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Abstract

A non—interior path following algorithm is proposed for the linear complementarity
problem. The method employs smoothing techniques introduced by Kanzow. If the
LCP is Fp+ Rp and satisfies a non—-degeneracy condition due to Fukushima, Luo, and
Pang, then the algorithm is globally linearly convergent. As with interior point path
following methods, the convergence theory relies on the notion of a neighborhood for
the central path. However, the choice of neighborhood differs significantly from that
which appears in the interior point literature. Numerical experiments are presented
that illustrate the significance of the neighborhood concept for this class of methods.

1 Introduction

In this paper, we develop a non—interior path following method for the linear complemen-
tarity problem:

LCP(q, M): Find (z*,y*) € IR" x IR" satisfying

Max* —y" 4+ qg=0, (1.1)
2t >0,y" >0, (") y" =0, (1.2)

where M € IR"*" and ¢ € IR".



The global linear convergence of the method is established under a non—degeneracy as-
sumption due to Fukushima, Luo, and Pang (see Definition 4.1 or [6, Assumption (A2)])
and the assumption that the matrix M is Po+ Rg (see Definition 2.2). The method is based
on an algorithm proposed by Kanzow in [12]. It is also closely related to the algorithm
proposed by Chen and Harker in [3]. The key difference with the Kanzow and Chen-Harker
algorithms is our use of a new notion of neighborhood for the central path to update the
continuation parameter.

Following standard usage in the interior point literature (for example see [13]), the
central path is the set

C={(z,y) : Mz —y+¢q=0, Xy=pewith0<z, 0<y, and 0 < u},

where e is the vectors of ones and X = diag (z) the diagonal matrix with i’ diagonal entry

x; for i =1,2,...,n. For each # € (0,1), the 8 neighborhood of C is defined to be the set
Xy —

Ns(B) ::{(x,y) Mz —y+qg=0, Mgﬁ, with 0 < 2, 0 <y, and0</,c} .
[

Here, the subscript s is used to indicate that this is the standard neighborhood employed in
the interior point literature for LCP(q, M). Very loosely speaking, standard interior point
methods start with an initial point (2 y%) lying in N(3) for some $ > 0 and an initial
value pg satisfying || X%y° — uoe|| < po. An update is obtained by choosing y; < po and
computing a Newton step (Az, Ay) at (z°,y°) based on the equations

Mx—y+q=0, Xy=pe. (1.3)

The Newton step is then damped to ensure that the update (z', y') remains strictly positive
and lies in V(). This process is then iterated to termination. The trick is to implement
the method so to ensure the existence of a sequence pj converging linearly to zero and
satisfying HXkyk — /,LkeH < ppf. This yields the linear convergence of the vector X*y*
to zero which in turn provides the basis for complexity results. Numerous variations on
this basic plan have been proposed. The most notable of which are the infeasible (i.e.
Mz* — y* + ¢ may or may not be the zero vector) predictor-corrector strategies for which
local super—linear convergence can also be established (e.g. see [17, 21]).
Kanzow’s non—interior method for solving LCP(q, M) is based on the function

Fy(z,y):= [ quﬂzx%;; 1 ] , (1.4)
where
77Z)M(x17y1)
U, (x,y) = ) (1.5)
@Z)u(xnvyn)
and

Yula,b) = a+b—1/a* + b2 +2u . (1.6)



For p > 0, it is easy to show [12] that ¢, (a,b) = 0 if and only if 0 < @, 0 < b, and ab = p.
Consequently, Fy (z,y) = 0 if and only if (z,y) € C. The key distinction between the
system (1.3) and the system

Fy(z,y)=0 (1.7)

is that a solution to the system (1.3) may not be strictly positive and so may not lie on
the central path. This partially explains why one must initiate interior point methods at
strictly positive points and then damp the Newton steps to maintain this property. On the
other hand, a solution to (1.7) must be strictly positive and so will lie on the central path.
Thus, the non—negativity of any limit point is automatically assured without imposing
additional non-negativity constraints. This is one of the reasons why the function [y, is
so effective in formulating non-interior path following methods.

