe that

h™(w,A) =X inf
(w,\)=A inf p@)
= /\Ainf p(A1s) (s := Az)

(8.2) = inf (s, ))

-wfreal(:)-(3))

where

48]

Again by [34, Theorem 9.2] in conjunction with [34, Corollary 16.2.1], the function in
(8.3) is closed if (AT)=! dom(p™)* # 0. Since, by [34, Corollary 13.5.1], dom(p™)* =
{(u,n) |p*(u) < —n}, we have

(AT)"dom(p™)* # 0 if and only if (A7) "' domp* # 0.
Hence, by assumption, the function in (8.3) is closed, proper, and convex and equals

h™(w, A) on the relative interior of its domain. Since h”™(w, A) is closed, (8.2) implies
that these functions must coincide.
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Proof of Lemma 4.1. We first prove (4.1a). The conjugate of ¢ ((x,7) | epi h)
is obtained as follows:

6" ((y, ) |epi h) = sup [y, ) + pu1 — 6 ((x,7) | epi h)]

= sup [(y, x) +pm =0 (h(z) =7 [R_)]

T,x€dom h

= swp [(y,2) +p(h(z) —w) —d(w|R)]  (w:=h(z)-7)

w,z€dom h

mest}g;h[ (y, @) + ph() +sup [~pw = 3 (w | R-)]]

sup  [(y, z) + ph(z) + 6 (u | R-)].
redom h

For p < 0, we obtain
5*((y, 1) |epi h) = —psup [(—p 'y, ) — h(z)] = —ph*(—p~'y).

Since h* is necessarily a closed proper convex function, we obtain the result.
To see (4.1b), first note that the function

q(y) = inflrp+ ph™(y/p)] = inflrp+ (b7 (Y, p]

is the positively homogeneous function generated by the function y — 7+ h(y) [34,
p. 35], and so it is convex in y. Next observe that the conjugate of ¢ is given by

¢ () = Sup @, y) = inflru + (B)" (y, )]
= sup [(z, y) + 7(=p) = (B")" (y, )]
= sup [z, y) + 7 — (h")"(y,—p)]  (exchange —p for y)
= sup [z, y) + 7 — 0" ((y, ) [epi k)] (by (4.1a))

=6((x,7) | epi h) =6 (x | levp(T)).

The result now follows from the biconjugate theorem [34, Theorem 12.2].

Proof of Theorem 4.2. Combining D with (4.1b) and (4.2) gives

(8.4) (b, 7) = sup (b, u) + 7 — (6*)" (AT u, —p) — p* (u)]

= sup [<b, u) — p"(u) — inf [r(—p) + (6) (AT —m]]

n<0
—sup (b 1) = () = it [0 + ()" (AT ]|
= sup [(b, u) — p*(u) — 6" (ATu |levy(T))],

u

where the final equality follows from (4.1b). The equivalence (4.3a) follows from the
definition of the conjugate, and the equivalence (4.3b) follows from [34, Theorems
16.3 and 16.4], which tell us that
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gi(b) = el (pv [ (A - [1evs(7)] ) (0)

:cl( inf {p(w1)+Ainf 5(x|1ev¢(r))]>(b)

witw2=- T=w2

z)<T
=l (o(,7) (b).

The uniqueness of u when p is differentiable follows from the essential strict convexity
of p* [34, Theorem 26.3].

Proof of Lemma 4.3.
Part 1. The inequality follows immediately from (4.1b). But it is also easily
derived from the observation that if ;1 > 0 and « € levy(7), then

=d (¢(inf (- — Ax)) (b)

T+ pd*(s/p) > T+ pl{x, s/p) — ¢(x)] (Fenchel-Young inequality)
= ¢(@)p+ (z, s) — po(x)
= (z, s).
Taking the sup over x € levg(7) gives the result.

Part 2. The proof uses the following three key facts:
(i) By [34, Theorems 23.5 and 23.7], for any nonempty closed convex set U and
uel,

(8.5) TEN@|U) < we€dd*(v|U)=argmax (U, u).
uelU

(ii) The Fenchel-Young inequality tells us that
(8.6) T+¢°(5) = ¢(T) + ¢"(5) > (5, 7).

