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Abstract. A polynomial complexity bound is established for an interior point path following algorithm

for the monotone linear complementarity problem that is based on the Chen—Harker—Kanzow smoothing
techniques. The fundamental difference with the Chen—Harker and Kanzow algorithms is the introduction
of a rescaled Newton direction. The rescaling requires the iterates to remain in the interior of the positive
orthant. To compensate for this restriction, the iterates are not required to remain feasible with respect to the
affine constraints. If the method is initiated at an interior point that is also feasible with respect to the affine
constraints, then the complexity boundds,/nL); otherwise, the complexity bound@(nL). The relations
between our search direction and the one used in the standard interior-point algorithm are also discussed.

Key words. linear complementarity — polynomial complexity — path following — interior point method

1. Introduction

Consider thenonotone linear complementarity problem
LCP: Find(x*, y*) € R" x IR" satisfying

Mx* —y* +q =0, Q)
x*>0,y*>0,(x")Ty* =0, @)

whereM € R™" is positive semi—definite angle R".

In this paper, we establish the polynomial complexity of an interior point path following
algorithm for LCP. The proposed algorithm can be viewed as an interior point variation
on the Chen and Harker [5] and the Kanzow [21] non—interior path following algorithms
for LCP. The algorithm has the same best polynomial-time complexity as is exhibited
by the standard short—step interior point path following algorithm. The results of this
paper represent a first step toward understanding the relationship between interior and
non—interior path following methods and provide a spring—board for discovering the
complexity of the new non—interior path following algorithms for LCP.
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Path following (or continuation) methods for solving LCP are typically designed

to follow the path in the positive orthanR'} | x R}, determined by the equations

Fo, (X, y) = 0 for u > 0 where the functiofrg, : R" x R" — R" x R" is given by

Mx —
F@p.(x7 y) = [ é()lu(xy,;_)q:| ) (3)
with 6, (a, b) = ab— n and
0, (X1, Y1)
O,y = . 4)
e,u (Xm Yn)

This path is called theentral path[23]. Most path following methods attempt to
follow the central path by applying Newton’s method to the equatiopgx, y) = 0 for
decreasing values of. In this regard, predictor—corrector strategies are the most popular
due to their rapid local convergence (for examples, see [29,31,34,35]). In a predictor—
corrector strategy a predictor stgp & 0) is followed by a corrector stepe(> 0) to

return the iterates to a pre-specified neighborhood of the central path.

Interior point methods stay in the vicinity of the central path and remain in the
positive orthant [23]. Each iterate offaasibleinterior point method must satisfy the
affine equation G= Mx — y+ g while the iterates of aimfeasibleinterior point method
are not required to satisfy this equation.

Non-interior path following methods also follow the central path, but the iterates
do not necessarily reside in the positive orthant. The first non—interior path following
method for LCP was developed by Chen and Harker [5] and was based on a scaled
version of the function

a+b (a—b)2?

vu(a, b) = 5 ]

+u

Later Kanzow [21] developed non—interior path following methods based on the func-
tionsv, and

a+b a?+b? N

Nz 2

It is easy to show thay, (a, b) = 0 (orv,(a,b) = 0) ifandonlyif0< a, 0 < b,
andab = p. Thus, the functiong,, andv, have a fundamental advantage over the
functiond,, which makes them well suited to non—interior path following methods. That
is, the conditiony, (a, b) = 0 or (u,(a, b) = 0) guarantees the non—negativity of the
arguments andb.

Using v, andv,, as building blocks, one defines the functions

MX —
o= | MY o] ©)

wu (as b) =
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where
[ ¥ (X1, Y1)
\IIM (Xv Y) = LRI B (6)
L I//M (Xn’ Yn)
and
F M —
Fueyi= | o q} , (7)
where
uu (X1, Y1)
Yu(X, y) = e . (8)
U,u (Xm Yn)

Clearly, a pointx, y) is onthe central path if and onlyH,, (x, y) =0 (orF,, (x, y) =0).

Settingu = 0, we haveug(a, b) = min{a, b}. This instance ob,, has been studied
extensively by Pang [26,27] and Harker and Pang [18]. Again taking O, the
function yo(a, b) was introduced by Fischer in [12] who attributes the function to
Burmeister. In the growing literature associated with the functign8,10,11,13—
15,20,22,30] it is often referred to as the Fischer—Burmeister function. Newton—like
implementations based on these functions have proven to be quite successful. Extensions
to solving nonlinear programming problems with equilibrium constraints are also being
studied [9, 16].