In Kanzow’s method an initial point (2°,y?) satisfying Ma° —4° + ¢ = 0 and an initial
value for g are chosen. It is not required that (2% y°) be strictly positive or that it lie in
some neighborhood of the central path. A global Newton strategy is then applied to the
system F, (x,y) = 0 until the value of the norm of F, (x,y) has been sufficiently reduced.
The value of g is then updated to py < pop and the process is iterated to termination.
Kanzow shows in [12, Theorem 6.2] that if the matrix M is Py + Rg, then the sequence
generated by his algorithm [12, Algorithm 6.1] has an accumulation point and that every
such accumulation point is a solution to LCP(g, M). A similar algorithm is proposed by
Chen and Harker in [3]. There the authors concentrate on establishing the existence of the
central path and the continuity of the path at g = 0, however, no algorithmic convergence
results are provided. The absence of any rate of convergence results for these algorithms is
due to the somewhat ad hoc rules for updating the continuation parameter p. This gap is
bridged in interior point methods by requiring that the iterates remain in a pre—specified
neighborhood of the central path.

In [20], Xu and Burke consider an interior point variation on the Chen—-Harker—Kanzow
path following techniques. Their algorithm does not require the feasibility of the affine con-
straint at each iteration, but it does require that the iterates remain strictly positive and
stay in a given neighborhood N,(f3) of the central path. The positivity restriction allows the
introduction of a rescaled Newton step producing iterates whose distance from the central
path is easily controlled. The convergence behavior of the iterates can then be examined
using standard interior point methodology. Xu and Burke establish the global linear con-
vergence of their algorithm and use this result to establish the polynomial complexity of
the method.

The complexity result in [20] is interesting since it provides some theoretical justification
for the superb numerical performance demonstrated by the Kanzow and Chen-Harker
algorithms. However, enforcing positivity in the system (1.7) is redundant since, unlike the
system (1.3), this system automatically guarantees the positivity of its solutions. In this
paper we describe a non-interior path following algorithm based on the function F;, and
establish its global linear convergence. The proof technique follows the pattern developed
for interior point strategies. In this regard, the key is the introduction of a new notion of
neighborhood for the central path that is better suited to the function Fy,. Just as with
interior point methods, this neighborhood is used to adjust the value of the continuation
parameter p between iterations in a manner that insures the linear convergence of the values



H\I/Mk(xk, yk)H to zero. Preliminary numerical experiments indicate that the algorithm is
very promising.

The plan of the paper is as follows. In Section 2, we introduce a new notion of neighbor-
hood for the central path and establish some of the properties of this neighborhood. The
algorithm is stated and shown to be well defined in Section 3. The global linear convergence
result is given in Section 4 and the numerical experiments are discussed in Section 5. A
few concluding remarks are given in Section 6.

The notation we employ is standard. The notation borrowed from the interior—point
literature has been discussed above. Vectors in IR" are assumed to be column vectors and
unless otherwise stated the norm is the Fuclidean norm. On one occasion we make use of
the supremum norm. It is denoted by

||, = sup{|a] : 1 =1,2,....n} .

2 A Neighborhood of the Central Path

We take as our neighborhood of the central path the set

19l y)|°

N(ﬂ)iZ{(way)er—erq:O, Sﬂ,with0</~b},

for # > 0. The square of the norm in this definition is used to ensure that the expres-
sion ||¥,(x, y)||* has linear growth with respect to g. In the recent article [4], the authors
suggest replacing p by p? in the definition of 1,. With this substitution, the expression
W, (2, y)|| grows linearly with respect to ¢ and so one does not need to square the norm.
On the other hand, by using the square of the norm, we can directly apply results due to
Geiger and Kanzow ([11, Lemma 2.1] and [7, Lemmas 3.1 and 4.3]) showing that ¢3(a,b)
is continuously differentiable on IR* and is twice continuously differentiable with uniformly
bounded Hessian on IR*\{(0,0)}. We extend these facts to ¥, with g > 0 and, in addi-
tion, show that ;/)Z(a, b) is globally Lipschitz in the continuation parameter p > 0. These
properties allow us to mimic the interior point proof strategy in the non-interior setting.

