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Abstract. A polynomial complexity bound is established for an interior point path following algorithm
for the monotone linear complementarity problem that is based on the Chen–Harker–Kanzow smoothing
techniques. The fundamental difference with the Chen–Harker and Kanzow algorithms is the introduction
of a rescaled Newton direction. The rescaling requires the iterates to remain in the interior of the positive
orthant. To compensate for this restriction, the iterates are not required to remain feasible with respect to the
affine constraints. If the method is initiated at an interior point that is also feasible with respect to the affine
constraints, then the complexity bound isO(

√
nL); otherwise, the complexity bound isO(nL). The relations

between our search direction and the one used in the standard interior-point algorithm are also discussed.

Key words. linear complementarity – polynomial complexity – path following – interior point method

1. Introduction

Consider themonotone linear complementarity problem:

LCP: Find (x∗, y∗) ∈ IRn × IRn satisfying

Mx∗ − y∗ + q = 0, (1)

x∗ ≥ 0, y∗ ≥ 0, (x∗)T y∗ = 0, (2)

whereM ∈ IRn×n is positive semi–definite andq ∈ IRn.

In this paper, we establish the polynomial complexity of an interior point path following
algorithm for LCP. The proposed algorithm can be viewed as an interior point variation
on the Chen and Harker [5] and the Kanzow [21] non–interior path following algorithms
for LCP. The algorithm has the same best polynomial–time complexity as is exhibited
by the standard short–step interior point path following algorithm. The results of this
paper represent a first step toward understanding the relationship between interior and
non–interior path following methods and provide a spring–board for discovering the
complexity of the new non–interior path following algorithms for LCP.
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Path following (or continuation) methods for solving LCP are typically designed
to follow the path in the positive orthant,IRn++ × IRn++, determined by the equations
Fθµ(x, y) = 0 forµ > 0 where the functionFθµ : IRn × IRn→ IRn × IRn is given by

Fθµ(x, y) :=
[

Mx − y+ q
2µ(x, y)

]
, (3)

with θµ(a,b) = ab− µ and

2µ(x, y) =
 θµ(x1, y1)

. . .

θµ(xn, yn)

 . (4)

This path is called thecentral path [23]. Most path following methods attempt to
follow the central path by applying Newton’s method to the equationsFθµ(x, y) = 0 for
decreasing values ofµ. In this regard, predictor–correctorstrategies are the most popular
due to their rapid local convergence (for examples, see [29,31,34,35]). In a predictor–
corrector strategy a predictor step (µ = 0) is followed by a corrector step (µ > 0) to
return the iterates to a pre-specified neighborhood of the central path.

Interior point methods stay in the vicinity of the central path and remain in the
positive orthant [23]. Each iterate of afeasibleinterior point method must satisfy the
affine equation 0= Mx− y+ q while the iterates of aninfeasibleinterior point method
are not required to satisfy this equation.

Non–interior path following methods also follow the central path, but the iterates
do not necessarily reside in the positive orthant. The first non–interior path following
method for LCP was developed by Chen and Harker [5] and was based on a scaled
version of the function

υµ(a,b) = a+ b

2
−
√
(a− b)2

4
+ µ.

Later Kanzow [21] developed non–interior path following methods based on the func-
tionsυµ and

ψµ(a,b) = a+ b√
2
−
√

a2+ b2

2
+ µ .

It is easy to show thatψµ(a,b) = 0 (or υµ(a,b) = 0) if and only if 0≤ a, 0 ≤ b,
andab = µ. Thus, the functionsψµ andυµ have a fundamental advantage over the
functionθµ which makes them well suited to non–interior path following methods. That
is, the conditionψµ(a,b) = 0 or (υµ(a,b) = 0) guarantees the non–negativity of the
argumentsa andb.

Usingψµ andυµ as building blocks, one defines the functions

Fψµ(x, y) :=
[

Mx− y+ q
9µ(x, y)

]
, (5)
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where

9µ(x, y) =
ψµ(x1, y1)

. . .

ψµ(xn, yn)

 , (6)

and

Fυµ(x, y) :=
[

Mx− y+ q
ϒµ(x, y)

]
, (7)

where

ϒµ(x, y) =
 υµ(x1, y1)

. . .