Two reasons for the growing interest in non—interior methods based on the functions
v, andy,, are (1) these methods are ideally suited for application to the nonlinear
complementarity problem where the interiority restriction on the iterates is quite severe,
and (2) the numerical evidence on the efficiency of these methods is very impressive.
We partially explain this numerical success by establishing the polynomial complexity
of an interior point implementation. This is the first complexity result available for these
methods and indicates that a similar complexity result may be possible for a non—interior
implementation.

The functionsy,, andy,, are very closely related. By rewriting the expression under
the square root, we see that

vu(a, b) = + (u — ab)

atb [@+b)?
2 4

and

a+b [(@+b?
V2 2

The analysis of the algorithms based on these two functions are very similar differing

only by a constant here and there. In what follows, we choose to focus on the fugigtion

However, whenever appropriate, we indicate how the analysis differs when the function
v, is used instead af,.

Yu(@b) = + (u—ab.
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The plan of the paper is as follows. In Section 2, we discuss the rescaled Newton
direction for the functiongy, andF,, and its relation to the direction used in the
standard interior point methods. The algorithm and its complexity are presented in
Section 3. We conclude in Section 4 with some remarks on the relationship between our
algorithm and the algorithms studied by Mizuno [24, 25].

A few words about our notation are in order. All vectors are column vectors with the
superscripf denoting transpose. The notatilR? is used for real n—dimensional space
with R} | being the positive orthant, i.e. the set of vectorRihthat are componentwise
positive. Following standard usage in the interior point literature, we dencgecbiR"
the vector each of whose components is 1, and, for the vextoysandzin R", we
denote byX, Y, andZ the diagonal matrices whose diagonal entries are giveq lyy
andz, respectively, e.gXi = x; fori = 1,2, ..., n. With this notation, the function
©,(x, y) definedin (4) can be written &, (X, y) = Xy—pue. Givenx € R", we denote
by (1|1, IXll, and||X|| 5, the 1-norm, the 2—norm, and the-norm ofx, respectively,
and byxmin the minimum component of the vecter

2. The rescaled Newton directions
The first step in our analysis is to rescale the Newton step to yield iterates comparable to

those of a standard interior point strategy. By analogy with the infeasible interior point
strategies, at iteratiokiwe compute a Newton step based on the equations

F‘//Mk (X7 y) = |:Soki| ’

wheresk := (1 — yK)(MxK — yK 4 g) with 0 < yK < 1. The equations for the Newton
step(AXK, AyK) take the form

MAX — Ay = —yk(Mxk— yk+q) (9)
DykAX+ DAy = —\I’Mk(Xk, yk) ) (10)
where
1 XK
Dy 1= diag [ —= — '
k k
V2 5 /K )242r(yi )2 4k
and
. 1 %
Dy :=diag | — — :
y g V2 o[ 0DHD?
-2

+ uk

Observe that ifx, y) is on the central path, then

xi2+yi2+ _ Xi Y
2 T

,fori=1,...,n.




An LCP continuation method 95

. 24 (yR)2 . _ . .
By replacing the expressign-—_-—-— + pKinthe definitions of the diagonal matrices
kK
Dy« andDy« by the expressiof:(li}—zyi and then multiplying (10) through by the diagonal

matrix diag (ﬁ(x}‘ + yi")), we obtain the rescaled Newton equations

MAX — Ay = —yX(MxK — y¥ + q) (11)
YEAX 4+ XKAy = =20 (XK, y9) . (12)

where, for the sake of convenience, we define

Xi + Vi
V2

The only difference between these rescaled Newton equations and the Newton equa-
tions used in a standard interior point path following strategy occurs in equation (12)
where 2U «(x¥, y¥) replaces the usual ter, «(x¥, y¥). The pattern of our develop-
ment should now be clear. After a few identities and inequalities relating the functions
\ilﬂ(x, y) and ®,(X, y) have been established, a convergence theory and complexity
analysis can be developed which is based on standard techniques from the theory of in-
terior point path following methods. The necessary identities and inequalities are given
in the next lemma.

\ilM(X’ Y) = dlag ( ) \IlM(X’ Y) .

