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1 Introduction

An unconstrained optimization problem takes the form

min
x∈Rn

f (x), (1)

for a function f : R
n → R. In case that f is continuously differentiable, see, e.g., [1]

or [23], powerful numerical solution methods have been introduced and successfully
employed. Things are more subtle when the traditional smoothness assumption is
not satisfied. An important class of potentially nonsmooth functions are the convex
ones, see [13] for an overview on solution methods for convex optimization. A
generalization of convexity on the one hand and continuous differentiability on the
other, is local Lipschitz continuity, cf., e.g., [11] for solution procedures for locally
Lipschitz problems.

A well-recognized technique for the numerical solution of (1) in the nonsmooth
case is to replace f by a smooth approximation, and solve a sequence of smooth
problems, while driving the approximation closer and closer to the original function,
with the intention of approximating minimizers (critical points) of f by those of
the smooth approximations. This technique of replacing a nonsmooth problem by
a sequence of smooth problems is, in general, known as smoothing and it has been
employed extensively for several different kinds of problems, see, e.g., [2, 3, 5, 9, 12,
16, 17, 22], or the recent survey [6] which mentions several important applications of
smoothing and includes an extensive list of references. Certain smoothing methods
are also closely related to the class of interior-point methods, cf. [18].

In this paper, we are concerned with a class of smoothing functions for f inite
max-functions, see Section 4 for a formal definition, that are special piecewise af f ine
mappings. These approximations are shown to be well-behaved under both outer and
inner composition with smooth functions giving rise to a satisfactory calculus, and
hence a class of smoothing approximations for a broad class of nonsmooth, locally
Lipschitz functions is obtained.

Following [6] and [9], respectively, the smoothing functions for the finite max-
functions are constructed via integral-convolution with special density functions.

A major aspect of the analysis consists in showing that the smoothing functions
considered satisfy gradient consistency, see Section 3. Gradient consistency, as
defined in [6], is a fundamental tool for establishing limiting stationarity properties of
smoothing methods for optimization. In particular, it guarantees that (accumulation
points of) sequences of first-order critical points of the smooth approximations yield
critical points of the original function f .

This paper can be viewed as an extension to parts of the recent paper [6] by
Chen, in which the author constructs an analysis of smoothing approximations build
on the plus function, see Section 2. The plus function is a special case of a finite
max-function. Moreover, we fill a void which arises from an insufficient proof of
[6, Theorem 1 (i)], see Section 5 and [7]. The latter result is key for establishing
gradient consistency for composite smoothing functions, and hence of fundamental
importance. Not withstanding the insuffiency of the current proof of [6, Theorem
1 (i)], we conjecture that the assertion is valid, yet not achievable via a chain rule
approach without the assumptions discussed in the sequel.



Gradient Consistency for Integral-convolution Smoothing Functions 361

The organization of the paper is as follows: In Section 2 we review some necessary
concepts from nonsmooth analysis. In Section 3 we lay out a general framework for
smoothing functions. Section 4 establishes the class of smoothing functions for finite-
max functions and provides calculus rules for compositions with smooth mappings.
We close with some final remarks in Section 5. In particular, we compare [6, Theorem
1 (i)] with our main theorem.

Most of the notation used is standard. An element x ∈ R
n is understood as a

column vector. The symbol R
n+ denotes the set of all vectors whose components

are nonnegative. The space of all real m × n-matrices is denoted by R
m×n, and for

A ∈ R
m×n, AT is its transpose, and rank A denotes its rank. An n × n diagonal matrix

D with the vector x on its diagonal is denoted by

D = diag (x) = diag (xi).

The Euclidean norm on R
n is denoted by ‖ · ‖, i.e.,

‖x‖ =
√

xT x ∀x ∈ R
n.

The closed Euclidean ball centered around x̄ ∈ R
n with radius r ≥ 0 is denoted by

Br(x̄), i.e.,

Br(x̄) := {x ∈ R
n | ‖x − x̄‖ ≤ r}.

For a set S ⊂ R
n its convex hull is denoted by conv S. Given a real-valued function

f : R
n → R differentiable at x̄, the gradient is given by ∇ f (x̄) which is understood as

a column vector. For a function F : R
n → R

m differentiable at x̄, the Jacobian of F
at x̄ is denoted by F ′(x̄), i.e.,

F ′(x̄) =
⎛
⎜⎝

∇F1(x̄)T

...

∇Fm(x̄)T

⎞
⎟⎠ ∈ R

m×n,

whereas ∇F(x̄) is the transposed Jacobian. In order to distinguish between single-
and set-valued maps, we write S : R

n ⇒ R
m to indicate that S maps vectors from

R
n to subsets of R

m. Finally, the symbol xk →X x̄ indicates that {xk} is a sequence
converging to the limit point x̄ such that all iterates xk belong to a set X ⊂ R

n.

2 Preliminaries

In this section we review certain concepts from variational and nonsmooth analysis,
which will be used in the subsequent analysis. The notation is mainly based on [25].