υµ(xn, yn)

 . (8)

Clearly, a point(x, y) is on the central path if and only ifFψµ(x, y)=0 (orFυµ(x, y)=0).
Settingµ = 0, we haveυ0(a,b) = min{a,b}. This instance ofυµ has been studied

extensively by Pang [26,27] and Harker and Pang [18]. Again takingµ = 0, the
function ψ0(a,b) was introduced by Fischer in [12] who attributes the function to
Burmeister. In the growing literature associated with the functionψ0 [8,10,11,13–
15,20,22,30] it is often referred to as the Fischer–Burmeister function. Newton–like
implementations based on these functions have proven to be quite successful. Extensions
to solving nonlinear programming problems with equilibrium constraints are also being
studied [9,16].

Two reasons for the growing interest in non–interior methods based on the functions
υµ andψµ are (1) these methods are ideally suited for application to the nonlinear
complementarity problem where the interiority restriction on the iterates is quite severe,
and (2) the numerical evidence on the efficiency of these methods is very impressive.
We partially explain this numerical success by establishing the polynomial complexity
of an interior point implementation. This is the first complexity result available for these
methods and indicates that a similar complexity result may be possible for a non–interior
implementation.

The functionsυµ andψµ are very closely related. By rewriting the expression under
the square root, we see that

υµ(a,b) = a+ b

2
−
√
(a+ b)2

4
+ (µ− ab)

and

ψµ(a,b) = a+ b√
2
−
√
(a+ b)2

2
+ (µ− ab) .

The analysis of the algorithms based on these two functions are very similar differing
only by a constant here and there. In what follows, we choose to focus on the functionψµ.
However, whenever appropriate, we indicate how the analysis differs when the function
υµ is used instead ofψµ.
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The plan of the paper is as follows. In Section 2, we discuss the rescaled Newton
direction for the functionsFψµ and Fυµ and its relation to the direction used in the
standard interior point methods. The algorithm and its complexity are presented in
Section 3. We conclude in Section 4 with some remarks on the relationship between our
algorithm and the algorithms studied by Mizuno [24,25].

A few words about our notation are in order. All vectors are column vectors with the
superscriptT denoting transpose. The notationIRn is used for real n–dimensional space
with IRn++ being the positive orthant, i.e. the set of vectors inIRn that are componentwise
positive. Following standard usage in the interior point literature, we denote bye∈ IRn

the vector each of whose components is 1, and, for the vectorsx, y, andz in IRn, we
denote byX, Y, andZ the diagonal matrices whose diagonal entries are given byx, y,
andz, respectively, e.g.,Xii = xi for i = 1,2, . . . ,n. With this notation, the function
2µ(x, y) defined in (4) can be written as2µ(x, y) = Xy−µe. Givenx ∈ IRn, we denote
by ‖x‖1 , ‖x‖, and‖x‖∞, the 1–norm, the 2–norm, and the∞–norm ofx, respectively,
and byxmin the minimum component of the vectorx.

2. The rescaled Newton directions

The first step in our analysis is to rescale the Newton step to yield iterates comparable to
those of a standard interior point strategy. By analogy with the infeasible interior point
strategies, at iterationk we compute a Newton step based on the equations

Fψ
µk (x, y) =

[
sk

0

]
,

wheresk := (1− γ k)(Mxk − yk + q) with 0 < γ k < 1. The equations for the Newton
step(1xk,1yk) take the form

M1x−1y = −γ k(Mxk − yk + q) (9)

Dxk1x+ Dyk1y = −9µk(xk, yk) , (10)

where

Dxk := diag

 1√
2
− xk

i

2
√
(xk

i )
2+(yk

i )
2

2 + µk


and

Dyk := diag

 1√
2
− yk

i

2
√
(xk

i )
2+(yk

i )
2

2 + µk

 .

Observe that if(x, y) is on the central path, then√
x2

i + y2
i

2
+ µ = xi + yi√

2
, for i = 1, . . . ,n.
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By replacing the expression
√
(xk

i )
2+(yk

i )
2

2 + µk in the definitions of the diagonal matrices

Dxk andDyk by the expression
xk

i +yk
i√

2
and then multiplying (10) through by the diagonal

matrix diag
(√

2(xk
i + yk

i )
)

, we obtain the rescaled Newton equations

M1x−1y = −γ k(Mxk − yk + q) (11)

Yk1x+ Xk1y = −29̂µk(xk, yk) . (12)

where, for the sake of convenience, we define

9̂µ(x, y) := diag
(

xi + yi√
2

)
9µ(x, y) .