Lemma 1. For a, b, 1 € R satisfyinga > 0,b > 0, u© > 0, we have

(a+b)o,(a, b)

Ju(a b) = : 13
Vi (@a+b)+a2+ b2+ 2u (13)
v.2(a,b) = 2y, (a, b) — 6,(a, b), and (14)
Y. (8, b)| < |6 (a b, (15)

wherel/A/M(a, b) .= iﬁb%(a, b). In addition, giver0 < 8 < 1,0 < u, and(x,y) €
R}, x R satisfying
|©.x. W) < Bu. (16)
we have
B2
21— p)
Remark 1.The identity (13) is due to B. Chen [2].

|28,.00 ) - @00 ) = (17)

Remark 2.Inequality (15) implies that for > 0 andg > 0, the condition (16) (used in
standard interior point methods to define the neighborhood of the central path) implies
that the condition

[#.0x 9| = u

is also satisfied.
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Remark 3.The identities (13) and (14), the inequalities (15) and (17), and the second
remark remain valid with the expressioﬁ@Jr b) + a2 + b? + Zu] , U, and b,

replaced b){(a +b)+(@—b)2+ 4M] , O andY,L, respectively, wheré, (a, b) :=
&by, (a b) and Y, (x, y) := diag (X5%) Tu(x, y).

Remark 4.The bound (17) shows that the value& 2(x¥, y¥) approach the values
@Mk(xk, y¥) used in the standard interior point methods,asapproaches 0. This
partially explains why the interior point method based on the rescaled Newton direction
studied in the next section has the same best polynomial-time complexity as the standard
short step path-following interior point methods.

Proof. Fora, b, u € R satisfyinga > 0,b > 0, © > 0, the identity (13) is easily
derived. The identity (14) and the inequality (15) follow readily from (13).

In order to see the bound (17), note that for &yy) € R}, x R satisfying
(16), we have

Xiyi > (1-pBp fori=12...,n,

and so

i +¥)? (6 — )%+ 4y

2 N 2

It now follows from the identity (14), the inequality (15), and (18) that

>2%Y >21—-pBp fori=12,...,n. (18)

R 2
EZES) T
H\I’M(X’ y) = 2(1 _ ,B)IL = 2(1 - ,B)lu
,BZ;LZ . ,BZM

< = .
T 2A-pu 20-p)

|28, ) - ©,00 9| &

IA

3. The algorithm

We present an algorithm based on the interior point algorithm proposed by Tseng [29].
The global linear convergence and complexity results are stated without proof since
these proofs closely parallel those provided by Tseng [29].

Algorithm 1. Choose anypi, f2) € R? satisfying

2B1 B2
1-p ~ P 3a-p

and any(x°, y°, %) e R satisfying| © ,0(x°, y°)| < pu®. Let

O<pBr<pPa<l, +2B1B2+ 31— B1) < f1. (19)

B1 — Lytds + 2B12 + B3 — Bo)]
Vn+ p1 '

n = (20)
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Fork=0,1, ..., compute(x¥t1, ykt1 k1) from (xK, y¥, %) according to
XL ek Ak WKL vk Ak kL (g ok 21)
whereyk is the largesy € (0, 1] satisfying
Hz@uk(xk, Y 4+ yXEMxK — YK 4 q) H < B2 (uk - H®Mk(xk, ¥ H) , (22)
and(AxK, AyK) is the unique vector ilR?" satisfying
MAXK — AyK = —yK(MxK — v + g, (23)
YEAXK + XKAYK = —20 (K, y9). (24)

Remark 5.To implement the algorithm using the functien, begin by selecting the
parameterg; and S, so that

261 < B i

1-8 (1-p1)

O<pr<pPa<l, + 28182+ B5(L— P1) < 1. (25)

Then set
B1— B, 201 —

1 =
! NOE
and replace the functiot x in (22) and (24) by the functiofr «.

(26)

Remark 6.The set of pairgp1, B2) satisfying either (19) or (25) is non—empty. In both
cases, it follows that1 > 0. For a choice oB; and g, satisfying both (19) and (25),
takep1 = 0.09, B> = 0.2.

The following Theorem shows that if the algorithm is initiated in the positive orthant,
then it is well-defined and the iterates remain both in the positive orthant and the set
{(X,y) € R"x R" : |©,(x,y)| < Biu} for decreasing values of.

Theorem 1. Fix any (81, 82) € R? satisfying (19). Lej; be given by (20). Suppose
that (x, y%, 1% e R satisfies|© (XX, y9)|| < auX and (AXK, Ay¥) satisfies
(23) and (24), with/* being the largesy € (0, n1] satisfying (22), theyk > 0 exists
and

X+ AxK, yK+ AYS) > 0, (27)
@y O+ AXE Y+ ay9) | < B = ok, (28)

Proof. For the sake of simplicity, denotéx,y, ) = (XX, y& uk), (Ax, Ay) =
(AxK, Ay¥) andy = yK respectively. We first establish that> 0 exists. By Proposi-

tion 1, HZ\%(X, y) H < 2||®.(x, y)| =< 2B1u. By the choice of8; and Bz in (19), we
know that 281 < B2(1 — B1). Therefore,



98 Song Xu, James V. Burke

H 20,(x. y) H < oL —B1) < B2 (1t — [ ©, (%, Y|

)

which implies thaty > 0 exists since a strict inequality holds in (22) wheg- 0.
Next setr = Z‘ifM(X, y),s= Mx—y+q,andz = X" 1Ax andg = HWH
Then the system (23) and (24) can be rewritten as

MXz— Ay = —ys5,
YXz+ XAy = —r.

