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Shors r-algorithm is an iterative method for unconstrained optimization, designed for minimizing non-
smooth functions, for which its reported success has been considerable. Although some limited conver-
gence results are known, nothing seems to be known about the algorithm’s rate of convergence, even in
the smooth case. We study how the method behaves on convex quadratics, proving linear convergence
in the two-dimensional case and conjecturing that the algorithm is always linearly convergent, with an
asymptotic convergence rate that is independent of the conditioning of the quadratic being minimized.

Keywords Shor’s r-algorithm; space dilation; linear convergence; unconstrained optimization;
nonsmooth optimization.

1. Introduction

Shor’s r-algorithm (Shor]1 985, Section 3.6) was designed primarily to minimize nonsmooth functions,
something that it does quite effectively according to extensive results of Shor and others, particularly
Kappel & Kuntsevich 2000). The r-algorithm, which can be viewed as a variable metric method that
does not satisfy the secant equation, should not be confused with Shor’s subgradient method with spac
dilation (Shor,1985, Section 3.3), which is related to the symmetric rank-one quasi-Newton method
(Todd 1986). The r-algorithm also uses space dilation, but in the direction of the difference of two suc-
cessive gradients (or subgradients, in the nonsmooth case). The r-algorithm’s crucial payafaeter
below) ranges between 0 and 1: for the boundary cases0O andy = 1, the method reduces respec-
tively to steepest descent and to a variant of the conjugate gradient method {$3®yrp.70). Some
limited convergence results are known; a result is given for continuous, piecewise smooth functions in
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Shor (1985, Theorem 3.13). However, nothing seems to be known about the convergence rate of the
algorithm, even in the smooth case.

This paper studies the rate of convergence of the r-algorithm on convex quadratics, conjecturing that
the method is linearly convergent in this case, with a proof winea 2. We also make the stronger
conjecture that, fop € (0, 1), the algorithm is linearly convergent with a rate that is independent of
the conditioning of the quadratic to which it is applied, a result that would interpolate nicely between
well known results for steepest descent and conjugate gradient. Our analysis makes use of properties of
the trace and determinant to try to bound the condition number of the matrix that is generated by the
r-algorithm. It was M. J. D. Powell who pioneered this kind of technique in the convergence analysis of
variable metric methods (Powell971,1972,1976).

2. Shor’s r-algorithm

For a smooth functiorf : R" — R, the algorithm fixes a constant € (0, 1), begins with an initial
pointxg € R", defines an initial matrixBy = | (theidentity matrix), and then iterates as follows, for
stepk =0,1,2,...:

X1 = Xk — BBy V f (xc)

wheret, minimizes f (Xk+1)
Mr1= B (Vf(xkp1) — V F(xk)) normalized
Bkt1=Bk(l — yrk+1r|;r+1).

Hereand below, “normalized” means normalized using the 2-norm. In practice, an inexact line search
would be used to obtaitx, but for the purposes of our analysis, we make the following assumption
throughout:

Exact line search The step sizé& globally minimizes f (Xk+1).

Noticethat settingy = 0 would give the method of steepest descent.

We can interpret the algorithm as making steepest descent steps in a transformed space, as follows.
At stepk, given the current iteratg, andthe current transformation matrBg, we first make the change
of variablesy = Bk_lx. In terms of this new variable, we wish to minimize the function

hi(y) = £(x) = f(Bky).

Our current point isyx = B, 1x. Starting from this point, a steepest descent step takes us to the new
point

Ye+1 = Yk — tkVhi(y),

wherety minimizeshy(yk+1), and fromyk,1 we invert the change of variables to obtaig,.1. Hence
we deduce the iteration:

Xk+1 = BiYks+1 = Bk (yk — thhk(yk)) = Xk — tk Bk By V f (Xc).

Theupdate to the transformation mati is motivated by the next assumption, that again we make
throughout:

Convex quadratic: f(x) = %XT Ax for a symmetric positive definite matriX.
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In this case it is easy to verify the relationship
] (Vf(x1) = Vf(xp) =0.

In other words, one steepest descent iteration on a convex quadratic results in a difference of succes-
sive gradients that is orthogonal to the direction to the minimizer. The transformation represented by
the matrixBy dilatesthe space in the direction of this gradient difference, thereby encouraging future
iterations in orthogonal directions. In particular, if we get 1, all future iterations must be orthogonal
to the gradient difference, resulting in the conjugate gradient iteration. More generally, the method can
be viewed as a variable metric method, but one for which the updated matrix does not satisfy the well
known secant equation.