The only difference between these rescaled Newton equations and the Newton equa-
tions used in a standard interior point path following strategy occurs in equation (12)
where 2̂9µk(xk, yk) replaces the usual term2µk(xk, yk). The pattern of our develop-
ment should now be clear. After a few identities and inequalities relating the functions
9̂µ(x, y) and2µ(x, y) have been established, a convergence theory and complexity
analysis can be developed which is based on standard techniques from the theory of in-
terior point path following methods. The necessary identities and inequalities are given
in the next lemma.

Lemma 1. For a,b, µ ∈ IR satisfyinga> 0,b> 0, µ > 0, we have

ψ̂µ(a,b) = (a+ b)θµ(a,b)

(a+ b)+√a2+ b2+ 2µ
, (13)

ψµ
2(a,b) = 2ψ̂µ(a,b)− θµ(a,b), and (14)

|ψ̂µ(a,b)| ≤ |θµ(a,b)|, (15)

whereψ̂µ(a,b) := a+b√
2
ψµ(a,b). In addition, given0 < β < 1, 0 < µ, and(x, y) ∈

IRn++ × IRn++ satisfying ∥∥2µ(x, y)
∥∥ ≤ βµ, (16)

we have ∥∥∥29̂µ(x, y)−2µ(x, y)
∥∥∥ ≤ β2µ

2(1− β) . (17)

Remark 1.The identity (13) is due to B. Chen [2].

Remark 2.Inequality (15) implies that forµ > 0 andβ > 0, the condition (16) (used in
standard interior point methods to define the neighborhood of the central path) implies
that the condition ∥∥∥9̂µ(x, y)

∥∥∥ ≤ βµ
is also satisfied.
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Remark 3.The identities (13) and (14), the inequalities (15) and (17), and the second

remark remain valid with the expressions
[
(a+ b)+√a2+ b2+ 2µ

]
, ψ̂µ, and9̂µ

replaced by
[
(a+ b)+√(a− b)2+ 4µ

]
, υ̂µ andϒ̂µ, respectively, wherêυµ(a,b) :=

a+b
2 υµ(a,b) andϒ̂µ(x, y) := diag

( xi+yi
2

)
ϒµ(x, y).

Remark 4.The bound (17) shows that the values 29̂µk(xk, yk) approach the values
2µk(xk, yk) used in the standard interior point methods asµk approaches 0. This
partially explains why the interior point method based on the rescaled Newton direction
studied in the next section has the same best polynomial-time complexity as the standard
short step path-following interior point methods.

Proof. For a,b, µ ∈ IR satisfyinga > 0,b > 0, µ > 0, the identity (13) is easily
derived. The identity (14) and the inequality (15) follow readily from (13).

In order to see the bound (17), note that for any(x, y) ∈ IRn++ × IRn++ satisfying
(16), we have

xi yi ≥ (1− β)µ for i = 1,2, . . . ,n,

and so

(xi + yi )
2

2
= (xi − yi )

2+ 4xi yi

2
≥ 2xi yi ≥ 2(1− β)µ for i = 1,2, . . . ,n. (18)

It now follows from the identity (14), the inequality (15), and (18) that

∥∥∥29̂µ(x, y)−2µ(x, y)
∥∥∥ ≤ ∥∥9µ(x, y)

∥∥2 ≤
∥∥∥9̂µ(x, y)

∥∥∥2

2(1− β)µ ≤
∥∥2µ(x, y)

∥∥2

2(1− β)µ
≤ β2µ2

2(1− β)µ =
β2µ

2(1− β).

ut

3. The algorithm

We present an algorithm based on the interior point algorithm proposed by Tseng [29].
The global linear convergence and complexity results are stated without proof since
these proofs closely parallel those provided by Tseng [29].

Algorithm 1. Choose any(β1, β2) ∈ IR2 satisfying

0< β1 < β2 < 1,
2β1

1− β1
< β2,

β2
1

2(1− β1)
+ 2β1β2+ β2

2(1− β1) < β1, (19)

and any(x0, y0, µ0) ∈ IR2n+1++ satisfying
∥∥2µ0(x0, y0)

∥∥ ≤ β1µ
0. Let

η1 =
β1− [ β2

1
2(1−β1)

+ 2β1β2+ β2
2(1− β1)]√

n+ β1
. (20)
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For k = 0,1, . . . , compute(xk+1, yk+1, µk+1) from (xk, yk, µk) according to

xk+1 = xk +1xk, yk+1 = yk +1yk, µk+1 = (1− γ k)µk, (21)

whereγ k is the largestγ ∈ (0, η1] satisfying∥∥∥29̂µk(xk, yk)+ γXk(Mxk − yk + q)
∥∥∥ ≤ β2

(
µk −

∥∥∥2µk(xk, yk)