A major role is played by different kinds of subdifferentials as a tool for dealing
with nonsmoothness of the functions considered. To this end, we commence by
introducing the so-called regular and limiting subdif ferential. In the definition of the
limiting subdifferential, we employ the outer limit for a set-valued mapping, which
we now define: For S : R

n ⇒ R
m and X ⊂ R

n, we define the outer limit by

Lim sup
x→X x̄

S(x) := {
v | ∃{xk} →X x̄, ∃{vk} → v : vk ∈ S(xk) ∀k ∈ N

}
.
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Definition 2.1 (Regular and limiting subdifferential) Let f : R
n → R be continuous

and x̄ ∈ R
n.

a) The regular subdif ferential of f at x̄ is the set given by

∂̂ f (x̄) :=
{
v | lim inf

x→x̄

f (x) − f (x̄) − vT(x − x̄)

‖x − x̄‖ ≥ 0

}
.

b) The limiting subdif ferential of f at x̄ is the set given by

∂ f (x̄) := Lim sup
x→x̄

∂̂ f (x)

=
{
v | ∃{xk} → x̄, ∃{vk} → v : vk ∈ ∂̂ f (xk) ∀k ∈ N

}
.

Note that there are different ways of obtaining the limiting subdifferential than the
one described above. This derivation goes back to Mordukhovich, cf. [19]. In this
context, see [15] (or [4]) for a construction of the limiting subdifferential via Dini-
derivatives.

A very important class of potentially nonsmooth, nonconvex functions are the
locally Lipschitz functions. We say F : R

n → R
m is locally Lipschitz at x̄ ∈ R

n if there
exist ε > 0 and L ≥ 0 such that

‖F(x) − F(y)‖ ≤ L‖x − y‖
for all x, y ∈ Bε(x̄). For such an F, we define the generalized Jacobian as in Clarke
([10, Definition 2.6.1]) via Rademacher’s Theorem, see [4, Theorem 9.1.2] or [25,
Theorem 9.60], which says that the complement of the set

DF := {x | F is differentiable at x}
has Lebesgue measure 0. Hence the set

∇̄F(x̄) := {
V | ∃{xk} ⊂ DF : xk → x̄ and F ′(xk) → V

}

is well-defined, even compact, cf. [25, Theorem 9.62] or [10, p. 63]. The set ∇̄F(x̄) is
usually called the B-subdif ferential of F at x̄, see, e.g., [24], though we do not use this
terminology here.

Definition 2.2 (Generalized Jacobian) For a locally Lipschitz function F : R
n → R

m,
the generalized Jacobian of F at x̄ is given by

∂̄ F(x̄) := conv ∇̄F(x̄).

In the case m = 1, we recover the Clarke subdif ferential, see [10] for an extensive
treatment. In the general case, to be consistent with the generalized Jacobian, the
elements from the Clarke subdifferential are row vectors, but we prefer to think of
them as column vectors, so everytime a generalized Jacobian is involved, we have
to transpose accordingly. The Clarke subdifferential of a locally Lipschitz function
f : R

n → R can alternatively be obtained via the limiting subdifferential. In fact, see
[25, Theorem 9.61], we have

∂̄ f (x̄) = conv ∂ f (x̄) ∀x̄ ∈ R
n . (2)
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An important concept in the context of subdifferentiation is (subdif ferential)
regularity, which we define only for the locally Lipschitz case. For the general case,
cf. [25, Definition 7.25].

Definition 2.3 (Subdifferential regularity) Let f : R
n → R be locally Lipschitz. Then

f is said to be (subdifferentially) regular at x̄ ∈ R
n if

∂̂ f (x̄) = ∂ f (x̄).

If the above equality holds for all x̄ ∈ R
n, we simply say that f is (subdifferentially)

regular.

Note that this notion of regularity coincides with the one given by [10, Definition
2.3.4], cf. [10, Theorem 2.4.9 (ii)] in connection with [25, Definition 7.25].

A prominent class of (potentially nonsmooth) locally Lipschitz, regular functions
are the convex functions. Here we refer to [4] or [14] for the fact that (finite-
valued) convex functions are locally Lipschitz, and to [10, Proposition 2.3.6 b)] or
[25, Example 7.27] to see that they are indeed regular.

It is a well-known fact, see [25, Proposition 8.12], that if f : R
n → R is convex,

then all subdifferentials coincide with the subdifferential of convex analysis, i.e.,

∂̄ f (x̄) = ∂ f (x̄) = ∂̂ f (x̄) = {
v | f (x) ≥ f (x̄) + vT(x − x̄) ∀x ∈ R

n}

for all x̄ ∈ R
n.

To illustrate these concepts consider the function (·)+ : R → R given by

(t)+ := max{t, 0},
called the plus function. This function is important to our study an reappears in
Section 4.