The classical theory for the method of steepest descent relates the rate of decrease in the functio
value to the conditioning of the quadratic. Specifically, we have

;c(A)—l)z T

T
X, AXy < | ——— ) Xo AXo,
A (K(A)+1 0 770

wherex (A) = ||All||A~Y|, the condition number oA (Luenberger1984). In subsequent iterations,
applying the same inequality in the transformed space shows

T T RpT
Xir 1 A%k+1 = Yir 1 B ABiYie+1

2
Bl ABy) — 1

< K(kT—") Y B¢ ABkyk
x(B] ABy) + 1

2
Bl ABy) — 1
= K(i;_—k) X;AXk,
k(B ABy) + 1

sinceyk41 is obtained fromyy by one iteration of steepest descent on the function

1
hi(y) = 5y" B ABiy.

Consequentlyto understand the speed of Shor’s r-algorithm in the case of a convex quadratic with an
exact line search, we must understand how the condition number of the matrix

Ac = B] AB
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evolves as the step countegrows.
To study the Shor iteration, we make some changes of variables. In our quadratic case, assuming the
iteration does not terminate with somg= 0, the iteration becomes
3 g AB B Axy
x7 ABcB] ABB] Axi

tk

.
Xk+1 = Xk — tk Bk By, Ax
rkr1= By A(xks1 — Xk) normalized

Bk41=Bk(l — yrk+1r|2-+1).
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Noticethat the iteration is well-defined becauge+# 0. If we define a new (nonzero) variable

K = B|-(r AXg,
we obtain
= AR
ZI Axzk
By AXii1=Zk — tk Az
rk+1 = Axzx normalized
Bir1=Bi(l — yMkgaryy)-
By definition,

T T \pT
41 =By A1 = (I — prisal ) By AXira

=( -y r|<+1f|<T+1)(Zk — tAkzk)

2
T ll z« ||
=(l - }’rk+lrk+1)(zk — T+l
Mky12k
2
T ll z« ||
=2Z — (V N1z + QL —=7) T Mk+1,
Mky12k

whereonce agaimkT 112« 7 0 because # 0. Hence we can rewrite the iteration as follows:
rk+1 = Axzx normalized

Bk+1=Bk(l —y rk+1fkT+1)

T 121
Zet1 =2 — |7z + A —y) =5 M1
k12K

Normalizingeach vectogy to obtain the corresponding unit vectag resultsin the following iteration.

Shor matrix iteration Given any n-by-n symmetric positive definite matrix ahd any unit vector
Ug € R", compute the following sequences foekl, 2,3, .. .:

[ ry = Ax_1Uk_1 normalized

Ck = rkTuk_l
D=1 — yrkl’g—
Ax = Dk Ak—1Dxk

Uk = Uk—1 — (y Ck + Y )rk normalized.

Note that Ay is positive definite for alk. If we allowed the boundary cases= 0 andy = 1, we

would haveAy = Ag for all k in the former case, while in the latter case, the equivalence with conjugate
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gradientimplies that the rank o, would drop by one at each step, terminating wigh= 0 for some
k <n.

As noted earlier, we are interested in how the condition numbag) evolves. We begin with the
following elementary result for the trace, determinant and condition number.

LEMMA 2.1 We have
tr A = trAca—y (2= 7)rg Acoark,
Ax—
detAy = (1 — y)2detA1, and x(AW) < '(‘1(—k;;
-7
Proof. The equalities are immediate, observing for the second that the niatrhasone eigenvalue

equal to 1— y and the rest all one. For the inequality, letax(-) and Amin(-) denotemaximum and
minimum eigenvalue respectively and observe that for any vector

0T Aw = Amin(Ak—1)0 T D20 = Amin(Ak—1)(L — 7)?[lv |1
and
0T Akv < Amaxd(Ak=1)0 T D20 < Amax(Ak—1) v |12

O
Thustr A¢ decreasewith k, detAx decreaselnearly, ande (Ax) doesnot grow superlinearly. However,
numerical experiments suggest the following conjecture.

CONJECTURE2.2 Given anyy € (0, 1), any positive definite initial matriXdg andany initial vectoruo,

the condition numbers of the matrice&g, A1, Az, ... generated by the Shor matrix iteration stay

bounded.

