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Abstract

Full Waveform Inversion (FWI) is a computational procedureto extract medium parameters
from seismic data. FWI is typically formulated as a nonlinear least squares optimization problem,
and various regularization techniques are used to guide theoptimization because the problem is ill-
posed. In this paper, we propose a novel sparse regularization which exploits the ability of curvelets
to efficiently represent geophysical images. We then formulate a corresponding sparsity promot-
ing constrained optimization problem, which we call Nonlinear Basis Pursuit Denoise (NBPDN)
and present an algorithm to solve this problem to recover medium parameters. The utility of the
NBPDN formulation and efficacy of the algorithm are demonstrated on a stylized cross-well exper-
iment, where a sparse velocity perturbation is recovered with higher quality than the standard FWI
formulation (solved with LBFGS). The NBPDN formulation andalgorithm can recover the sparse
perturbation even when the data volume is compressed to 5% ofthe original size using random
superposition.

Introduction

Full Waveform Inversion (FWI) is a data-fitting procedure based on full wavefield modeling designed
to extract medium parameters (velocity and density) from seismograms. Computational methods for
waveform inversion go back more than 20 years (see, e.g, Tarantola (1984)) and the problem has been
consistently formulated as a nonlinear least squares or similar type of optimization problem (Virieux and
Operto (2009)). It is useful at this point to provide an explicit framework for a typical FWI approach:

min
m

φ(m) := ‖D−PH[m]−1Q‖2
F (1)

where‖ · ‖2
F is the Frobenius norm,m is a vector of velocity parameters in a 2D or 3D grid,D ∈

Rk×l contains results ofl source experiments (ask-dimensional columns),H[m] is a discretization of
the Helmholtz operator with boundary conditions,Q ∈ Rp×l specifiesl source experiments,H−1[m]Q
describes the solution of the Helmholtz equation for the sourcesQ, andP is a restriction of this solution
to the surface where the data was observed.
FWI is widely known to be an ill-posed problem, and so regularization strategies are applied in practice
(see Virieux and Operto (2009) and sources within). A commonstrategy is least squares regularization,
where given reasonable guess of prior parametersm∗, one solves the problem

min
m

φ(m)+ (m−m∗)TW(m−m∗) (2)

whereW is some weighting matrix that encodes the confidence in the prior guessm∗ as well as relation-
ship (correlations) between the parameters. Alternative models using total variation (TV) regularization
have also been proposed (see e.g. Vogel and Oman (1996)).
The aim of the present paper is to formulate an alternative regularization approach based on sparsity
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Figure 1 Partial Marmoussi model in curvelets: 5% of the largest curvelet coefficients capture most of
the features of the full representation.

promotion, to develop an algorithm for the solution of the resulting optimization problem, and to show
the results of the new algorithm on a toy example.

Sparsity promotion for seismic data using curvelets

The curvelet frame was presented as an effective nonadaptive representation for objects with edges in
the seminal paper Candes and Donoho (2000). The key result inthat paper is that the curvelet frame
provides a stable, efficient, and near-optimal representation of otherwise smooth objects having discon-
tinuities along smooth curves. While there may be limitations to this characterization of geophysical
images, it is important to note that such images are layered due to geological sedimentation, and this
feature allows for efficient representations using curvelets. Motivated by this observation, researchers
have used curvelet representations in migration, dimensionality reduction, simulation, and sparse sam-
pling applications (see Hennenfent et al. (2010); Herrmannet al. (2009, 2008, 2007)). See also Figure 1
for a simple demonstration.
The notion that velocity parameters should be sparse (or at least compressible) in the curvelet represen-
tation leads to a ‘sparse’ regularization of FWI (compare with eq. (2)):

min
x

φ(C∗x)+λ‖x‖1, (3)

whereC denotes the curvelet basis andx is the vector of curvelet coefficients corresponding to the
velocity parametersm, i.e. m=C∗x, the term‖x‖1 serves to promote sparsity in this representation, and
λ is a parameter that balances sparsity in curvelets vs. modelfit. While this is a reasonable formulation,
λ must be known ahead of time, and it is not clear how to choose it. Rather than working with eq. (3),
we go to a closely related constrained reformulation

min
x

‖x‖1

s.t. g(C∗x)≤ σ ,
(4)

where as before the objective‖x‖1 serves to promote sparsity in this representation, and the parameterσ
is a regularization parameter that determines the acceptable value of the residual‖D−RH[C∗x]−1Q‖F

(i.e. noise level in the data). Unlikeλ in eq. (3), the parameterσ in eq. (4) is likely to be known
to scientists working with inverse problems in geophysics.Note that the formulation (4) is a natural
nonlinear extension to the Basis Pursuit Denoise (BPDN) formulation used in compressive sensing lit-
erature to for sparse signal recovery from under-sampled noisy data (see van den Berg and Friedlander
(2008)). The optimization formulation (4) is harder to solve then (1), and requires a custom algorithm.
The main contribution of this paper is to describe such an algorithm and demonstrate its performance on
a simplified problem of the form

min
m

‖m‖1

s.t. ‖D−PH[m0+m]−1Q‖F ≤ σ ,
(5)
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for a situation where we are trying to recover a velocity perturbationm relative to a constant background
velocity m0, and so the perturbation is sparse in the physical domain. The algorithm for (5) can also be
used to solve (4), but requires special care to maintain the feasibility of transformed velocitiesC∗x.

