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Abstract

Full Waveform Inversion (FWI) is a computational procedtweextract medium parameters
from seismic data. FWI is typically formulated as a nonlinkeast squares optimization problem,
and various regularization techniques are used to guideftimization because the problem is ill-
posed. In this paper, we propose a novel sparse regularizahiich exploits the ability of curvelets
to efficiently represent geophysical images. We then foateuh corresponding sparsity promot-
ing constrained optimization problem, which we call Noekn Basis Pursuit Denoise (NBPDN)
and present an algorithm to solve this problem to recoverimegarameters. The utility of the
NBPDN formulation and efficacy of the algorithm are demaatstd on a stylized cross-well exper-
iment, where a sparse velocity perturbation is recoverg igher quality than the standard FWI
formulation (solved with LBFGS). The NBPDN formulation aaftjorithm can recover the sparse
perturbation even when the data volume is compressed to 5%teafriginal size using random
superposition.

I ntroduction

Full Waveform Inversion (FWI) is a data-fitting procedureséd on full wavefield modeling designed
to extract medium parameters (velocity and density) fromnsegrams. Computational methods for
waveform inversion go back more than 20 years (see, e.gnitdaa(1984)) and the problem has been
consistently formulated as a nonlinear least squares diasitype of optimization problem (Virieux and
Operto (2009)). It is useful at this point to provide an egjpliramework for a typical FWI approach:

min g(m) := ||D —PH[m"'Q|Z (1)

where|| - |2 is the Frobenius normm is a vector of velocity parameters in a 2D or 3D gridl,c
R¥<! contains results of source experiments (dsdimensional columns)i[m| is a discretization of
the Helmholtz operator with boundary conditio< RP*! specifies source experiments] —1[m|Q
describes the solution of the Helmholtz equation for theceaQ, andP is a restriction of this solution
to the surface where the data was observed.

FWI is widely known to be an ill-posed problem, and so regmégion strategies are applied in practice
(see Virieux and Operto (2009) and sources within). A comstomtegy is least squares regularization,
where given reasonable guess of prior parametérsne solves the problem

min - g(m) + (m— )T W(m— ) @

whereW is some weighting matrix that encodes the confidence in tloe guesan* as well as relation-
ship (correlations) between the parameters. Alternativdets using total variation (TV) regularization
have also been proposed (see e.g. Vogel and Oman (1996)).

The aim of the present paper is to formulate an alternatigelagization approach based on sparsity
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Figure 1 Partial Marmoussi model in curvelets: 5% of the largest @let coefficients capture most of
the features of the full representation.

promotion, to develop an algorithm for the solution of theuléng optimization problem, and to show
the results of the new algorithm on a toy example.

Sparsity promotion for seismic data using curvelets

The curvelet frame was presented as an effective nonadagipresentation for objects with edges in
the seminal paper Candes and Donoho (2000). The key resiliatrpaper is that the curvelet frame

provides a stable, efficient, and near-optimal represientatf otherwise smooth objects having discon-
tinuities along smooth curves. While there may be limitagido this characterization of geophysical

images, it is important to note that such images are layevedta geological sedimentation, and this

feature allows for efficient representations using cutgel®lotivated by this observation, researchers
have used curvelet representations in migration, dimeastg reduction, simulation, and sparse sam-
pling applications (see Hennenfent et al. (2010); Herrmetral. (2009, 2008, 2007)). See also Figure 1
for a simple demonstration.

The notion that velocity parameters should be sparse (@aat tompressible) in the curvelet represen-
tation leads to a ‘sparse’ regularization of FWI (comparthweq. (2)):

min- @(C*x) +A|[X]|1, ©)

whereC denotes the curvelet basis ards the vector of curvelet coefficients corresponding to the
velocity parameterm, i.e. m= C*x, the term||x||; serves to promote sparsity in this representation, and
A is a parameter that balances sparsity in curvelets vs. nfibdélhile this is a reasonable formulation,

A must be known ahead of time, and it is not clear how to choodRather than working with eq. (3),
we go to a closely related constrained reformulation

min ||x||1
X

st. g(C*'x) <o, @)

where as before the objectiji&||; serves to promote sparsity in this representation, andatrenpeteio

is a regularization parameter that determines the acdeptahue of the residud|D — RH[C*X ~1Q||r

(i.e. noise level in the data). Unlikg in eq. (3), the parametey in eq. (4) is likely to be known

to scientists working with inverse problems in geophysibkte that the formulation (4) is a natural
nonlinear extension to the Basis Pursuit Denoise (BPDNjftation used in compressive sensing lit-
erature to for sparse signal recovery from under-samplés miata (see van den Berg and Friedlander
(2008)). The optimization formulation (4) is harder to sothen (1), and requires a custom algorithm.
The main contribution of this paper is to describe such aorélgn and demonstrate its performance on
a simplified problem of the form

min ||m||1
m

4 (®)
st.  [[D—PH[mp+m Q¢ < 0,
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for a situation where we are trying to recover a velocity ypdrationm relative to a constant background
velocity mp, and so the perturbation is sparse in the physical domaia.algorithm for (5) can also be
used to solve (4), but requires special care to maintaingasilbility of transformed velocitieS*x.