(iii) see [8, Lemma 26.17] or [45, Corollary 2.9.5]. Let g : R — be a convex
function and 7 € R be such that 7 > inf g. Then for every = € levy(7)

67) Vel { ¥ ) o @utel ot =7

We divide the proof into two parts: (A) if Sy # (), show S; C Sa, and (B) if Sy # 0,
show Se C S; and equality holds in (4.4). Combined, these implications establish
Part 2 of the lemma.
(A) Let @ € S;. We show that @ € Sy. First suppose ¢(T) < 7. By (8.7),
N (ZT|levy(1)) = N (T| dom¢). Hence, by (8.5), 5 € N(Z|dom¢). Therefore, if
=0, we have w € S5.
On the other hand, if @ > 0, by (8.5) and the fact that N (T|levg(r)) =
N (Z| dom ¢), we have
(5,7) =0"(5| dom¢)
= (¢")*°(3) [34, Theorem 13.3]
=70+ (¢™)"(5,0)
=i+ (6°)"(5,70)
> 1e(T) + g™ (/1)
>n(s/m, T) (Fenchel-Young inequality)

=(35,7).
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Since this cannot occur, it must be the case that @ =0 and & € So.

Now suppose that ¢(T) = 7 and 5 = 0. Then, for u > 0, p, (3, 1) = (7+¢*(0))pu >
0 by (8.6), and, for p = 0, p,(5, 1) = (¢*)°>°(0) = 0. Therefore, 0 = info<, p- (5, 1)
with u = 0 € S;. But, in this case, it is also clear that 0 € Sy # (), since 3 =0 €
N (Z| dom¢). Thus, if @ = 0, we have @ € S3. If T > 0, then 0 = 7 + ¢*(0) since
0 = p-(0,7) = (7 + ¢*(0))7. But then, by (8.6), ¢(T) + ¢*(0) = (3, T) = 0 so that
5 =0 € 0¢(T). However, ¢(T) = 7 > inf ¢, so 0 ¢ O¢(T) [34, Theorem 23.5(b)]. This
contradiction implies that if § = 0, then we must also have 7 = 0, and, in particular,
we have S1 C Ss.

Finally, suppose that ¢(Z) = 7 and 5 # 0. Then, by (8.7),

either (a) 5 € cone(9¢(T)) or (b)3se N (T|dome).

Let us first suppose that 5 ¢ N (T| dom¢) so, in particular, 5 € cone (0¢(T)). As
an immediate consequence, we have that Sy # @) and the only values of p for which
5€ ut0¢(x) have u > 0 since s ¢ N (T| dom¢). Let 0 < 1 € Sp. If @ = 0, then
0%(s| dom o) = (¢7)*(5)

= inf pr(5, 1)

< ThoA+ (9" (/1)

agn | AU o 5/ € 0¢(T) and

= i0@) + pl/ 1 7) = 6@ | (34 Theorem 23.5(d)]

= (5, 7)

< 6°(s| domg)
so that (3, T) = §*(5| dom ¢), or, equivalently, s € N (T | dom¢), contradicting the

choice of 5. Hence, it must be the case that 77 > 0. Again let 0 < i € So. Then, by
Part 1,

6% (5|leve(T)) < p- (5, 1)
= inf pr (3, 1)
< T+ pg*(s/ 1)

— (@) + (/. T) — 0@ | e O

= (5, 7)
<97 (5|levg(r))

so that (3, T) = [p(T) + ¢*(5/|)], or, equivalently, 5 € mdH(T). Hence, i € Ss.
Finally, consider the case where 0 #35 € N (Z| dom ¢). Then

0l pe (5,1) < o (5.0)
= (¢")>(5)
=0"(3| dom¢) [34, Theorem 13.3]
= (57 (by (8.5))
=0%(5|levy(7)) (again by (8.5))
< ,igfopT(g’ ) (Part 1),
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so 0 € Sy and 0 € Se. If w > 0, then this string of equivalences also implies that
(5, T) = pr(5, 1) = @) + ¢*(5/1)], or, equivalently, 5§ € IdP(T) so that T € Ss.
Putting this all together, we get that S; C S5.

(B) Let m € Se. If m =0, then

p-(5,0) = (¢")*(5)
=0"(5| dom¢) [34, Theorem 13.3]
= (57
<67 (5[levg(r))
< inf pr(5,) (Part 1).

Therefore, 7 = 0 € S1 and equality holds in (4.4).
On the other hand, if @ > 0, then 5/ € 9¢(T), and so

T+ (¢*)W(§’ ﬂ) = /j[¢(T) + ¢*(§/ﬂ)]
- 5/ € 0¢(T) and
= (T, 5/0) 34, ’ifheorem 23a.5(d)]

<67 (5|levy(T))
< inf [+ (6°)7 (5,0 (Part 1)

Hence, & € S7 and equality holds in (4.4).