Suppose this holds, and set
i = lim supx (Ax).
k

Thenour observation about the convergence rate of steepest descent in the transformed space implie
that the function value%xkT Axk generatedby Shor’s r-algorithm converge to zero linearly with asymp-

totic rate

i —1)\?
k+1)
Indeed experiments suggest a much stronger conjecture.

CONJECTUREZ2.3 For each dimension=1,2,3,...and eacly e (0,1), there exists a finite constant
p(n, y) associated with the Shor matrix iteration, independent of the initial positive definite ngtrix
andthe initial vectorug, such that the condition number of the iterafgssatisfy

lim supre(A) < p(n, 7).
k

This conjecture would imply that Shor’s algorithm converges linearly on convex quadratics at an asymp-
totic linear rate independent of the initial conditioning of the quadratic. Such a result would interpolate

nicely between known results for steepest descent=(0), for which the conjecture is not true, and
conjugate gradient (= 1), which has finite termination. See Figfor a typical example. The graph
plots the condition number of the matrd against the iteration courk, for various choices of . The
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FiG. 1. Conditioning of theAy matrices generated by the Shor algorithm when the initial matrix is the 10-by-10 Hilbert matrix.

initial matrix Ag was a Hilbert matrix of size 10, and the initial unit vectgrwas generated randomly.
For values ofy that are very close to 1, the method nearly solves the optimization problamteps,

but then the next step results in a huge increase in the condition number which is reduced in subsequent

iterations. This pattern repeats, suggesting tat y) — oo asy — 1. On the other hand, while it
seems quite possible thatn, y ) can be taken arbitrarily close to 1 as— 0, choosingy close to 0
is not desirable as the transient decrease in the condition number is slower theycieser0. These
observations motivate a choicepfthat is not too close to 0 or 1.

The trace and determinant of a positive definite matrix give crude bounds on its condition number,
as shown in the following result.

PROPOSITION2.4 For anyn-by-n symmetric positive definite matriR, define

1 trA
A = —
u(A) -

(detA)l/n’
Then
1< u(A) < k(A < 4uA).

Proof. The first inequality is just the arithmetic-geometric mean inequality, while the second is imme-
diate. The third inequality follows easily froMerikoskiet al. (1997, Theorem 2). O

In order to keep the presentation self-contained, we also note the following simple proof of a weaker
version of the third inequality, replacing the factor 48y (n — 1)"~1. Denote the eigenvalues #fby
A=A >=--->=An>0.Then

A1 A+ A2+ -+ n
A = — and u(A) = .
x(A) i (A N(AL-Ag----- Iy I/m
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We have
n n 1/n
D= w(A)(Hzi) :
i=1 i=1

sodividing by 1, shawvs

n-1 2 noo n o 1/n
i i i

= — — = nu(A —

=303l m(f12)

i=1 =1

n-1

1
=1 n—1

n—-1 A n n-1
=nﬂ(A)(H Tn) < (%)

i=1

wherethe last inequality follows from the arithmetic-geometric mean inequality again. Thus

1/n nu(A)
a/" < S0

Sincex (A) < a, this provides the weaker upper boundsg), which is all we need for what follows.

Thus, for fixedn, the condition numbek (Ax) remainsbounded if and only ifu(Ax) remains
bounded Since we know that defy decreaseby the constant factofl — y )? at every step, we can
state our conjectures about the condition number in terms of the traég ktherthan its condition
number. Then Conjectu2becomes:

CONJECTUREZ2.5 Given any initialn-by-n matrix Ag andinitial vectorug, the matricesg, A1, Ao, . ..
generated by the Shor matrix iteration have the property that the quantity

2k
L—p)77 tr A

staysbounded.

The experimental observations of Figsuggest that the conditioning of the matrigksgenerated
by the Shor iteration is in some sense “self-correcting”: over a long sequence of iterations, any ill-
conditioning evolves away, settling into a stable state of relatively small fluctuations. However, the
closery isto 1, the less stable is this behaviour. As we observed above, sindg detreasebnearly,
the behaviour of tAx gives a reasonable measure of the conditioning, and this behaviour suggests a
partial explanation for the self-correcting mechanism. By Len®mia the reduction in trace is least
whenry is close to an eigenvector corresponding to the smallest eigenvallye_ef In this case, since
rk is Axk—1Ux—1 hormalizedthe unit vectorsk anduk_1 mustbe close, so the scalef mustbe close to
one, and then the formula for the new unit veaipimpliesthat it must be almost orthogonalug_;. In
particular, the iteration does not allow the vectar$o “line up” in the direction of a single eigenvector.