Lemma 2.1 The function 1, defined in (1.6) has the following properties:
1. For every pu > 0, the function ;/)Z is continuously differentiable on IR*.

2. One has
|12 (02 (a, b)) < 4(5 + V2), (2.8)

for all (a,b) € IR* when > 0 and for all (a,b) € IR*\{(0,0)} when pu = 0.
3. For py >0, p2 >0 and a,b € IR, we have

45, (a,0) = ¥, (a, b)] < (2 4 2V2) |y — piol. (2.9)



Proof The only troublesome case in Part 1 occurs at the points (a,b) = (0,0) when x = 0.
In this case one simply applies the inequality

la| + [b] < V2Va? + b? (2.10)

to obtain a suitable bound on V¢,” in the vicinity of the origin. This allows one to show
that the limiting value of HV;/}MQ(Q,I))H is zero as a, b, and p converge to zero. The proof

of Part 2 follows directly from the pattern of proof provided in [7, Lemma 4.3] for the case
p = 0. Part 3 also follows in a straightforward manner with the help of (2.10) and so we
leave its proof as an exercise for the reader. a

We now recall some well established conditions that yield the existence of the central
path. These conditions are also used to guarantee certain boundedness conditions for our
neighborhood of the central path. We begin with a review of the necessary terminology.

Definition 2.2 Let M € IR"™".
(a) M is a Py matrixz if each of its principal minors is non-negative.
(b) M is a P matriz if each of its principal minors is positive.
(¢c) M is an Ry matriz if LCP(0, M) has unique solution (x,y) = (0,0).
(d) M is said to be Py + Ro if it is both a Py and an Ry matriz.

(d) M is a non—degenerate matriz if each of its principal submatrices is nonsingular.

The set of Py matrices clearly contains the set of all positive semi—definite matrices. The
positive semi—definite matrices give rise to the monotone linear complementarity problems
of which both linear and convex quadratic programming are special cases. Every positive
definite matrix is a P matrix, and a P matrix is a non—degenerate matrix that is both
a Py and an Ry matrix. Under the assumption that the matrix M is an Ry matrix it is
well-known that the solution set

S={(z,y): 0<z, 0<y, Me —y+q=0, and 2"y = 0}. (2.11)

to LCP(¢, M) is bounded. The boundedness of S is key to the analysis of the limiting
behavior of the central path as the continuation parameter p tends to zero. This limiting
behavior and the existence of the central path is addressed in the following theorem.

Theorem 2.3 ([12, Corollary 3.9]) If M is a Py and an Ry matriz, then the equation
Fy(x,y) = 0 has a unique solution (x(u),y(p)) for all p > 0. Moreover, the entire
sequence (x(p),y(p)) converges to a solution of LCP(q, M) as p tends to 0.

Just as the assumptions in Theorem 2.3 can be used to establish the boundedness of
the solution set S, these assumptions can also be used to assure the boundedness of certain

slices of the neighborhood N(3).



Proposition 2.4 Let > 0, uo > 0 and consider the sets

19z, y)|°

N(Mo,ﬁ):{(%y)er—erq:O, <5, with0<uﬁuo}-

If M is an Ry matriz, then the set N(po,[3) is bounded.

Proof The pattern of proof is identical to that which is used to show the boundedness of
S. Suppose to the contrary that there exists an unbounded sequence {(x*, y*)} € N (uo, 3).
Then there is also a sequence of scalars {y; } satisfying | ¥, (z,y)||> < Bur and 0 < g < pio.
Since the sequence {((z*, y*)/|1(z", y*)||, x)} is bounded, we may assume without loss of
generality that this sequence converges to a point ((z*,y*), u.) € IR*"*'. By dividing the
equation Mz* —y* + ¢ = 0 through by ||(z*, y*)|| and taking the limit as k — oo, we find
that

Ma™ —y™ = 0. (2.12)
In addition, for each ¢ = 1,...,n, we have
G 0| VA TTTS VA /T
0 | I (CAN A I (CAN ]|
Again, taking the limit in k yields
Yo(ar,y’) =0, foreachi =1,...,n. (2.13)

But (2.13) and (2.12) taken together imply that (z*,y*) # 0 is a solution to LCP(0, M).
This contradiction yields the result. a

3 The Algorithm

Step 0 (Initialization)
Let wo > 0, 3 > 0, and (2°,y°) € IR*" be given so that (2°,y°) €
N (o, 3) with || ¥, (2°,5°)||> < poB, and choose o; € (0,1) and a; €
(0,1) for ¢ =1, 2.