∥∥∥) , (22)

and(1xk,1yk) is the unique vector inIR2n satisfying

M1xk −1yk = −γ k(Mxk − yk + q), (23)

Yk1xk + Xk1yk = −29̂µk(xk, yk). (24)

Remark 5.To implement the algorithm using the functionυµ, begin by selecting the
parametersβ1 andβ2 so that

0< β1 < β2 < 1,
2β1

1− β1
< β2,

β2
1

(1− β1)
+ 2β1β2+ β2

2(1− β1) < β1. (25)

Then set

η1 =
β1−

[
β2

1
(1−β1)

+ 2β1β2+ β2
2(1− β1)

]
√

n+ β1
(26)

and replace the function̂9µk in (22) and (24) by the function̂ϒµk .

Remark 6.The set of pairs(β1, β2) satisfying either (19) or (25) is non–empty. In both
cases, it follows thatη1 > 0. For a choice ofβ1 andβ2 satisfying both (19) and (25),
takeβ1 = 0.09, β2 = 0.2.

The following Theorem shows that if the algorithm is initiated in the positive orthant,
then it is well–defined and the iterates remain both in the positive orthant and the set
{(x, y) ∈ IRn × IRn : ∥∥2µ(x, y)

∥∥ ≤ β1µ} for decreasing values ofµ.

Theorem 1. Fix any (β1, β2) ∈ IR2 satisfying (19). Letη1 be given by (20). Suppose
that (xk, yk, µk) ∈ IR2n+1++ satisfies

∥∥2µk(xk, yk)
∥∥ ≤ β1µ

k and (1xk,1yk) satisfies
(23) and (24), withγ k being the largestγ ∈ (0, η1] satisfying (22), thenγ k > 0 exists
and

(xk +1xk, yk +1yk) > 0, (27)∥∥∥2(1−γ k)µk(xk +1xk, yk +1yk)

∥∥∥ ≤ β1(1− γ k)µk. (28)

Proof. For the sake of simplicity, denote(x, y, µ) = (xk, yk, µk), (1x,1y) =
(1xk,1yk) andγ = γ k respectively. We first establish thatγ > 0 exists. By Proposi-

tion 1,
∥∥∥29̂µ(x, y)

∥∥∥ ≤ 2
∥∥2µ(x, y)

∥∥ ≤ 2β1µ. By the choice ofβ1 andβ2 in (19), we

know that 2β1 < β2(1− β1). Therefore,
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∥∥∥ < β2µ(1− β1) ≤ β2

(
µ− ∥∥2µ(x, y)

∥∥) ,
which implies thatγ > 0 exists since a strict inequality holds in (22) whenγ = 0.

Next setr = 29̂µ(x, y), s = Mx − y+ q, andz = X−11x andβ =
∥∥∥2µ(x,y)µ

∥∥∥.

Then the system (23) and (24) can be rewritten as

MXz−1y = −γs,
YXz+ X1y = −r.

It follows that

(YX+ XMX)z= −r − γXs.

SinceM is positive semidefinite, we have

zTYXz≤ zT(YX+ XMX)z= zT(−r − γXs) ≤ ‖z‖ ‖r + γXs‖ , (29)

which implies that

‖z‖ ≤ ‖r + γXs‖
mini xi yi

≤ ‖r + γXs‖
µ(1− β) , (30)

where the second inequality follows from the inequality

Xy≥ (1− β)µe, (31)

which is itself a consequence of the relation
∥∥2µ(x, y)

∥∥ = ‖Xy− µe‖ ≤ βµ. By
combining (30) with (22), we find that‖z‖ ≤ β2 < 1. Thus, in particular,e+ z > 0.
Let x′ = x+1x andy′ = y+1y. Hencex′ = x+ Xz= X(e+ z) > 0, sincex > 0.
From Lemma 1 and (24), for eachi = 1, . . . ,n, we have

|(xi + (1x)i )(yi + (1y)i )− µ|
= |xi yi − µ+ [xi (1y)i + yi (1x)i ] + (1x)i (1y)i |

= |2ψ̂µ(xi , yi )−
ψ̂2
µ(xi , yi )

(
xi+yi√

2
)2
− 2ψ̂µ(xi , yi )+ (1x)i (1y)i |

≤ ψ̂2
µ(xi , yi )

(xi+yi )
2

2

+ |(1x)i (1y)i |

≤ ψ̂2
µ(xi , yi )

2(1− β)µ + |(1x)i (1y)i |, (32)
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where (32) follows from the fact that(xi+yi )
2

2 ≥ 2xi yi ≥ 2(1− β)µ. Therefore,

∥∥X′y′ − µe
∥∥ ≤ 1

2(1− β)µ

∥∥∥∥∥∥
 ψ̂2

µ(x1, y1)

. . .