Example 2.4 (Subdifferentiation of the plus function)

a) Let f1 : R → R be given by f1(t) := (t)+. Then the convexity of f1 implies that

∂̂ f1(t) = ∂ f1(t) = ∂̄ f1(t) =
⎧⎨
⎩

0 if t < 0,

[0, 1] if t = 0,

1 if t > 0,

(3)

whereas we have

∇̄ f1(t) =
⎧⎨
⎩

0 if t < 0,

{0, 1} if t = 0,

1 if t > 0.

b) Let f2 : R → R be given by f2(t) := −(t)+. Considering the only interesting
point t = 0, an elementary calculation shows that

∂̂ f2(0) = ∅, ∂ f2(0) = ∇̄ f2(0) = {0,−1} and ∂̄ f (0) = [−1, 0].

We close this section by introducing the coderivative, a derivative concept for set-
valued maps that goes back to Mordukhovich, see [20]. Here we are only interested in
a special case where F : R

n → R
m is single-valued and locally Lipschitz. In this case
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the coderivative of F at x̄ can be defined as the set-valued map D∗ F(x̄) : R
m ⇒ R

n

given by

D∗ F(x̄)(u) = ∂(uT F)(x̄),

where uT F : R
n → R is given by (uT F)(x) := ∑m

i=1 ui Fi(x). This is called the scalar-
ization formula, see [21, Theorem 1.90] or [25, Proposition 9.24 (b)]. Furthermore,
we have

∂̄ F(x̄)Tu = conv D∗ F(x̄)(u) ∀u ∈ R
m,

see [25, Theorem 9.62]. If F is continuously differentiable, we have

D∗ F(x̄)(u) = {
F ′(x̄)Tu

}
,

see [21, Theorem 1.38] or [25, Example 8.34].

3 The General Smoothing Setup

Let f : R
n → R be continuous. We say s f : R

n × R+ → R is a smoothing function for
f if the following assumptions are fulfilled:

• s f (·, μ) converges continuously to f in the sense of [25, Definition 5.41], i.e.,

lim
μ↓0,x→x̄

s f (x,μ) = f (x̄) ∀x̄ ∈ R
n, (4)

• s f (·, μ) is continuously differentiable for all μ > 0.

Suppose one has sequences {xk} → x̄ and {μk} ↓ 0 such that

lim
k→∞

∇s f
(
xk,μk

) → 0.

The following is a crucial question from the perspective of algorithmic development:

Is x̄ a critical point of f in the sense that 0 ∈ ∂ f (x̄) (or 0 ∈ ∂̄ f (x̄)) ?

The answer is positive if

Lim sup
x→x̄,μ↓0

∇xs f (x, μ) ⊂ ∂ f (x̄),

where, for the sake of completeness, we recall that, according to the general
definition of the outer limit, we have

Lim sup
x→x̄,μ↓0

∇xs f (x, μ) = {
v | ∃ {(

xk,μk

)} → (x̄, 0) : ∇xs f (xk,μk) → v
}
.

The next result shows that the converse inclusion is always valid if s f is a smoothing
function for f .

Lemma 3.1 Let f : R
n → R be continuous and let s f be a smoothing function for f .

Then for x̄ ∈ R
n we have

∂ f (x̄) ⊂ Lim sup
x→x̄,μ↓0

∇xs f (x, μ).
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If further f is locally Lipschitz at x̄, then

∂̄ f (x̄) ⊂ conv

{
Lim sup
x→x̄,μ↓0

∇xs f (x, μ)

}
.

Proof Let v ∈ ∂ f (x̄) be given. Since, by assumption, s f (·,μ) converges continuously
to f , it converges, in particular, epigraphically, cf. [25, Theorem 7.11], and hence
we may invoke [25, Corollary 8.47] in order to obtain sequences {μk} ↓ 0, {xk} → x̄
and {vk} with vk ∈ ∂xs f (xk, μk) such that vk → v. Now, since s f (·, μk) is continuously
differentiable by assumption, we have

vk = ∇xs f
(
xk, μk

)
,

which identifies v as an element of Lim supx→x̄,μ↓0 ∇xs f (x,μ) and thus, the first
inclusion follows. The second inclusion is an immediate consequence of the first one
and the fact that conv ∂ f (x̄) = ∂̄ f (x̄) in the presence of local Lipschitz continuity,
see (2). ��

A trivial consequence is the following corollary.

Corollary 3.2 Let f : R
n → R be locally Lipschitz at x̄ and let s f be a smoothing

function for f . Then we have the inclusions

∂ f (x̄) ⊂
⎧⎨
⎩

Lim sup
x→x̄,μ↓0

∇xs f (x, μ)

∂̄ f (x̄)

⎫⎬
⎭ ⊂ conv

{
Lim sup
x→x̄,μ↓0

∇xs f (x, μ)

}
.

In the locally Lipschitz setting, it is clear that the condition

Lim sup
x→x̄,μ↓0

∇xs f (x,μ) = ∂ f (x̄) (5)

implies

conv

{
Lim sup
x→x̄,μ↓0

∇xs f (x,μ)

}
= ∂̄ f (x̄). (6)

Condition (6) is called gradient consistency in [6]. In particular, both conditions
coincide, when ∂ f (x̄) = ∂̄ f (x̄) (which is the case when f is locally Lipschitz and
subdifferentially regular).