Step 1 (Computation of the Newton Direction)
Let (Az*, Ay*) solve the equation

Ax
Fy, (2%, y*) + VEy,, (2F, 5T ( Ay ) =0. (3.14)
Step 2 (Backtracking Line Search)

If W, (2% y*) = 0, set (21 1) = (2% y¥); otherwise, let Ay be the
maximum of the values 1, ay, of, ... such that

H\I}“k(xk + )‘kAxkv yk + )\kAyk)HQ < (1 —a1A) H\I}Mk(xkv yk)‘ 2

. (3.15)
and set (21 y*Ft) = (2F + N AR yF 4+ A AYF).
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Step 3 (Update the Continuation Parameter)
Let 4, be the maximum of the values 1, ay, o2, ... such that

1 =y (2, D < B = o), (3.16)

and set ppr1 = (1 — ooy )ik, k =k + 1, and return to Step 1.

Remark An alternative to the backtracking procedure in Step 2 is to set

R LGS )
YA+ V2) [[(Adk, Ayt

on every iteration. This choice of A is justified by Part 2 of Theorem 3.1 and is sufficient
for establishing the global linear convergence of the method. However, in our numerical
experiments, the backtracking procedure yielded a significantly more efficient algorithm.

We now show that the algorithm is well-defined and implementable when it is assumed
that M is a P, matrix.

Theorem 3.1 Let 3 > 0. Suppose that M is a Py matriz and that (2%, y*, up) € R*!

satisfies

W, (2, y*)|?
Mk

1. [12, Theorem 3.5] The Jacobian VFWk(xk,yk) is non—singular. Hence, the Newton
step in Step 1 of the algorithm exists and is unique.

pr >0, Mz* —y*+¢=0, and < B

2. If U, (2%, y*) # 0, then there is a

2

. _ 1 H\I/Mk(xk,yk)H
)\k 2 )\k = . 2
405 +V2) [[(Axk, Ay")|

such that

[+ 2805, g+ A8 < (1= oud) W ot

for every X €0, ):k] Hence, the backtracking procedure for evaluating Ay in Step 2 is
finitely terminating. In addition, we have ag A, < A with Ay < 1.

3. There exists ¥, > 0 such that

1 =i (T g P < B = o2y,

for every v € (0,4). Hence, the backtracking procedure for evaluating vy in Step 3 is
finitely terminating.



Proof 2. Since .
V(a7 (An ) = -2ttt

the Newton step is a direction of strict descent for the function || W, (-,-)||* at (z*,y*), and
so the finite termination of the backtracking routine is straightforward.

We show that one can take X, > A,. For this, it clearly suffices to show that the
inequality (3.15) holds for A\, = o), for any o € (0,1]. Let (Az*, Ay*) be chosen to satisfy
the Newton equation (3.14), and note that for A > 0 and ¢« € {1,...,n}, we have from Part
2 of Lemma 2.1 that

P2 (2 4+ MAZF) yl + MAYY))

St AT Gt | T ]+

2

, (3.17)