Proof of Lemma 4.5.

Part 1. The primal coercivity equivalence follows from [34, Theorems 8.4 and 8.7]
since hzn (f(-,b,7)) = hzn (¢) N [~ A~ hzn (p)].

Part 2. For the dual coercivity equivalence, let §(u) = g,-(u) — (b, u), which is
the objective of the reduced dual D,. By (4.3b), §*(0) = g (b) = cl (v(-, 7)) < v(b, 7).
Therefore, the result follows from [34, Corollary 14.2.2] since by (8.8), domwv(-,7) =
dom p + A dom ¢.

Proof of Theorem 5.1. The expression for f* is derived in (4.2). The weak
and strong duality relationships as well as the expression for dv follow immediately
from [36, Theorem 11.39].

Next, note that

Jdz € levy(T)

(8.8) dom f(-,b,7) #0 <= b— Az € domp

<= b e domp+ Alevy(7).

Now assume that b € int (dom p + A(levy(7))). Recall from [34, Theorem 6.6 and
Corollary 6.6.2] that

(8.9) int (dom p 4+ A(levg(7))) = ri(dom p) + A(ri(levy(7))).
Moreover, by [34, Theorem 7.6], for any convex function p,
(8.10) ri (levy (7)) = {z € ri(domp) [p(x) < 7}.

Since b € int (dom p + A(levy(7))), (8.9)—(8.10) imply the existence of W € ri(dom p)
and T € ri(dom¢) with ¢(T) < 7 such that b = w + AT. Since ¢ is relatively
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continuous on the relative interior of its domain [34, Theorem 10.1], there exists 6 > 0
such that

(W4 6B) Ndom p C ri(domp),
(T4 6B)Ndom¢ C ri(dom¢),
P(x) < 2(¢(T) + 7) Vo € (T + 61B) N dom ¢.

Set S, = (W+ 6B) Ndomp and Sy = (T + 61B) N dom ¢. Since

cone (S, + AS4 — b) = cone

= span

S, — W) + Acone (Sy — T)

dom p — W) + A span (dom ¢ — T)
dom p + Adom ¢ — b)

D cone (dom p + Adom ¢ — b)

=R™ (b€ int(domp + A(levy(T)))),

= span

~ o~ o~ —~

we have 0 € int (S, + ASs — b). Therefore, there exits an € > 0 such that b+ elB C
S,+AS,. Consequently, if b € b+¢IB and |7 —7| < 1(r—¢(T)), then dom f(, b,7) #0
and so (b, 7) € domw.

On the other hand, if (b, 7) € int (domv), then dom f(-, b, 7) # 0 for all (b, 7) near
(b, 7) so that dom f(-,b,7) # 0 for all b near b. Hence, b € int (dom p 4+ A(levy(7))).

Proof of Theorem 5.2.
Part 1. First note that (5.1¢) is equivalent to the optimality condition

(8.11) 0€ —AT9p(b — AT) + 96 (T | levy (7))

for the problem P, and hence by [34, Theorem 23.8], T solves P. Moreover, by [34,
Theorem 23.5], (5.1c) is equivalent to

b— AT € 9p*(u), T € 95*(ATu|levy(r)),
or, equivalently,
(8.12) b € 9p* () + Ad5™ (AT [levy(r) ) ,

which by [34, Theorem 23.8] implies that @ solves the reduced dual D,..
Part 2. If T solves P, then

0 0[p(b— A()) +5(- [ levy(r)] (@),

which by [34, Theorems 23.8, 23.9] and (5.1a) is equivalent to (8.11), which in turn
is equivalent to (5.1c).

Part 3. If @ solves D,., then
beo [p*(-) +0* (AT(-) ‘ lev¢(7))] (1),

which by [34, Theorems 23.8, 23.9] and (5.1b) is equivalent to (8.12), which in turn
is equivalent to (5.1c).
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Part 4. The equivalence (5.1e) follows from (5.1d), Part 2 of Lemma 4.3, and the
fact that A7 € N (T |levy(r)) if and only if T € 06* (AT | levy()).

To see (5.1d), note that (4.5a), (5.1a), and Part 1 of Lemma 4.5 imply that the
primal objective is coercive, so a solution T exists. Hence, by Part 2, there exists u
so that (T,w) satisfies (5.1c).

Analogously, (4.5b), (5.1b), and Part 2 of Lemma 4.5 imply that the solution @ to
the dual exists, and so by Part 3, there exists T such that the pair (T, @) satisfies (5.1c).
In either case, the subdifferential is nonempty and is given by (5.1d).