It follows that

Y X+ XMX)z= —r — yXs

SinceM is positive semidefinite, we have
Z'YXz< 2 (YX+ XMX)z = 2T (=1 —yX9 < liz] Ir +¥Xs|,  (29)
which implies that

Ir +yXsl _ lIr +¥Xsl

Izl < ey = A= p (30)

where the second inequality follows from the inequality
Xy>(1-pue, (31)
which is itself a consequence of the relatip®, (x, y)| = [IXy— well < Bu. By

combining (30) with (22), we find thdfz| < B2 < 1. Thus, in particulare + z > 0.
Letx' = x+ Axandy = y+ Ay. Hencex' = x + Xz= X(e+ z) > 0, sincex > 0.
From Lemma 1 and (24), for each=1, ..., n, we have

[(Xi + (AX)i)(Yi + (AY)i) — ]
= |Xi¥i — u + [Xi(AY)i + Yi(AX)i] + (AX)i (Ay)i]
V2 (X, Yi)

e~ 2D 060+ (XAl
V2

= 2, (X, Yi) —
RACED)
(Xi‘EYi)Z

- V2 (X, Yi)
T 20-Pu

+ [(AX)i (AY)i]

+ 1(AX)i (AY)il, (32)
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where (32) follows from the fact théc%yi)2 > 2%y > 2(1 — B)u. Therefore,

X'y — ne| < S (%(Xb YI)) +1ZXAy| (by (32))
2= P &E(Xna Yn)

- -
T 21-pu

1 @i(xl, y1) .
( ) + HZ(—Z%(X’ y) —YAX)H (by (24))

‘:ﬁﬁ(xn, yn)/ i,

1 A 2 .
< s gy | B y| +2]z8.0 9| +12vxa

1 X 2 .
= 20-pu by 2| 2800y 12YXEL

1 . 2 ) .
< sa= g |V y| "+ 202 | $ux | + 27 Yxz
< X Proposition 1 and (29
=2a-pu " B2 + Izl Ir + yXs|  (Proposition 1 and (29))

(B)? ) . o

S 2a_py PPt Peband =P (by (22))
< i 42 >(1 33
= 20— py PP RA o (33)

where (33) follows from the fact that < g1 and

2BB2 + P5(L— By = 2B + Pop — B5Bu
= B(2B2 — Bo) 1 + Pou
< B1(2B2 — PR + Pou
= 21821 + B5(1 — B

Therefore, by (19) and (33) X'y’ — u€|| < Biu. It follows fromx’ > 0andB; < 1
thaty’ > 0. The triangle inequality, (33), and the inequalitx n1 now imply that

N (1 _ N
Xy — A =ppuel _ [IXy Me||+)/«/ﬁ

A-pYn T A=-pu 1-y
2
2(%ﬁv+2ﬁlﬁz+ﬁ§<1—ﬁ1)+ Y
- 1-vy -y
- B1—n1(v/n+ Br) N n1i/N 5.
- 1-m 1-m

O

The following global linear convergence result is patterned on [29, Theorem 3.1].
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Theorem 2. Let Sdenote the set of solutions to LCP:
S:= {(x,y) :0<x, 0<y, y=Mx+aq, andey=0],

and let1, B2, n1 and {(xX¥, y¥, 1X, y¥)}k=0.1.... be generated by the Algorithm of Sec-
tion 3. Then

0 < (XK, y%), (34)
puik = |00k ¥ and (35)
Mk k k
E(Mxo—y°+q)=lle -y +q, (36)
for all k, where fork > 0
=@ -yh L a—y0ul 37)

Moreover, the sequendeéxX, y€)} is bounded if and only if the solution s&tis non—
empty, in which case, for arx*, y*) € S, we have/X > min{n1, n2} for all k, where

[B2(1—1) —2p1]° miny y? -
1o = | Ao Y07 0Ty G Ty o=yl T X =¥+ # 0, (38)
o0 if MxX—y% +q=0.