IA

;/)Zk(l'f, yf) + 2)\77/)MC (l'f, yf)(v(¢uk($fv yzk)))T [ (Aykgz ] +

N[ [(Azh), (A

[P0, at + 0aaet et 4 oaasti] || (3 |

< 92 (e yf) = 2002 (2F,yF) + 1405+ v2) |[(A2h);, (Ayh)]
= (1 - 2007, (e, ) + 27405+ v2) [(Axk), (AyH)|

for some 60; € [0,1]. Hence

2 2 A k 2
o et it < o P e a3 || 30 ] )
The minimum value of the right-hand side of this inequality is attained at

el
CTAG+VR) ||(Ack, AyE)|

2

with optimal value 0 < (1 — Az) H\I/Mk(xk,yk)Hz. In particular, this implies that A, < 1.
Plugging o)y, in for A in (3.18) yields
H\Iluk(xk + o Az Yk + UXkAyk)“z < H\Iluk(xk,yk)HZ +o(o —2)\, H\Iluk(xk,yk)‘f
< (1= o)W )|

which establishes the result.
3. 16 [0, («*, )] = 0, then

W (DI [9 (2*, yM)I 1
HE HE

=0<g;



and if || W, (z*,y*)|| # 0, then from Part 2

[V (2™ g™ D2 [ (29I
HE Hk

<.
Therefore, in either case, there is an open interval (0,+%) over which the inequality

||\I}(1—Uzw)uk($k+lv yk+1)||2 < 5(1 - Uz’Y)Mk

is valid for all v € (0, k). O

4 Global Linear Convergence

To obtain the global linear convergence of the algorithm described in the previous section,
we require the uniform boundedness of VF, (z,y)~" on the set N(uo,3). We establish
this uniform boundedness with the aid of a non—degeneracy condition on the problem

LCP(g, M).
Definition 4.1 Let S be the set of solutions to LCP(q, M ) defined in (2.11) and set
J :={J] there exists (x,y) € S such that y; = 0}.

We say that the problem LCP(q, M) satisfies the FLP condition if the principal submatriz
My is non—degenerate.

Remarks 1. The FLP condition extends a similar notion due to Fukushima, Luo, and Pang
[6, Assumption (A2)].

2. If M is a P matrix, then clearly LCP(q, M) satisfies the FLP condition.

3. An anonymous referee has observed that the FLP condition implies the uniqueness of
the solution to LCP(q, M). In order to see this, first observe that our proof technique
in Proposition 4.3 can be used to show that the FLP condition implies the non—
singularity of every element of the so—called B-subdifferential [15, page 233] of Fy, at
every point in S. Thus, by [15, Proposition 2.5], S contains only isolated points. But
then, by [10, Corollary 5], S must be a singleton.

The key step in establishing the uniform boundedness of VFy (x,y)™" is provided by
the following technical lemma due to Fukushima, Luo, and Pang.

Lemma 4.2 [6, Proposition 3.2] Let 3 > 0 and po > 0 be given and assume that M is

2
a Py matriz. Let (2%, y* ) be a sequence in IR*T' satisfying H\Iluk(xk,yk)H < Buy and
0 < pr < po for all k. If the limit

hm (vﬂb’q}#k(xkv yk)v qulﬂk(xkv yk)) = (Dl’v Dy)

k— oo



exists and the principal submatriz My; is non—degenerate, where

[={i: (D) =0},

M -1
D. D,

then the limiting matrix

is nonsingular.

Proposition 4.3 Let uo > 0,3 > 0 and assume that M is a Py and an Ry matriz for
which LCP(q, M ) satisfies the FLP condition. Then for all 0 < p and x,y € IR" satisfying

0<p<p and ||W,(z,y)|* < By
there exists a constant L > 0 such that
(VEy, (z,y)7| < L. (4.1)

Proof Assume to the contrary that there is a sequence {(z*, y*, ux)} such that 0 < py, <
Lo, ‘\I/Mk(xk,yk)Hz < Buy, and ||(VFWk(:1;k,yk))_1|| > k. By Proposition 2.4, the se-
quence {(z*,y*, ur)} is bounded, hence we can assume that the sequence converges to
some point (z*,y*, ). If pe > 0, then VF, (2*,y*) is non-singular which implies
the boundedness of the sequence [|(VFy, (z%,4%))71||. Hence it must be the case that
tx = 0. Therefore (2*,y*) € S. In addition, from the definition of VFEy, , the sequence
(V.0 (2% y*), V,¥,, (z*,y*)) is also bounded, so with no loss in generality

kli}rgo(vw\lluk(xk, yk)v qu}#«k(xk7 yk)) = (Ds, Dy)

for some non—negative diagonal matrices D, and D,. Let I = {i|(D,); = 0}. It is easy
to check that I C J. Therefore, M is non—degenerate since My is. Hence Lemma 4.2
implies that limj, VF,, (z*,y*) exists and is non-singular. But then again the sequence
I[(VE,, (2%, y*))7|| must be bounded. This contradiction yields the result. 0

We are now in position to state and prove the global linear convergence result for the
algorithm described in the previous section.