ψ̂2
µ(xn, yn)

∥∥∥∥∥∥+ ‖Z X1y‖ (by (32))

≤ 1

2(1− β)µ

∥∥∥∥∥∥
 ψ̂2

µ(x1, y1)

. . .

ψ̂2
µ(xn, yn)

∥∥∥∥∥∥
1

+
∥∥∥Z(−29̂µ(x, y)− Y1x)

∥∥∥ (by (24))

≤ 1

2(1− β)µ
∥∥∥9̂µ(x, y)

∥∥∥2+ 2
∥∥∥Z9̂µ(x, y)

∥∥∥+ ‖ZYXz‖

≤ 1

2(1− β)µ
∥∥∥9̂µ(x, y)

∥∥∥2+ 2
∥∥∥Z9̂µ(x, y)

∥∥∥
1
+ ‖ZYXz‖1

≤ 1

2(1− β)µ
∥∥∥9̂µ(x, y)

∥∥∥2+ 2‖z‖
∥∥∥9̂µ(x, y)

∥∥∥+ zTYXz

≤ (βµ)2

2(1− β)µ + 2ββ2µ+ ‖z‖ ‖r + γXs‖ (Proposition 1 and (29))

≤ (βµ)2

2(1− β)µ + 2ββ2µ+ β2β2µ(1− β) (by (22))

≤ β2
1µ

2(1− β1)
+ 2β1β2µ+ β2

2(1− β1)µ, (33)

where (33) follows from the fact thatβ ≤ β1 and

2ββ2µ+ β2
2(1− β)µ = 2ββ2µ+ β2

2µ− β2
2βµ

= β(2β2− β2
2)µ+ β2

2µ

≤ β1(2β2− β2
2)µ+ β2

2µ

= 2β1β2µ+ β2
2(1− β1)µ.

Therefore, by (19) and (33),||X′y′ −µe|| ≤ β1µ. It follows fromx′ > 0 andβ1 < 1
thaty′ > 0. The triangle inequality, (33), and the inequalityγ < η1 now imply that

||X′y′ − (1− γ)µe||
(1− γ)µ ≤ ||X

′y′ − µe||
(1− γ)µ + γ

√
n

1− γ

≤
β2

1
2(1−β1)

+ 2β1β2+ β2
2(1− β1)

1− γ + γ
√

n

1− γ
≤ β1− η1(

√
n+ β1)

1− η1
+ η1

√
n

1− η1
= β1 .

ut
The following global linear convergence result is patterned on [29, Theorem 3.1].
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Theorem 2. Let Sdenote the set of solutions to LCP:

S :=
{
(x, y) : 0≤ x, 0≤ y, y = Mx+ q, andxT y = 0

}
,

and letβ1, β2, η1 and{(xk, yk, µk, γ k)}k=0,1,..., be generated by the Algorithm of Sec-
tion 3. Then

0 < (xk, yk), (34)

β1µ
k ≥

∥∥∥2µk(xk, yk)

∥∥∥ , and (35)

µk

µ0 (Mx0 − y0+ q) = Mxk − yk + q, (36)

for all k, where fork > 0

µk = (1− γ k−1) . . . (1− γ 0)µ0. (37)

Moreover, the sequence{(xk, yk)} is bounded if and only if the solution setS is non–
empty, in which case, for any(x∗, y∗) ∈ S, we haveγ k ≥ min{η1, η2} for all k, where

η2 =
{ [β2(1−β1)−2β1]µ0 mini y0

i
[(1+β1)nµ0+(x0)T y0+(x∗)T y0+(x0)T y∗]‖Mx0−y0+q‖∞ if Mx0 − y0+ q 6= 0,

∞ if Mx0 − y0+ q = 0.
(38)

Thus, if S is nonempty, the Algorithm of Section 3 forcesµk to zero at a global
linear rate with the convergence ratio less than 1−min{η1, η2}. Therefore, by standard
results in the interior point literature (e.g., see [23]), one can find an element ofS in
O((min{η1, η2})−1L) iterations, whereL denotes the size of the binary encoding of the
problem. It is easily seen thatη−1