Nonlinear Basis Pursuit Denoise (NBPDN) algorithm
To solve (5), we implement an iterated algorithm of the form

m'*t=m’+ 1,8, (6)

wheres’ is the solution to a particular subproblem at stendr, is a step size chosen by a line search
strategy. In developing the algorithm, especially in time Isearch forr,, we follow ideas presented in
Burke (1989) and Burke (1992). To obtain the subproblemaehetep,, we linearize the functions
andD — RH[mp+m|~1Q, and solve the resulting optimization problem, using-dependent parameter
oy:

min  [jm¥ +]}x

Z(mV) — .7 (m (7)
st. [[D—=ZF(m")—-02(m")(9)|g < oy,

where .7 (m) = PH[my + m|~1Q and 0.7 (m") denotes the linearized Born scattering operator. The
solution to this problem is the directiaf that appears in eq. (6). To solve this problem, we use the
substitutiony = m” + sto obtain

minly[|2

s.)t/. H (D—ﬁ(m")Jr D?(m")m") — D&‘(m")(y)“F < Oy.

(8)

For a fixedm”, this problem is now equivalent to the basis pursuit den@@&DN) problem detailed in

van den Berg and Friedlander (2008). The algorithm in thpepacalled SP@G, allows us to solve (8)
quickly, and moreover allows a functional representatibnl.& to be provided (specifying its action on
vectorsy) rather than requiring an explicit matrix representatibhe parameters,, are chosen to start
large and decrease untill it reaches th@arameter specified by the user. To obtain the step parameter
T, we first define an auxiliary penalty function

Pa(m) = [[mlls +a ([|D - F(m)[l2—0), ,

which includes both the sparsity promoting objectjrg|; and a measure of the distance from opti-
mality. The parametea, is then selected to ensure ttgt the solution to (5), is a descent direction
for Py, (M). In other words, the choice af, ensures,, (M’ +3") — Py, (m”) < 0. We then use the
backtracking Armijo line search (see e.g. Nocedal and Wi{$®99)) using the merit functioRy, (m).
The resulting step, is used to update the model as described in (6).

Results

To illustrate the new algorithm and the power of sparsityutegzation, we considered a stylized cross-
well problem. The true velocity consists of three small Gieas embedded in a constant background
of 2km/s and is depicted in figure 2. The features are sparskeirpixel-basis so we can directly
enforce sparsity on the recovered perturbation. We use @rfd-giscretization of the Helmholtz op-
erator with absorbing boundaries on a grid with 10m spacifge data are generated for 101 equi-
spaced sources and receivers located in vertical wells 8@@art for (randomly chosen) frequencies
[5.0,6.0,115,14.0,15.5,17.5,23.5] Hz. We consider two different scenarios: inversion wath the
sources and inversion using only 5 randomly synthesizepkisinots’. These are generated by weight-
ing all the sources with random Gaussian weights and stgck8uch techniques have recently been
proposed to dramatically reduce the costs of FWI (Krebs.e2@09; Moghaddam and Herrmann, 2010;
Haber et al., 2010) (see also other contributions of theaasitto these proceedings). We compare the
use of unregularized L-BFGS on (1) and the newly proposearitiign on (8). The results are depicted
in figure 2. We see that when using all the sources the unnégedapproach produces a reasonable
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image. The resolution is not very high, as expected, anddheal sides of the circle are not well recov-

ered. The NBPDN algorithm, however, produces a nearly execvery. The circle is now recovered

completely but the horizontal bar is somewhat distorted.ekiasing only 5 supershots (a reduction of
a factor 20 in the data volume) the L-BFGS approach producesiasable image. The artifacts intro-

duced by the crosstalk between the shots completely olstheeecovered velocity perturbations. The
NBPDN formulation, remarkably, gives us almost the samelres before.

Conclusion

We formulated FWI as a non-linear, sparsity promoting ojtition problem. The underlying assump-
tion is that the medium parameters that we are trying to @cheave a sparse representation in some
basis. In particular, we envision that typical velocityustures are sparse in curvelets. Instead of adding
a penalty term to the misfit term with a regularization paremes is commonly done in for example
TV regularization, we propose to minimize the penalty scibje the misfit being smaller than some
preset error level. The advantage of this formulation caebdo other sparsity promoting strategies
(e.g. LASSO) is that this error level may be easier to deteentfian the regularization parameter.

We demonstrate the algorithm on a toy cross-well examplerevthe unknown velocity perturbation
is sparse in the pixel-basis. Compared to an unregularzast-squares inversion, our approach gives
a superior result with much higher resolution. We also aersusing randomly synthesized data to re-
duce the computational cost of the inversion. Such a reslucbmes at the cost of introducing crosstalk
between the shots. In the unregularized inversion, thisstatk overshadows the reconstructed velocity
perturbations. With the regularized inversion, however,oletain a result nearly identical to the earlier
case at roughly 5% of the computational cost. The lattedtresay be tentatively explained by invoking
results from compressive sensing; a sparse signal may besteacted from severely undersampled
data by solving a linear sparsity promoting program as lantha sampling satisfies some additional
criteria. Most notably, the sampling must be random. Theerurformulation is a direct generalization
of the sparsity promoting linear formulation used in conggige sensing. Future research will be aimed
at further exploiting the connection to compressive s&nsin
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Figure 2 (a) True model for cross-well experiment; asterisks arer@esiand triangles are receivers.
(b) LBFGS recovery using full data (101 shots). (c) NBPDMNovery using full data (101 shots). (d)
LBFGS recovery using five supershots (20 x speedup). (e) NBB&very using five supershots (20 x
speedup).
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