Theorem 4.4 Suppose that M is a Py and an Ry matriz, and that the problem LCP(q, M)
satisfies the FLP condition. Let (z*,y*, ux) be the sequence generated by the algorithm of
Section 3. Then

(i) fork=0,1,...,
Maz* —yf 449 = 0, (4.2)
ko kY2
[, (2", )] < B. and (4.3)
[k
(1 —o9vk—1) ... (1 —o2v0)pto = . (4.4)

10



(ii) For all k >0, we have

- min Bayonoio;!
Ve 2 Y= {174(5—|—\/§)((2—|—2\/§)n—|—6)[/2}7 (4.5)

where L is the constant defined in (4.1). Therefore, py converges to 0 at a global
linear rate.

(iii) The sequence {(z*,y*)} is bounded and every accumulation point is a solution to

LCP(q, M).

Proof (i) We establish (4.2)—(4.4) by induction on k. Clearly these relations hold for k& = 0.
Now assume that they hold for some £ > 0. By Theorem 3.1, the algorithm is well defined
and so (4.3) and (4.4) hold with k replaced by k + 1. Since (3.14) is satisfied for all & with
Ma® —y° + ¢ = 0, we have that Mz* — y* 4+ g = 0 for all k. and so, in particular, it is true
when k replaced by k + 1. Hence, by induction, (4.2)-(4.4) hold for all k.

(ii) We now show that for all k£ and 0 < v < 1, we have

19 g DI (1= )5+ (24 232y

(1 =) - -~ (4.6)

Y

for some n € (0,1]. This is done by separately establishing the cases where H\I/Mk(xk, yk)H

is equal to zero and not equal to zero.
We consider the case W\I/Mk(xk,yk)H = 0 first. In this case, zFt! = 2% and y**+! = o~
Thus, by Part 3 of Lemma 2.1,

e I C 7 e |
(1= 7)un - (1 =)
P LR )+ @+ 2vnp
B (L —7)p
_ 242v2m
1 —x ’

from which the inequality (4.6) follows for any choice of n € (0, 1].
Next consider the case H\I}Mk (2F, yk)H # (. First observe that from Proposition 4.3, we

have
AxF
Ayk

2

A
q
>
-
x>
P

=

x5
Ned
x5
SN’
SN’
I
[\™)




Hence, if we define n := (ay01)/(4(5 + \/§)L2), then

o107 H\I}uk(wkvyk)Hz

77§4(5+\/§) H[ﬁx’i] 2
y

with n € (0,1] by Part 2 of Theorem 3.1. From Step 2 of the algorithm and Part 2 of
Theorem 3.1, we have

[, &y < (=) |, ()

Therefore, by Part 3 of Lemma 2.1,

|y (241, y’““)H2 |, (2451, y’““)H2 + (24 2v2)ny

<
(1 =) - (L — )k
_ e @ 4 2v 2
B (1 =)
(1= n) Bk + 2+ 2v/2)nyuy
- (1 =)
_ (L =n)B+(2+2v2)ny
1 —x ’

whereby inequality (4.6) is confirmed.
It is easily verified that

(1=n)B+(2+2V2)ny < (3 whenever v < i :
T (2+2v2)n +
Therefore,
OoVE 2> g 776 ’
(2+2v2)n +

or equivalently, vz > 7.

(iii) The boundedness of the sequence {(z*, y*)} follows from Proposition 2.4 . If {(z%/, y*)}
is a convergent subsequence with limit (z*,y*), then it follows from (i) and (ii) that

[|Wo(z*, y*)|| =0 and Ma* —y*+ ¢ =0, so (z*,y*) € S. O

The algorithm of Section 3 requires a finite stopping criteria in order to be practical. To
be useful, such a stopping criteria should say something about the quality of the approxi-
mate solution obtained at termination. The next lemma shows that such a finite stopping
criteria can be based on the values py.