The following example shows that, for locally Lipschitz f , condition (6) is in fact
weaker than (5).

Example 3.3 Let f : R
2 → R, f (a, b) := min{a, b}. Then s f ((a, b),μ) := 1

2 (a + b −√
(a − b)2 + 4μ) is a smoothing function for f , sometimes called the CHKS-function

due to its origin from [8, 18, 27]. It holds that for all a ∈ R we have

∂ f (a, a) =
{(

1

0

)
,

(
0

1

)}
� conv

{(
1

0

)
,

(
0

1

)}
= ∂̄ f (a, a),
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but

Lim sup
(x,y)→(a,a),μ↓0

∇s f ((x, y),μ) = conv

{
Lim sup

(x,y)→(a,a),μ↓0
∇s f ((x, y),μ)(a, a)

}
= ∂̄ f (a, a).

The following result is the main motivation for the analysis in Section 4. In this con-
text, for f : R

n → R locally Lipschitz, we call x̄ ∈ R
n Clarke-stationary, C-stationary

for short, if 0 ∈ ∂̄ f (x̄).

Theorem 3.4 Let f : R
n → R be locally Lipschitz and let s f be a smoothing function

for f . Furthermore let {xk} ⊂ R
n and {μk} ↓ 0 such that

∥∥∇xs f (xk,μk)
∥∥ ≤ cμk ∀k ∈ N, (7)

for some c > 0. Then every accumulation point x̄ of {xk} such that the gradient
consistency condition (6) holds at x̄ is a C-stationary point of f .

Proof Let x̄ be a limit point of a subsequence {xk}K such that gradient consistency
holds at x̄. Since {μk}K ↓ 0 on the same subsequence, we can deduce from (7) that

0 ∈ Lim sup
x→x̄,μ↓0

∇xs f (x, μ).

This implies

0 ∈ conv

{
Lim sup
x→x̄,μ↓0

∇xs f (x, μ)

}
= ∂̄ f (x̄)

by the gradient consistency assumption. ��

We point out that, in particular, the smoothing gradient method proposed in [6]
fits into the framework of Theorem 3.4, cf. [6, Theorem 2].

We close this section with the remark that Theorem 3.4 can be refined in the
following sense. Suppose that in Theorem 3.4 the stronger condition (5) holds
at x̄. Then it follows from the previous proof that 0 ∈ ∂ f (x̄), which is (without
regularity) a tighter property than C-stationarity (typically called M-stationarity in
the corresponding literature). However, we are not aware of a class of (non-regular)
functions, for which (5) holds. Example 3.3 displays our impression that, in the non-
regular case, the gradient consistency (6) is substantially weaker, hence much more
likely to hold than (5) in the smoothing setup described above. This is also confirmed
by the analysis in the upcoming section.

4 Smoothing via Integral-convolution

In this section we generalize (and to a certain extent correct, see [7]) the results from
[6, Section 3–4], in the sense that we do not entirely focus on the plus function.

Let p : R → R be the f inite max-function given by

p(t) = max
i=1,...,r

{ fi(t)}
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Fig. 1 Illustration for the
choices in (8)–(10)

where fi : R → R is affine linear, i.e.,

fi(t) = ait + bi

with scalars ai, bi ∈ R for all i = 1, . . . , r (r ∈ N). Note that p is, in particular, piece-
wise af f ine, hence (globally) Lipschitz, see [26, Proposition 2.2.7] and convex, cf.
[14, Proposition B 2.1.2]. Moreover, it can be seen (cf. Fig. 1) that, after skipping
all indices which do not contribute in the maximization, and after reordering the
remaining indices, we can assume without loss of generality that

a1 < a2 < · · · < ar−1 < ar, (8)

and there exists a partition of the real line

−∞ = t1 < t2 < · · · < tr < tr+1 = +∞
such that

aiti+1 + bi = ai+1ti+1 + bi+1 ∀i = 1, . . . , r − 1, (9)

and

p(t) =
⎧⎨
⎩

a1t + b 1 if t ≤ t2,
ait + bi if t ∈ [ti, ti+1] (i ∈ {2, . . . , r − 1}),
art + b t if t ≥ tr.

(10)

Let ρ : R → R be a piecewise continuous, symmetric density function, i.e.,

ρ(t) = ρ(−t) (t ∈ R) and
∫

R

ρ(t) dt = 1, (11)
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such that

ρ ≥ 0 and
∫

R

|t|ρ(t) dt < +∞. (12)

We denote the distribution function that goes with the density ρ by F, i.e., F : R →
[0, 1] is given by

F(x) =
∫ x

−∞
ρ(t) dt.

In particular, since ρ is piecewise continuous, F is continuous with

lim
x→+∞ F(x) = 1 and lim

x→−∞ F(x) = 0.