Thus, if Sis nonempty, the Algorithm of Section 3 forcg¥ to zero at a global
linear rate with the convergence ratio less thanrin{n1, n2}. Therefore, by standard
results in the interior point literature (e.g., see [23]), one can find an elemehinof
O((min{n1, n2})~1L) iterations, wheré. denotes the size of the binary encoding of the
problem. It is easily seen tha{l = O(4/n), so it only remains to estimatgl. In the
case wherex?, y°, u0) is chosen so thag, is O(/n) (such as wheMx®—y°+q = 0),
the iteration count i©(,/nL). In the case wherex?, y°, 1) is the standard choice

0 0 0

1y*ll1
n 9

|1X*[]1
n

Pp = ., Pd = maX{ [lopMe + CIIIOO} )

where(x*, y*) is any element o8, the formula (38) yields

rIEl - 3(4+ Bun 7
B2(1—B1) — 281

so the iteration count i®©(nL).
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4. Concluding remarks

In Section 3, we present the first rate of convergence result and the first complexity
result of any kind for a path following algorithm based on the Chen—Harker—Kanzow
smoothing techniques. In the year following the announcement of this result there has
been a flurry of activity on rate of convergence results for non-interior path following
and smoothing methods for the complementarity problems and variational inequalities
[1,3,4,6,28,32,33]. All of this work builds on new neighborhood concepts [1,19] for
smoothing paths (e.g. tleentralpath) that do not necessarily lie in the positive orthant.
The first global linear convergence result for non-interior path following methods ap-
pears in [1]. The work in [3,4,6,32,33] builds on the ideas presented in [1] and [19].
In [32], Xu establishes the global linear convergence result for nonlinear complemen-
tarity problems. In [3,4, 6] the authors extend the analysis to larger classes of smoothing
functions [7,17] and, in addition, establish the local quadratic or super—linear conver-
gence of their methods. In [28], the authors build on the approach developed in [19] and
establish the global linear convergence or the local super—linear convergence of their
method depending on the choice of parameters.

The interior point path following method studied in this paper is essentially a vari-
ation on standard interior point methods wherein the right hand side in the Newton
equations is perturbed in a very special way. For this reason, it is possible to analyze the
algorithm within the framework developed by Mizuno. In [24,25], Mizuno proposed
a class of feasible interior point algorithms for monotone LCP which are based on the
search directioiAx¥, AyK) satisfying the following equations

MAX — Ay =0, (39)
k Kav — Kk ykok
YoAX + XAy =v" — o XY, (40)

wherek e R[ . ando > 0. By adjusting the choice of the sequentey witho = 1,
Mizuno is able to construct both path following and potential reduction methods and
thereby provides a unifying framework within which a number of interior point methods
can be studied. In order for this program to work, one must first show that the sequence
{vX} satisfies the following three properties:

(A) K >0fork=0,1,....

(B) the sequenceX} is ana—sequencéor somex > 0, thatispktt € N (WK, ) for all
k=0,12...,whereN(v,&) = {u e R": [V 2w —u)| < a\/vmin}, With
V = diag (v), and

(C) there is an iteration index = O(,/nL) such that O< v™ < 2-2L+1g,

A referee for this paper has observed that the algorithm of Section 3 can be cast within
Mizuno’s framework. To see this, define

v = 2XKyK — 20 (xK, vh). (41)

With this definition, the Newton equations (39) and (40) are identical to the equations
(11) and (12) whew = 2. If one now assumes thate (0, %] and(uk — pkHhy k=
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O(1/4/n), it can be shown that the sequer{e¥} defined by (41) satisfies the condi-
tions (A) and (B). The conditioB € (O, %] can be enforced during the initialization
phase of the algorithm. It is used to show that

1 . .
E|9M(Xi,Yi)| < WX, Yl < 10u(Xi, ¥, fori=1,2,...,n
wheneverx, y) e R}, x R, and
ey = Bu,

which in turn shows that condition (A) is satisfied. The bounds{minz} < y* < n1
(Theorem 2 and (20)) show th&(1/./n) = yk if (x° y°, 1% is chosen so that
n2 = O(1//N) (for example, when® = Mx? + @). This in turn implies that the
condition (X — &1/ = O(1//n) is also satisfied. Finally, condition (C) can

be verified using the complexity result established in this paper. This connection to
Mizuno’s work should provide a basis for developing a deeper understanding of the
relationship between standard path following methods, potential reduction methods,
and the path following method proposed in this paper.

AcknowledgementsWe thank Bintong Chen for observing the identity (13) which greatly simplified the
original proof of Lemma 1. In addition, we wish to express our gratitude to an anonymous referee for
providing the details of the relationship between the rescaled Newton direction and Mizuno’s convergence
framework.
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