Lemma 4.5 Let € > 0. If |¢,(a,b)| <, then

|ab — p]

—e<a — <.
laf + [0] + /1

— Y

—e<b, and

12



Proof If |¢,(a,b)| <€, then

0<+/a>+b24+2u<e+a+b.
ceta+b<b<y/a?4 b+ 2u,

which is a contradiction. Hence a > —e. Similarly, b > —e.

If e4+a <0, then

Also
2 _ (.2 B2
R el
(a+b) /(a2 + 02 + 20)
2[ab — p
(laf +161) + (lal + 6] + v2p)’
which yields the result. a

Therefore, if pp < e and H\I}Mk (:L'k,yk)H < By, then

|2 Fyf — / -
—\/Be<af  —\/Be<yF, and T o ng Be for everyi=1,2,...,n.

For high dimensional problems, a more practical stopping criteria is to require that u; <e
and H\Iluk(xk,yk)H < e. This criteria implies that

kyk —
< xf, <y, and k|:1?2y2k tie <e¢ foreveryi=12,...
28|+ lyit| + Vi

Both of these stopping criteria have the rather nice feature that they induce termination
when the relative error in the complementarity condition is small.

, M.

5 Numerical Experiments

5.1 Implementation Details

Although the algorithm of Section 3 is implementable as it stands, we have chosen to modify
the implementation in order to make the comparison with Kanzow’s algorithm [12] more
straightforward. In particular, we are interested in observing how the updating strategy
for the continuation parameter u affects performance. For this reason, the implemented
algorithm differs from Kanzow’s algorithm only in the way that the continuation parameter
i is updated. This choice of implementation illustrates the benefits of an updating strategy
based on the neighborhood AN'(3). The key difference between the algorithm of Section 3

and the one stated below is the use of a non—monotone line search strategy in Step 3.

The Implemented Algorithm
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Step 0 (Initialization)
Let € > 0, 01,02 € (0,1), aq,09 € (0,1), and p € {1,2,...}. Choose
22 € IR",y° € IR", ug > 0 such that

Mz —y° 4+ 4¢=0, (5.1)
and let

()
Ho

B

(5.2)

Step 1 (Check Termination Criterion)
If || min{z*, y*}|| < ¢, stop; otherwise, continue to Step 2.

Step 2 (Computation of the Newton Direction)
Compute the Newton direction (Az*, Ay*) as the solution of the linear
system:

Ax
Fy, (259" + VFy, (a*,y")7" ( Ay ) =0. (5.3)

Step 3 (Non—Monotone Backtracking Line Search)
Let pr := min{k, p} and A\, = af*, where s; is the smallest nonnegative
integer s € {0,1,...,} satisfying

[Btet s otah s 4 i < s [90 i i
Let
R L R P N e T D VWAV LS (5.4)

Step 4 (Update the Continuation Parameter)
If H\I}uk(xkﬂvyk-l_l)u > H\I}uk(xkvyk)
where ¢, is the smallest nonnegative integer ¢ € {0,1,2,...} satisfying

et pippr = g else let v, = ab,

H W(1—osa8)uy (", yt ) H2

(1 — ogad)uz

< B, (5.5)

and let
et = (1 — ook ) g
Set k:=k+ 1, and go to Step 1.
In our implementation, we choose ¢ = 107%, o, = 107, a; = 0.75, oo = 0.9999,
ay = 0.99, p = 5. The initial g = ||q|| /n.
The effects of an initial rescaling of the input data have been studied by Kanzow [12].

It was found that rescaling can have a dramatic impact on the numerical results. The
rescaling suggested by Kanzow is to replace M and ¢ by ¥M and @), respectively, where

Y =diag (01,...,0,), 05 := { 1/]\41(@’@) E: %Ez:z; i 8’ (5.6)
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| || n==y§ | n=16 | n=32 | n=64 | n=128 | n=256 |
Ezxample 5.1 5 5 5 5 5 5
Ezxample 5.2 5 8 7 9 8 10

Table 1: The number of iterations the algorithm of Section 5.1 required to
obtain a solution in Examples 5.1 and 5.2. These results are slightly better
than those appearing in [12, Tables 1 and 2, Method 2].