Lemma 4.1 Let p : R → R be a f inite max-function. Furthermore, let ρ : R → R+ be
a piecewise continuous function satisfying (11) and (12). Then the convolution

sp(t,μ) :=
∫

R

p(t − μs)ρ(s) ds

is a (well-def ined) smoothing function for p with

Lim sup
t→t̄,μ↓0

d
dt

sp(t,μ) = ∂p(t̄) ∀t̄ ∈ R.

Proof The fact that sp(t,μ) exists for all μ > 0 is a consequence of the conditions
imposed on ρ in (11) and (12) and the representation of p from (8)–(10), which we
can assume without loss of generality.

Next we show that limt→t̄,μ↓0 sp(t,μ) = p(t̄) for all t̄ ∈ R. This is due to the fact that

|p(t̄) − sp(t,μ)| =
∣∣∣
∫

R

p(t̄)ρ(s) ds −
∫

R

p(t − μs)ρ(s) ds
∣∣∣

≤
∫

R

|p(t̄) − p(t − μs)|ρ(s) ds

≤ Lp

∫
R

|t̄ − t + μs|ρ(s) ds

≤ Lp|t̄ − t| + Lpμ

∫
R

|s|ρ(s) ds,

where Lp is the (global) Lipschitz constant of p. Taking into account assumption
(12), it follows that the last expression tends to 0 as t → t̄ and μ ↓ 0. This shows that
sp(·, μ) converges continuously to p.

We will now compute the derivative of sp(·,μ) for some fixed μ > 0. To this end,
recall that, without loss of generality, we may assume that p admits a representation
as in (10). Hence, we get

sp(t,μ) =
r∑

i=1

∫ t−ti
μ

t−ti+1
μ

[
ai(t − μs) + bi

]
ρ(s) ds,
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where we have t−t1
μ

≡ +∞ and t−tr+1

μ
≡ −∞. Thus, we obtain

d
dt

sp(t,μ) =
r∑

i=1

d
dt

[∫ t−ti
μ

t−ti+1
μ

[ai(t − μs) + bi]ρ(s) ds

]
, (13)

where the existence of the corresponding derivatives follows, e.g., from the Leibniz
integral rule with variable limits. More precisely, this rule allows us to compute the
derivatives explicitly. For the summands i = 2, . . . , r − 1, we obtain

d
dt

[∫ t−ti
μ

t−ti+1
μ

[
ai(t − μs) + bi

]
ρ(s) ds

]

= ai

∫ t−ti
μ

t−ti+1
μ

ρ(s) ds + (aiti + bi)
ρ( t−ti

μ
)

μ
− (aiti+1 + bi)

ρ(
t−ti+1

μ
)

μ
.

For the summand i = 1 we compute

d
dt

[∫ +∞
t−t2

μ

[a1(t − μs) + b 1]ρ(s) ds

]
= a1

∫ +∞
t−t2

μ

ρ(s) ds − (a1t2 + b 1)
ρ( t−t2

μ
)

μ
,

and for i = r we get

d
dt

[ ∫ t−tr
μ

−∞
[ar(t − μs) + br]ρ(s) ds

]
= ar

∫ t−tr
μ

−∞
ρ(s) ds + (artr+1 + br)

ρ( t−tr
μ

)

μ
.

Inserting these expressions in (13) and exploiting the fact that aiti+1 + bi = ai+1ti+1 +
bi+1 (i = 1, . . . , r − 1) (see (9)), we obtain

d
dt

sp(t,μ)

=
r∑

i=1

ai

∫ t−ti
μ

t−ti+1
μ

ρ(s) ds

= a1

(
1 − F

( t − t2
μ

))
+

r−1∑
i=2

ai

(
F
( t − ti

μ

)
− F

( t − ti+1

μ

))
+ ar F

( t − tr
μ

)

(14)

due to the telescoping structure of the resulting sum. In particular, since F is
continuous, so is d

dt sp(·,μ) for all μ > 0. Altogether, we have shown that sp is a
smoothing function for p.

In order to verify the remaining assertion, first note that, in view of (8)–(10),
we have

∂p(t̄) =

⎧⎪⎪⎨
⎪⎪⎩

{a1} if t̄ < t2,
{ai} if t̄ ∈ (ti, ti+1) (i = 2, . . . , r − 1),

{ar} if t̄ > tr,
[ai, ai+1] if t̄ = ti+1 (i = 1, . . . , r − 1).

(15)

Now, recall that Lemma 3.1 guarantees that Lim supt→t̄,μ↓0
d
dt sp(t,μ) ⊃ ∂p(t̄), as

sp is a smoothing function for p. In order to see the converse inclusion, let v ∈
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Lim supt→t̄,μ↓0
d
dt sp(t,μ) be given. Then there exist sequences {μk} ↓ 0 and {tk} → t̄

such that

d
dt

sp(tk, μk) → v.