Proof of Lemma 6.1. Formula (6.3a) is just [34, Theorem 14.5]. The first
equation in (6.3b) is obvious and the second follows from (6.3a) and the definition of
the barrier cone. The formula (6.3c) is now obvious. Formulas (6.3d) and (6.3e) follow
immediately from the definitions and [34, Corollary 8.3.3]. Formula (6.3f) follows from
(6.3e), [34, Corollary 14.2.1], and [34, Corollary 16.4.2].

First note that (6.4) implies that ri(cone (U)) Nri(X) # 0. Hence, the formula
(6.5a) follows from [34, Theorem 16.4] and (6.3c). To see (6.5b), observe that the
expression on the RHS is again an infimal convolution for which inf = min for the
same reason as for (6.5a). The equivalence with (¢*)™(z, p) follows from the calculus
rules in section 3.3. For formula (6.5d), first note that

i+ (6°)7(200)] = inf [70 (5" (= — 5| X) 46 s | u0°)]

inf
n=0

=inf |§"(z —s| X )+ inf [rpu + d (s | ,LLUO)]:|
s n>0

Again, the final infimum in this derivation is an infimal convolution for which inf =
min for the same reasons as in (6.5a) since, by (6.3c) and [34, Theorem 14.5],

dom ((7y (- | U°))*) = dom ((6*(-|7U))*) = domé (- | 7U) = 7U.

Therefore, an optimal § in this infimal convolution exists giving & = v (3 | U°) as the
optimal solution to the first min in (6.5d).

Formula (6.5¢) is an immediate consequence of (6.3d), (6.4), and [34, Corollary
23.8.1].

Proof of Theorem 6.2. By (6.3d) and the calculus rules for the relative in-
terior [34, section 6], (5.1a) and (6.8) are equivalent. Similary, by (6.3f) and [34,
Theorem 6.3], (5.1b) and (6.9) are equivalent.

Part 1. Since (6.4) holds, the formula (6.5¢) holds and so (6.10) and (5.1c) are
equivalent. Hence, the result follows from Part 1 of Theorem 5.2.

Part 2. Since (5.1a) and (6.8) are equivalent, the result follows from Part 2 of
Theorem 5.2.

Part 3. Since (5.1b) and (6.9) are equivalent, the result follows from Part 3 of
Theorem 5.2.

Part 4. By (6.3e), (6.11) is equivalent to (4.5a) and (5.1a), and, by (6.3c), (6.12)
is equivalent to (4.5b) and (5.1b). Therefore, by Theorem 5.2, (6.13) is equivalent to
(5.1d) since 7y (s | U°) = inf,>o[tpe 4+ 6 (s | pU®). The final equivalence is identical
to that of Theorem 5.2.
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Proof of Lemma 6.3. The formula for dom¢ follows from (6.17). Indeed,
by (6.17), + € dom¢ if and only if there exists s € R¥ such that 2 — Ls €
dom~y (- | U°) = cone (U°), or, equivalently, € cone (U°) 4+ Ran (L) = cone (U°) +
Ran (B). The formula for hzn (¢) follows immediately from [34, Theorem 14.2] and
(6.16). In particular, ¢ is coercive if and only if {0} = hzn(¢), or, equivalently,
cone (U) =R", i.e., 0 € int (U).

Next we show that the A given in (6.20) solves (6.18). First observe that the
optimal A must be greater than v (w | U), and from elementary calculus, the minimizer
of the hyperbola & |wl|% + 7A for A > 0 is given by ||w|s/v27. Therefore, the
minimizing A is given by (6.20). Substituting this value into (6.18) gives (6.19).

It is now easily shown that the function in (6.19) is lower semicontinuous. There-
fore, the equivalence in (6.18) follows from (4.1b).

Proof of Theorem 6.4. By [34, Theorem 7.6],
ri(levy (7)) = {x |z € ri(dom @), ¢(z) < T}.
Hence, by Lemma 6.3, the equivalence between (5.1) and (6.21), (6.22), (6.24), (6.25),
respectively, is easily seen. Therefore, Parts 1-4 follow immediately from Theorem 5.2.

Proof of Corollary 6.5. Condition (6.27a) occurs when 71 = 0 since 079¢(Z) =
N (z| dom¢). When 7z > 0, by [34, Theorem 23.5], d¢(z) = argmax,, .y [(z, w) —
1 (w, Bw)], so that w € d¢(z) if and only if z € Bw + N (w|U).
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