One then solves the problem LCP(¥Xq,¥M). Our numerical experiment is performed on
both the original input data and the scaled input data.

5.2 Test Problems and Numerical Results

Example 5.1 (Murty [14]): n variables,

1 2 2 2

0 1 2
M=10 1 2, (5.7)

000 1

q:(_17 7_1)T

This is a standard test problem. The solution is z* = (0,...,0,1)T, y* =
(1,...,1,0)T. The matrix in this example is a P-matrix. We take 2° = (1,...,1)T
as our starting point. The numerical results for this test problem can be found in

Table 1.
Example 5.2 (Fathi [5]): n variables,

1 2 2 ... 2
2 56 6
M=12 69 10 7 (5.8)
2 6 9 An —1)+1
q:(_17 7_1)T

This is another standard test problem. The solution is z* = (1,0,...,0)T,y* =
(0,1,...,1)T. The matrix M of this example is positive definite. We take z° =
(1,...,1)T as our starting point. The numerical results for this test problem can

be found in Table 1.
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Example 5.3 || Example 5.4

n NS| S NS| S
Max. 12 9 15 10

n=50 Avg. || 10.1 7.4 12.1 8.6
Min. 8 6 10 7

Max. 13 9 16 11

n=100 Avg. 11 7.8 13.7 9
Min. 8 6 12 8

Max. 15 9 16 10

n=150 Avg. || 12.1 7.9 13.8 9.3
Min. 10 7 12 8

Max. 16 10 15 10

n=200 Avg. || 12.7 8.8 14.6 9.1
Min. 11 8 14 8

Table 2: Number of iterations for examples 5.3 and 5.4. These results
significantly improve on those appearing in [12, Tables 3 and 4, Method
2]. In addition, note that both the non—scaled and scaled versions of the
algorithm perform quite well.

Example 5.3 (Harker and Pang [8])

The matrix M is computed as follows: Let A, B € IR"*" and ¢,d € IR" be randomly
generated such that a;;,b;; € (=5,5),¢; € (=500,500),d; € (0.0,0.3) and that B
is skew-symmetric. Define M = ATA+ B + diag (d). Then M is a P—matrix. In
this example, the results using the problem input data as above is reported in the
column NS. The result using Kanzow’s rescaling technique described in (5.6) is
reported in the column S. Ten problems are generated in this way for each of the
dimensions n = 50, 100, 150, 200. The maximum, average, and minimum number
of iterations needed by the algorithms are summarized in Table 2. In all runs, the
starting point is chosen to be z° = (0,...,0)7.

Example 5.4 (Harker and Pang “hard examples” [8])

In this example, M is computed in the same way as in the previous example,
however, ¢ € R" is randomly generated with entries ¢; € (—500,0). Table 2
contains the numerical results. In this example, the results using the problem
input data as above is reported in the column NS. The result using Kanzow’s
rescaling technique described in (5.6) is reported in the column S. In all the test
runs, the starting point is chosen to be z° = (0,...,0)7.
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6 Concluding Remarks

In this paper we present the first global linear convergence result for non—interior path
following smoothing methods for LCP. This result along with the work in [9] and [20]
has initiated a flurry of activity on rate convergence analysis for non—interior point path
following methods based on smoothing techniques [1, 2, 4, 16, 18, 19]. In all cases it is the
notion of a neighborhood of the central path that provides the key to establishing the global
linear convergence of the algorithms. However, the question of the complexity of these
methods remains open. In [20], we show that an interior point implementation of a non—
interior path following smoothing method has the same best polynomial-time complexity
as 1s exhibited by the standard short—step interior point path following algorithm. This
result along with the linear convergence results cited above hold forth the possibility of
a polynomial complexity result for non—interior path following methods. In this regard,
a deeper understanding of the dependence of the parameter L in Proposition 4.3 on the
problem data will be crucial.
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