Clearly, if t̄ ∈ (t j, t j+1) for some j ∈ {2, . . . , r − 1}, we obtain

F
(

tk − ti
μk

)
− F

(
tk − ti+1

μk

)
→ 0 ∀i �= j,

F
(

tk − t j

μk

)
− F

(
tk − t j+1

μk

)
→ 1 − 0 = 1,

and

1 − F
(

tk − t2
μk

)
→ 0, F

(
tk − tr

μk

)
→ 0. (16)

The representation (14) of the gradient of sp therefore shows that v = a j, hence we
have v = a j ∈ {a j} = ∂p(t̄).

Furthermore, if t̄ < t2, we infer that v = a1 and, if t̄ > tr we get v = ar, which yields
v ∈ ∂p(t̄) also in these cases.

It remains to consider the cases where t̄ = t j+1 for some j ∈ {1, . . . , r − 1}. First
consider the case where j ∈ {2, . . . , r − 2}. Then

F
(

tk − ti
μk

)
− F

(
tk − ti+1

μk

)
→ 0 ∀i /∈ { j, j + 1},

and since F : R → [0, 1], we get (at least on a subsequence)

F
(

tk − t j

μk

)
− F

(
tk − t j+1

μk

)
→ 1 − λ

and

F
(

tk − t j+1

μk

)
− F

(
tk − t j+2

μk

)
→ λ,

for some λ ∈ [0, 1]. Using once more the limit conditions from (16) as well as the
representation (14), we obtain v = a j(1 − λ) + a j+1λ ∈ [a j, a j+1] = ∂p(t̄).

Finally, the arguments are similar if t̄ = t1 or t̄ = tr−1, hence we skip the details. ��

We point out that Lemma 4.1 is still valid for a function p, which admits a
piecewise-affine representation as given by (9) and (10), without demanding (8). The
latter condition corresponds to convexity and hence, regularity of p, which is needed
already in the following result.

Corollary 4.2 Let p : R → R be a f inite max-function, h : R
n → R continuously

dif ferentiable and let f : R
n → R be given by f (x) := p(h(x)). Then, if sp is def ined

as in Lemma 4.1, the function s f (·, ·) := sp(h(·), ·) is a smoothing function for f with

Lim sup
x→x̄,μ↓0

∇xs f (x,μ) = ∂ f (x̄) ∀x̄ ∈ R.
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In particular, the gradient consistency property (6) holds.

Proof The fact that s f is a smoothing function for f is due to the fact that sp has this
property with respect to p and h is continuously differentiable. Hence, given x̄ ∈ R

n,
the inclusion Lim supx→x̄,μ↓0 ∇xs f (x, μ) ⊃ ∂ f (x̄) is clear from Lemma 3.1.

In order to establish the converse inclusion, first note that

∂ f (x̄) = ∇h(x̄)∂g(h(x̄)),

since p is convex, hence regular and h is smooth, cf. [25, Theorem 10.6]. Let
v ∈ Lim supx→x̄,μ↓0 ∇xs f (x,μ). Then, there exist sequences {xk} → x̄ and {μk} ↓ 0
such that

∇h
(
xk) d

dt
sp

(
h
(
xk) ,μk

) = ∇xs f
(
xk,μk

) → v. (17)

Since we have (see (14))

d
dt

sp
(
h
(
xk) , μk

)

= a1

(
1 − F

(h
(
xk

) − t2
μk

))
+

r−1∑
i=2

ai

(
F
(h

(
xk

) − ti
μk

)
− F

(h
(
xk

) − ti+1

μk

))

+ ar F
(h

(
xk

) − tr
μk

)
,

and F : R → [0, 1], the sequence { d
dt sp(h(xk),μk)} is bounded. Hence Lemma 4.1

implies that { d
dt sp(h(xk),μk)} converges (at least on a subsequence) to some element

τ ∈ ∂g(h(x̄)). It therefore follows from (17) that

v = ∇h(x̄)τ ∈ ∇h(x̄)∂g(h(x̄)) = ∂ f (x̄),

which concludes the proof. ��

In the following example, we compute a smoothing function for a simple finite
max-function and compare it to the plus function smoothing approach described
in [6].

Example 4.3 Consider the finite max-function p : R → R, p(t) = max{−2t, t} and
the piecewise continuous, symmetric density ρ : R → R given by

ρ(s) :=
{

1 if |s| < 1
2 ,

0 if |s| ≥ 1
2 .

According to [6], a smoothing of the plus function can be computed (using a chain
rule) as

φ(t,μ) :=
∫

R

(t − μs)+ρ(s) ds =
{

(t)+ if |t| ≥ μ

2 ,
t2

2μ
+ t

2 + μ

8 if |t| <
μ

2 .
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Due to the representation p(t) = (t)+ + (−2t)+, a smoothing function for p in the
sense of [6] is given by

φ(t,μ) + φ(−2t,μ) =

⎧⎪⎨
⎪⎩

p(t) if |t| ≥ μ

2 ,

(−2t)+ + t2

2μ
+ t

2 + μ

8 if |t| ∈ [μ

4 ,
μ

2 ),
5
2

t2

μ
− t

2 + μ

4 if |t| <
μ

4 .