Nonlinear Basis Pursuit Denoise (NBPDN) algorithm

To solve (5), we implement an iterated algorithm of the form

mν+1 = mν + τνsν , (6)

wheresν is the solution to a particular subproblem at stepν , andτν is a step size chosen by a line search
strategy. In developing the algorithm, especially in the line search forτν , we follow ideas presented in
Burke (1989) and Burke (1992). To obtain the subproblem, at each stepν , we linearize the functionsm
andD−RH[m0+m]−1Q, and solve the resulting optimization problem, using aν-dependent parameter
σν :

min
s

‖mν +s‖1

s.t. ‖D−F (mν)−∇F (mν)(s)‖F ≤ σν ,
(7)

whereF (m) = PH[m0 +m]−1Q and ∇F (mν) denotes the linearized Born scattering operator. The
solution to this problem is the directionsν that appears in eq. (6). To solve this problem, we use the
substitutiony= mν +s to obtain

min
y

‖y‖1

s.t.
∥

∥

∥

(

D−F (mν)+∇F (mν)mν
)

−∇F (mν)(y)
∥

∥

∥

F
≤ σν .

(8)

For a fixedmν , this problem is now equivalent to the basis pursuit denoise(BPDN) problem detailed in
van den Berg and Friedlander (2008). The algorithm in that paper, called SPGℓ1, allows us to solve (8)
quickly, and moreover allows a functional representation of ∇F to be provided (specifying its action on
vectorsy) rather than requiring an explicit matrix representation.The parametersσν are chosen to start
large and decrease untill it reaches theσ parameter specified by the user. To obtain the step parameter
τν , we first define an auxiliary penalty function

Pα(m) = ‖m‖1+α (‖D−F (m)‖2−σ)+ ,

which includes both the sparsity promoting objective‖m‖1 and a measure of the distance from opti-
mality. The parameterαν is then selected to ensure thatsν , the solution to (5), is a descent direction
for Pαν (m). In other words, the choice ofαν ensuresPαν (m

ν + sν)−Pαν (m
ν) < 0. We then use the

backtracking Armijo line search (see e.g. Nocedal and Wright (1999)) using the merit functionPαν (m).
The resulting stepτν is used to update the model as described in (6).

Results

To illustrate the new algorithm and the power of sparsity regularization, we considered a stylized cross-
well problem. The true velocity consists of three small features embedded in a constant background
of 2km/s and is depicted in figure 2. The features are sparse inthe pixel-basis so we can directly
enforce sparsity on the recovered perturbation. We use a 9-point discretization of the Helmholtz op-
erator with absorbing boundaries on a grid with 10m spacing.The data are generated for 101 equi-
spaced sources and receivers located in vertical wells 800mapart for (randomly chosen) frequencies
[5.0,6.0,11.5,14.0,15.5,17.5,23.5] Hz. We consider two different scenarios: inversion withall the
sources and inversion using only 5 randomly synthesized ‘supershots’. These are generated by weight-
ing all the sources with random Gaussian weights and stacking. Such techniques have recently been
proposed to dramatically reduce the costs of FWI (Krebs et al., 2009; Moghaddam and Herrmann, 2010;
Haber et al., 2010) (see also other contributions of the authors to these proceedings). We compare the
use of unregularized L-BFGS on (1) and the newly proposed algorithm on (8). The results are depicted
in figure 2. We see that when using all the sources the unregularized approach produces a reasonable
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image. The resolution is not very high, as expected, and the vertical sides of the circle are not well recov-
ered. The NBPDN algorithm, however, produces a nearly exactrecovery. The circle is now recovered
completely but the horizontal bar is somewhat distorted. When using only 5 supershots (a reduction of
a factor 20 in the data volume) the L-BFGS approach produces an unusable image. The artifacts intro-
duced by the crosstalk between the shots completely obscures the recovered velocity perturbations. The
NBPDN formulation, remarkably, gives us almost the same result as before.

Conclusion

We formulated FWI as a non-linear, sparsity promoting optimization problem. The underlying assump-
tion is that the medium parameters that we are trying to recover have a sparse representation in some
basis. In particular, we envision that typical velocity structures are sparse in curvelets. Instead of adding
a penalty term to the misfit term with a regularization parameter, as is commonly done in for example
TV regularization, we propose to minimize the penalty subject to the misfit being smaller than some
preset error level. The advantage of this formulation compared to other sparsity promoting strategies
(e.g. LASSO) is that this error level may be easier to determine than the regularization parameter.
We demonstrate the algorithm on a toy cross-well example, where the unknown velocity perturbation
is sparse in the pixel-basis. Compared to an unregularized least-squares inversion, our approach gives
a superior result with much higher resolution. We also consider using randomly synthesized data to re-
duce the computational cost of the inversion. Such a reduction comes at the cost of introducing crosstalk
between the shots. In the unregularized inversion, this crosstalk overshadows the reconstructed velocity
perturbations. With the regularized inversion, however, we obtain a result nearly identical to the earlier
case at roughly 5% of the computational cost. The latter result may be tentatively explained by invoking
results from compressive sensing; a sparse signal may be reconstructed from severely undersampled
data by solving a linear sparsity promoting program as long as the sampling satisfies some additional
criteria. Most notably, the sampling must be random. The current formulation is a direct generalization
of the sparsity promoting linear formulation used in compressive sensing. Future research will be aimed
at further exploiting the connection to compressive sensing.
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Figure 2 (a) True model for cross-well experiment; asterisks are sources and triangles are receivers.
(b) LBFGS recovery using full data (101 shots). (c) NBPDN recovery using full data (101 shots). (d)
LBFGS recovery using five supershots (20 x speedup). (e) NBPDN recovery using five supershots (20 x
speedup).
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