In the two-dimensional case, this self-correcting behaviour is enough to verify Conj@cuid/e
present a proof for the cage= 1/2, depending on the fact that, while the condition numbeiptan
increasdrom one iteration to the next, aftewo iterations it must decrease.

THEOREM 2.6 For the Shor matrix iteration in dimension= 2 and with constant = 1/2, for any
stepk such that the matrice&y_1 and Ax1 areboth defined,

k(A1) < r(Ak-1).
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Consequentlythe Shor r-algorithm (withy = 1/2) for minimizing a two-variable strictly convex
guadratic either terminates or converges linearly.

Proof. Since the functior s t3 + =7 is increasing fott > 1, it suffices to prove

1 1
A + — )4 —,
VE(Ay1) )] < VE(Ak-1) )

or equivalently

tr Axya tr A1
< .
JAetAG: | JdetAr

By Lemma2.1,
1
detAxr1 = — detAy_1.
K+l = 75 A
Onthe other hand,
3 1
tr Ak =tr Ax—1 — Zrk Ax_1rk
3 1
tr Agp1=tr A — Zrk+1Akrk+1-
Hencewe want to show
3
tr A1 > 4trAgs = 4(tr Ak-1— Z(rkT Ax—1rk + rkTHAkrkH)),

orin other words

T T
Mg Ak_lrk+rk+1Akrk+1 > tr Ag_1.

Let us summarize our task, in simplified notation. Given any unit veater R? (formerly ux_1)
andany 2-by-2 symmetric positive definite matiix(formerly Ax—1), we define

1
r= Fu
IFull
c=r"u
1
D=1 —Zrr'
2
G=DFD
1 1
DZU—E(C+ E)r
1
w =
1Goll

In our former notation; = ry, ¢ = ¢k, D = Dy, G = Ay, v is some positive multiple of the unit vector
Uk, andw = rg41. We want to show the inequality

rTFr+w' Guw > trF,
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or in other words

0T G3

TG > trF.

rTFr +

Without loss of generality we can assume- [1, 0]". Indeed, if we prove the result in this special
case, we can deduce the case for genetay a simple change of variables: choose any orthogonal
matrix U satisfyingUr = [1, 0]", and then apply the special case with the veatreplaced byJ u and
the matrixF replaced byy FUT.

So,we can assume = [1,0]" andthen, by the definition o€, we must haves = [c, s]T where
c® +s? = 1. Noticec > 0 sinceF is positive definite. Without loss of generality, by rescaling if
necessary, we can assume the bottom row of the mattias norm one, and then we must have

a -s
F= [ :| for somea > 0.
-s

c
We deduce
1 1
c_ |z Ofla S|z 0 _ |3 -3
0 1f|-s c||0 1 -3 c
We want to show
T G3p
a+DTGZD >a+c,

or in other words
Since
c 1 1\ |1
SHREE]

—s(a+ 40)}

we deduce 2o = s[—s, 2T, so

8cGy = (4G)(2w) = s|: 24 62

Finally, we have
256 (0" G20 — cv ' G%) = (8¢cGo) ' (4G)(8cGo) — 4c(8cG) T (8cG)
= (8¢cGv) T (4(G — cl))(8cGv)
e |:—s(a + 40)]T |:a —4c —25:| [—s(a + 4c):|
2+ 60 -2s 0 2+6¢
—g? (sz(a — 40)(a+ 402 + 45%(a + 40) (2 + 602))

=s*@a+40@* +82+8) > 0
as required, using the fact that£ 0 sincev # 0 by assumption. a
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Numericalexperiments show that it is not always the case k@1 n-1) < x(Ak—1) forn > 2,
soproving linear convergence for > 2 will require a different approach. Nonetheless, both the obser-
vations of Fig.1 and the relationship with the conjugate gradient method indicate that whatever result
might be established, it will probably involve a characterization of behaviourrostaps.

3. Concluding remarks

Our interest in Shor’s r-algorithm has two different motivations. One is its apparently substantial prac-
tical success in minimizing nonsmooth functions. The other is that the algorithm interpolates between
two pillars of optimization, steepest descent and conjugate gradient, and seems to have interesting con-
vergence properties that remain to be established. We hope that our analysis of the r-algorithm in the
simplest setting imaginable will stimulate further research on its theoretical behaviour.
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