On the other hand, using the smoothing formula of Lemma 4.1, we have

sp(t,μ) =
∫

R

p(t − μs)ρ(s) ds =
{

p(t) if |t| ≥ μ

2 ,
3
2

t2

μ
− t

2 + 3
8μ if |t| <

μ

2 .

To prepare the main theorem of this section, we need the following preliminary
result.

Lemma 4.4 Let H : R
n → R

m be continuously dif ferentiable as well as G : R
m → R

m

given by

G(y) := (ϕi(yi))
m
i=1,

where ϕi : R → R (i = 1, . . . , m) is regular. Then for F := G ◦ H the following holds:

a) For all x̄ ∈ R
n

∂̄ F(x̄)Td = H′(x̄)T ∂̄G(H(x̄))d ∀d ∈ R
m
+ .

b) If rank H′(x̄) = m, it holds that

∂̄ F(x̄)Td = H′(x̄)T ∂̄G(H(x̄))d ∀d ∈ R
m.

Proof

a) For d ∈ R
m+ and x̄ ∈ R

n we have

∂̄ F(x̄)Td = conv D∗ F(x̄)(d)

= conv ∂(dT F)(x̄)

= ∂̄(dT F)(x̄)

= ∂̄

[
m∑

i=1

di Fi

]
(x̄)

=
m∑

i=1

di∂̄ Fi(x̄)

=
m∑

i=1

di∂ϕi(Hi(x̄))∇ Hi(x̄)

= H′(x̄)T ∂̄G(H(x̄))d.

Here, the first equality follows from [25, Theorem 9.62], the second is the
scalarization formula, see Section 2. The third uses the fact that the Clarke
subdifferential is the convex hull of the limiting subdifferential, cf. (2). The
fourth is the definition of the function x �→ (dT F)(x), and the fifth is due to the
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fact that the functions Fi are regular by [10, Theorem 2.3.9 (iii)], and hence the
sum rule from [10, Proposition 2.3.3] holds with equality, see [10, Corollary 3]
(note that d ≥ 0 is required here!). The sixth equality is once again the chain
rule from [10, Theorem 2.3.9 (iii)], and the final line is a short-hand form of the
previous expression.

b) If H′(x̄) has rank m it follows from [21, Theorem 1.66] that for d ∈ R
m we have

D∗ F(x̄)(d) = D∗(G ◦ H)(x̄)(d) = H′(x̄)T D∗G(H(x̄))(d).

Taking the convex hull and using [25, Theorem 9.62] yields

∂̄ F(x̄)Td = conv D∗ F(x̄)(d)

= conv
{

H′(x̄)T D∗G(H(x̄))(d)
}

= H′(x̄)Tconv
{

D∗G(H(x̄))(d)
}

= H′(x̄)T ∂̄G(H(x̄))d.

This completes the proof ��

The following example shows that if in the above theorem d ∈ R
m has negative

components and H′(x̄) is not onto, the desired assertion may fail. It is this chain
rule which is erroneously applied in the proof of [6, Theorem 1 (i)] without further
assumptions, and leads to the insufffiency of the proof given there. However, we
point out, again, that we believe the assertion of [6, Theorem 1 (i)] to be true
regardless.

Example 4.5 (Failure in Lemma 4.4 a) when d /∈ R
m+) Consider the function F := G ◦

H with H : R → R
2, H(x) := (x

x

)
and G : R

2 → R
2, G(y) := (

(y1)+
(y2)+

)
, i.e., F(x) = (

(x)+
(x)+

)
.

It follows that

∂̄ F(0) =
{(

a
a

)
| a ∈ [0, 1]

}
,

hence, for d := ( 1
−1

)
we have

∂̄ F(0)Td = {0} �= [−1, 1] = H′(0)T ∂̄G(H(0))d.

We now give the main result of this section.

Theorem 4.6 Let H : R
n → R

m and g : R
m → R be continuously dif ferentiable and

def ine f : R
n → R by f (x) := g(G(H(x))), where

G(y) := [pi(yi)]m
i=1

and pi : R → R (i = 1, . . . , m) is a f inite piecewise linear max-function. Then s f :
R

n × R+ → R given by s f (x, μ) := g([spi(Hi(x),μ)])m
i=1), where spi is given as in

Lemma 4.1, is a smoothing function for f . If furthermore x̄ ∈ R
n is such that

∇g(G(H(x̄))) ∈ R
m
+ or rank H′(x̄) = m
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holds, then

Lim sup
x→x̄,μ↓0

∇xs f (x,μ) ⊂ ∂̄ f (x̄),

and hence

conv
{

Lim sup
x→x̄,μ↓0

∇xs f (x,μ)
} = ∂̄ f (x̄),

i.e., the gradient consistency property (6) holds.