1 = O(
√

n), so it only remains to estimateη−1
2 . In the

case where(x0, y0, µ0) is chosen so thatη−1
2 is O(

√
n) (such as whenMx0−y0+q = 0),

the iteration count isO(
√

nL). In the case where(x0, y0, µ0) is the standard choice

x0 = ρpe, y0 = ρde, µ0 = ρpρd,

ρp ≥ ||x
∗||1
n

, ρd ≥ max
{ ||y∗||1

n
, ||ρpMe+ q||∞

}
,

where(x∗, y∗) is any element ofS, the formula (38) yields

η−1
2 ≤

3(4+ β1)n

β2(1− β1)− 2β1
,

so the iteration count isO(nL).
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4. Concluding remarks

In Section 3, we present the first rate of convergence result and the first complexity
result of any kind for a path following algorithm based on the Chen–Harker–Kanzow
smoothing techniques. In the year following the announcement of this result there has
been a flurry of activity on rate of convergence results for non-interior path following
and smoothing methods for the complementarity problems and variational inequalities
[1,3,4,6,28,32,33]. All of this work builds on new neighborhood concepts [1,19] for
smoothing paths (e.g. thecentralpath) that do not necessarily lie in the positive orthant.
The first global linear convergence result for non-interior path following methods ap-
pears in [1]. The work in [3,4,6,32,33] builds on the ideas presented in [1] and [19].
In [32], Xu establishes the global linear convergence result for nonlinear complemen-
tarity problems. In [3,4,6] the authors extend the analysis to larger classes of smoothing
functions [7,17] and, in addition, establish the local quadratic or super–linear conver-
gence of their methods. In [28], the authors build on the approach developed in [19] and
establish the global linear convergence or the local super–linear convergence of their
method depending on the choice of parameters.

The interior point path following method studied in this paper is essentially a vari-
ation on standard interior point methods wherein the right hand side in the Newton
equations is perturbed in a very special way. For this reason, it is possible to analyze the
algorithm within the framework developed by Mizuno. In [24,25], Mizuno proposed
a class of feasible interior point algorithms for monotone LCP which are based on the
search direction(1xk,1yk) satisfying the following equations

M1x−1y = 0, (39)

Yk1x+ Xk1y = vk − σXkyk, (40)

wherevk ∈ IRn++ andσ > 0. By adjusting the choice of the sequences{vk} with σ = 1,
Mizuno is able to construct both path following and potential reduction methods and
thereby provides a unifying framework within which a number of interior point methods
can be studied. In order for this program to work, one must first show that the sequence
{vk} satisfies the following three properties:

(A) vk > 0 for k = 0,1, . . . .
(B) the sequence{vk} is anα–sequencefor someα ≥ 0, that is,vk+1 ∈ N (vk, α) for all

k = 0,1,2, . . . , whereN (v, α) = {u ∈ IRn : ∥∥V−0.5(v− u)
∥∥ ≤ α√vmin}, with

V = diag (v), and
(C) there is an iteration indexm= O(

√
nL) such that 0≤ vm ≤ 2−2L+1e.

A referee for this paper has observed that the algorithm of Section 3 can be cast within
Mizuno’s framework. To see this, define

vk = 2Xkyk − 29̂µk(xk, yk). (41)

With this definition, the Newton equations (39) and (40) are identical to the equations
(11) and (12) whenσ = 2. If one now assumes thatβ ∈ (0, 1

2] and(µk − µk+1)/µk =
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O(1/
√

n), it can be shown that the sequence{vk} defined by (41) satisfies the condi-
tions (A) and (B). The conditionβ ∈ (0, 1

2] can be enforced during the initialization
phase of the algorithm. It is used to show that

1

2
|θµ(xi , yi )| ≤ |ψ̂µ(xi , yi )| ≤ |θµ(xi , yi )|, for i = 1,2, . . . ,n

whenever(x, y) ∈ IRn++ × IRn++ and∥∥2µ(x, y)
∥∥ ≤ βµ,

which in turn shows that condition (A) is satisfied. The bounds min{η1, η2} ≤ γ k ≤ η1
(Theorem 2 and (20)) show thatO(1/

√
n) = γ k if (x0, y0, µ0) is chosen so that

η2 = O(1/
√

n) (for example, wheny0 = Mx0 + q). This in turn implies that the
condition (µk − µk+1)/µk = O(1/

√
n) is also satisfied. Finally, condition (C) can

be verified using the complexity result established in this paper. This connection to
Mizuno’s work should provide a basis for developing a deeper understanding of the
relationship between standard path following methods, potential reduction methods,
and the path following method proposed in this paper.
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