Proof First, note that s f is a smoothing function for f since spi has this property with
respect to pi for all i = 1, . . . , m and g and H are continuously differentiable.

Moreover, we compute the Clarke subdifferential of f at x̄ as

∂̄ f (x̄) = ∂̄(G ◦ H)(x̄)T∇g(G(H(x̄)))

= H′(x̄)T ∂̄G(H(x̄))T∇g(G(H(x̄)))

= H′(x̄)Tdiag (∂pi(Hi(x̄)))∇g(G(H(x̄))),

where the first equality is due to [10, Theorem 2.6.6], the second one follows (with
d = ∇g(G(H(x̄)))) from Lemma 4.4, and the third one exploits the componentwise
structure of G.

Now, we show that Lim supx→x̄,μ↓0 ∇xs f (x,μ) ⊂ ∂̄ f (x̄) for all x̄ ∈ R
n. To this end,

we first note that

∇xs f (x,μ) = H′(x)Tdiag
( d

dt
spi(Hi(x),μ)

)
∇g([spi(Hi(x),μ)]m

i=1),

by the ordinary chain rule. Now, let v ∈ Lim supx→x̄,μ↓0 ∇xs f (x, μ) be given. Then
there exist sequences {xk} → x̄ and {μk} ↓ 0 such that

H′(xk)Tdiag
( d

dt
spi(Hi(xk),μk)

)
∇g([spi(Hi(xk),μk)]m

i=1) → v.

Since, due to (14), we have

d
dt

spi(Hi(xk),μk) =

= a1

(
1 − F

( Hi(xk) − t2
μk

))
+

r−1∑
i=2

ai

(
F
( Hi(xk) − ti

μk

)
− F

( Hi(xk) − ti+1

μk

))

+ ar F
( Hi(xk) − tr

μk

)
,

and F : R → [0, 1], the sequence {diag ( d
dt spi(Hi(xk),μk))} is bounded, hence conver-

gent on a subsequence, with a cluster point D ∈ diag (∂pi(Hi(x̄))), due to Lemma 4.1,
and hence

v = H′(x̄)T D∇g(G(Hi(x̄))) ∈ ∂̄ f (x̄),

which gives the asserted inclusion. The remaining statements now follow from
Lemma 3.1. ��



Gradient Consistency for Integral-convolution Smoothing Functions 375

We close this section by drawing the reader’s attention to the following result
which is an immediate consequence of Example 7.19 and Theorem 9.67 in [25].

Theorem 4.7 Let f : R
n → R be locally Lipschitz. Let ψ : R

n → R+ be continuous
with

∫
Rn ψ(x) dx = 1 and such that the sets B(μ) := {x | φ( x

μ
) > 0} form a bounded

sequence that converges to {0} as μ ↓ 0. Then the function s f given by

s f (x, μ) :=
∫

Rn
f (x − z)

1

μ
ψ

( z
μ

)
dz

is a smoothing function for f with

conv Lim sup
x→x̄,μ↓0

∇xs f (x, μ) = ∂̄ f (x̄) ∀x̄ ∈ R
n,

and when f is regular the convex hull is superf luous.

Although this is a very powerful and very general result it does not cover our
analysis, since we do not restrict ourselves to mollif iers ψ that are continuous or
have compact support, in the sense that is suggested by the boundedness condition
above.

Mollifiers with non-compact support are essential since many interesting smooth-
ing functions can be recovered using them. Two prominent examples are the Neural
Network smoothing function obtained via the mollifier ρ : R → R, ρ(s) := e−s

(1+e−s)2

and the Chen-Harker-Kanzow-Smale smoothing function obtained via the mollifier
ρ : R → R, ρ(s) := 2

(s2+4)
3
2

, both by integral-convolution with the plus function, see

[6, 9] for details.

5 Final Remarks

We investigated smoothing functions, based on integral-convolution, for a class of
finite max-functions, which generalizes the analysis in [6] carried out for the plus
function. In the main result it was shown that, under reasonable assumptions, (inner
and outer) compositions with smooth functions fully agree with the framework layed
out for the finite max-functions, and hence a satisfactory calculus is available.

The analysis of Section 4 allows us to overcome a subtle flaw in [6, Theorem 1
(i)]. In [6, Theorem 1 (i)] it is stated that the assertions of our Theorem 4.6, when
applied to pi := (·)+ (i = 1, . . . , m), are valid without further assumptions on H or g.
However, in the proof of [6, Theorem 1 (i)], the chain rule representation (using our
notation)

∂̄ f (x̄) = H′(x̄)T ∂̄G(H(x̄))∇g(G(H(x̄)))

is invoked. This chain rule is shown to be false by Example 4.5. Nonetheless, we
conjecture that the assertions in [6, Theorem 1 (i)] are valid. However, for the general
case considered in Theorem 4.6, we believe that the rank condition on H′(x̄) is
essential.

Acknowledgements We gratefully acknowledge the open discussion with Prof. X. Chen [7] on the
gap in the proof of [6, Theorem 1 (i)].
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